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Planets With Large Obliquity and Long Seasonality
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Abstract Hadley cells dominate the meridional circulation of terrestrial atmospheres. The solar system
terrestrial atmospheres, Venus, Earth, Mars, and Titan, exhibit a large variety in the strength, width, and
seasonality of their Hadley circulation. Despite the Hadley cell being thermally driven, in all planets, the
ascending branch does not coincide with the warmest latitude, even in cases with very long seasonality
(e.g., Titan) or very small thermal inertia (e.g., Mars). In order to understand the characteristics of the Hadley
circulation in cases of extreme planetary characteristics, we show both theoretically, using axisymmetric
theory, and numerically, using a set of idealized GCM simulations, that the thermal Rossby number dictates
the character of the circulation. Given the possible variation of thermal Rossby number parameters, the
rotation rate is found to be the most critical factor controlling the circulation characteristics. The results also
explain the location of the Hadley cell ascending branch on Mars and Titan.

Plain Language Summary The Hadley circulation is a thermally driven circulation, meaning

that air raises at warm latitudes and descends at colder ones. As the solar forcing is seasonal this cell has a
seasonal cycle as well, with typically the winter cell being stronger. Previous studies showed that under
planetary conditions where the maximum temperature at solstice is at the summer pole, the ascending
branch does not necessarily follow the maximum surface temperature; however, slowing down the rotation
rate allows the ascending branch to follow the warmest latitude. In this study, we aim to explain this
rotation rate dependence and the Hadley circulation on planets that exhibit strong seasonality like Titan
and Mars, by using both theoretical arguments based on angular momentum conservation and idealized
3D model simulations. We find that the rotation rate is the main factor controlling the ascending branch of
the circulation.

1. Introduction

Observations and models show that the Hadley circulation varies considerably between the solar system
terrestrial atmospheres of Venus, Earth, Mars, and Titan. Venus' lower atmosphere is composed of two hemi-
spherically symmetric equator-to-pole Hadley cells (Read, 2013; Sdnchez-Lavega et al., 2017). On Earth, similar
to Venus, Hadley cells exist in both hemispheres, but due to Earth’s obliquity, the ascending branch latitude
and the strength of the two cells vary seasonally, where during the solstice there is a strong and wide winter
cell and a narrow and weak summer cell (e.g., Dima & Wallace, 2003).

Both Mars and Titan exhibit stronger seasonality in the Hadley circulation compared to Earth, despite the fact
that the obliquity of Mars and Titan is similar to Earth’s obliquity. The strong seasonality on Mars is due to its
thin atmosphere and rocky surface resulting in a low thermal inertia and a short radiative timescale. Mars’
Hadley circulation transits from two hemispherically symmetric cells at equinox, to one solstice cell, with air
rising at midlatitudes (Read et al., 2015). Thus, although at solstice, Mars’ maximum surface temperature is at
the pole, the Hadley cell ascending branch does not reach the pole.

Titan's tropospheric radiative timescale is considerably longer than its orbital period (Mitchell & Lora, 2016),
which explains why Titan’s maximum surface temperature seems to stay near the equator during the seasonal
cycle (Jennings et al., 2016; Lora et al.,, 2015). However, observations of Titan’s methane clouds show a signifi-
cant seasonal cycle as they shift from one pole to the other during Titan’s year (Brown et al., 2002; Roe, 2012;
Turtle et al.,, 2011, 2018). Different models associate the polar clouds to different phenomena. Schneider et al.
(2012) associate the polar clouds to the meridional convergence (analogous to the intertropical convergence
zone, ITCZ, on Earth) indicating a pole-to-pole Hadley circulation (e.g, Roe, 2012). In contrast, Lora et al. (2015)
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and other studies (e.g., Mitchell, 2008; Mitchell et al., 2006, 2009; Newman et al., 2016) relate the polar clouds
to intensive polar warming during solstice, while the meridional convergence occurs at midlatitudes.

The variability of the terrestrial atmospheric circulation within the solar system is a result of the variability in
the planets’ orbit, rotation rate, atmospheric mass, radius, etc. Different studies explored the effect of different
planetary parameters on the atmospheric circulation, showing that the large-scale circulation depends greatly
on the planetary parameters and atmospheric characteristics (e.g., Chemke & Kaspi, 2017; Faulk et al., 2017;
Ferreira et al., 2014; Kaspi & Showman, 2015; Linsenmeier et al., 2015).

More specifically, Faulk et al. (2017) studied the dependence of the meridional circulation seasonal cycle
on the rotation rate using an idealized aquaplanet GCM, showing that for an Earth-like rotation rate, the ITCZ
and the ascending branch of the Hadley circulation do not reach the pole, even in an eternal solstice case,
where the maximum temperature is at the pole. This result, together with Mars’ ascending branch not reach-
ing the pole, even though its maximal surface temperature is at the pole (Forget et al., 1999; Read et al., 2015)
and some Titan models predicting the ascending branch being poleward from the warmest latitude (e.g., Lora
etal, 2015), is puzzling. Theoretical expectations are that the Hadley cell ascending branch, being a thermally
driven circulation, will follow the warmest latitude (Neelin & Held, 1987) or the latitude of maximum low-level
moist static energy (Emanuel et al., 1994; Privé & Plumb, 2007), which is not the case for Mars and neither
for the Faulk et al. (2017) simulations. This study shows that axisymmetric theory (Caballero et al., 2008; Held
& Hou, 1980; Lindzen & Hou, 1988) has a similar rotation rate dependence as the modeling results and the
observations on Mars and Titan show.

For Earth, there are several other theories regarding the Hadley circulation and the ITCZ position, that unlike
the axisymmetric theory take into account the eddy contribution and involve processes such as the flux of
eddies across the equator (e.g., Adam et al.,, 2016a, 2016b; Bischoff & Schneider, 2014; Kang et al., 2008; Wei &
Bordoni, 2018), moist processes (e.g., Neelin & Held, 1987), baroclinicity (Held, 2000), and supercriticality (Korty
& Schneider, 2008; Levine & Schneider, 2015). However, in this study, which aims to understand the leading
order effects over a wide range of conditions, we focus on the simpler, axisymmetric theory, as a leading
order theory for the zonally symmetric climate balance. In section 2 we derive the axisymmetric theory for the
solstice case following Lindzen and Hou (1988, hereafter LH88) and solve it numerically toinclude a wide range
of planetary parameters. In section 3 we briefly describe the numerical model and present the simulation
results, relating them to the axisymmetric theory. In section 4 we discuss the results and their implication for
the solar system atmospheres.

2. Axisymmetric Theory

The axisymmetric theory introduced by Held and Hou (1980) and further developed by LH88 to include the
solstice case is a theory for the Hadley circulation that neglects eddy contribution and diffusive processes.
Despite the importance of eddies (e.g., Walker & Schneider, 2006), the axisymmetric theory has been found
to overall give a good leading order estimate to the cell extent. Following LH88, angular momentum conser-
vation at the top of the cell is assumed, and the angular momentum conserving wind, at latitude ¢, of an air
parcel starting at rest from latitude ¢, (the ascending branch of the Hadley cell) is

cos? ¢p; — cos? ¢

cos¢ ’ ()

uy = Qa
where Q is the planetary rotation rate and a is the planetary radius. Assuming that the flow is in cyclostrophic
balance and that thermal wind balance holds to leading order, equation (1), together with hydrostatic balance,
results in an expression for the angular momentum conserving potential temperature (6)

0(¢) - 0@) __Q2a> sin* ¢ —sin’ )

0o 2gH cos? ¢
where 6, is some reference potential temperature and H is the troposphere height. Equation (2) can be
expressed using the thermal Rossby number R, = Zgji’* (Held & Hou, 1980) to give

0@) —0(¢) _ Ay (sin? ¢ — sin? ¢,)?
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Figure 1. The radiative equilibrium potential temperature and the angular momentum temperature both multiplied by
cosine of latitude (6, cos ¢/, solid, and 6 cos ¢/8,, dashed, respectively) and normalized by maximum 6,/6,. The
vertical dotted and dash-dotted lines are for the winter cell ascending and descending branches, respectively. (a and c)
are similar to Figure 5 in LH88, where panel (a) is the solution for the hemispherically symmetric case (¢o = 0°), and
panel (c) is the solution for ¢y = 6° with Ay; = 1/6 and Earth-like rotation rate. In panels (b) and (d), ¢q = 45°, where in
panel (b) each color represents a different value of Ay with the values 0.01 (black), 1/6 (blue), and 1/3 (red), all with an
Earth-like rotation rate. Panel (d) shows the solutions for different rotation rates, 0.5 (red), 0.75 (black), and 1 (blue) all in
Earth rotation rate units, with A, = 1/6.

where A, is the meridional fractional change of the radiative equilibrium temperature (LH88 and
equation (4)). Taking a small angle approximation, the width of the circulation in the equinox case is Rl/z
(Held & Hou, 1980) and for the solstice case R:/S (Caballero et al., 2008).

In order to find the Hadley circulation edges, namely, the latitudes of the ascending and descending branches,
we assume that the cells are energetically closed, that the temperature at the edge of the cells is continuous
and that outside of the Hadley circulation the temperature is a radiative equilibrium temperature 6,

b, _ Ay . . 5

— =14+ —(1 =3(6in¢g —singy)"), (4)
6, 3

where ¢, is the latitude of maximum 6,. The energetically closed cell and temperature continuity assumptions
translate to the following set of equations:

:1 (0 -0,)cospdp = 0, ()
:s (0-0,)cospdp = 0, ©6)
| 0@ = 0.9, %
0dw) = Oc(by): ®)
0@ = Oy, )
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Figure 2. Axisymmetric solutions for the ascending branch latitude (color), in the parameter space of ¢, Ay, H, and Q. The parameters are ¢, the latitude of
maximum radiative equilibrium temperature, ranging from 5° to 90°, with a value of 90° when kept constant. The meridional radiative equilibrium temperature
gradient, Ay, ranging from 0.01 to 0.4, with a value of 0.17 when kept constant. The tropopause height, H, ranging from 6 to 20 km, with a value of 15 km when
kept constant. The rotation rate, Q, raging from 0.05 to 1 in Earth’s rotation rate units, with a value of 1 when kept constant.

where ¢, and ¢,, are the latitudes of the Hadley cell descending branch in the summer and winter hemi-
spheres (edges of the circulation), respectively. The unknowns that equations (5)-(9) solve for are the
ascending and descending branch latitudes ¢,, ¢,, and ¢, and the temperature at the ascending branch
0(¢,). Graphically, the energetically closed cell assumption translates to an equal area between the angular
momentum conserving and the radiative equilibrium temperature curves inside each cell. Figure 1 depicts
the angular momentum conserving (dashed) and the radiative equilibrium (solid) temperature curves, multi-
plied by cos ¢ for different cases, depicting the closed cell argument. Figures 1a and 1c are similar to Figure 5
in LH88 with the difference that here 6 and 6, are multiplied by cos ¢, as the small angle approximation is not
appropriate in this case. Figure 1a shows the hemispherically symmetric cell and Figure 1c shows the ¢, = 6°
case, representing an Earth-like scenario. Figures 1b and 1d are for different temperature gradients and
different rotation rates, respectively, where the latitude of maximum radiative temperature is at latitude 45°.
All plots in Figure 1 show the position of the winter cell ascending (dotted line) and descending (dash-dotted
line) branches. Only the winter cell is shown, as for strong seasonal cases, which are the focus of this study, a
summer cell barely exists. Comparing between Figures 1b and 1d shows that slowing down the rotation rate
is more efficient in widening the circulation than increasing the temperature gradient.

The axisymmetric theory solutions shown in Figure 1 together with equations (2) and (4) show that the
latitudes of the ascending and descending branches depend on different parameters. Solving numerically
equations (5)-(9) for a wide range of Q, A, ¢, and H values (Figure 2) shows a clear difference between
cases where the rotation rate is slowed down (Figures 2d-2f), where the ascending branch easily reaches the
pole, and cases where the rotation rate is kept with an Earth-like value (Figures 2a—2c). This demonstrates
that an Earth-like rotation rate or faster limits the expansion of the circulation, such that even if ¢, is at the
pole, and, for example, A, is increased (over a realistic range), it is unlikely for ¢, to reach the pole unless the
rotation rate is slowed down. This result is consistent with the simulations of Faulk et al. (2017). The choice
of parameter values here is guided by the observed values in the solar system. A, the normalized horizon-
tal temperature difference, gets its largest value for Mars (~ 0.4, e.g., Read et al,, 2015), and lowest value for
Venus (with nearly zero temperature gradient, e.g., Read, 2013). The tropopause height, H, taken to be the cir-
culation height scale (Walker & Schneider, 2006) is highest on Titan and Mars reaching to ~20 km (e.g. Lora
etal., 2015; Read et al., 2015).
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Figure 3. The latitude of ascending branch as a function of the latitude of maximum e, ¢, the thermal Rossby number,
R, and its decomposition. (a) The ascending branch as a function of ¢4 and R;, where the dotted blue and red lines
represent the R; value of Titan and Mars, respectively. Each curve in (b) is for a different ¢ value raging from 90° (top) to
5° (bottom) in a log-log plot of the ascending branch latitude, ¢, as a function of R;, showing the correspondence to

the Caballero et al. (2008) scaling. (c) and (d) The ascending branch latitude (color) as a function of %T[fl-l and Ay and for

different values of a and Q, respectively, where ar and Q; are Earth’s radius and rotation rate. In (c) g = 3 m/s2 is used,
which is between the Mars and Titan surface
gravity values.

In order to understand this rotation rate dependence, we plot the ascending branch latitude as a function
of R, and ¢, (Figure 3a), showing that for each value of ¢, the position of the ascending branch is strongly
dependent on R, (Figures 3a and 3b). For small values of R, there is a good agreement with the Caballero
et al. (2008) scaling (Figure 3b). The values of R, for the solar system terrestrial atmospheres vary from
0.06 on Earth to 370 on Venus, with the value for Mars being 0.2 and for Titan 18 (Read, 2011). Decomposing
R, into g;;‘;z and Ay, which is a natural decomposition to a dynamical component (g;;(:j) and a radiative one
(Ap), shows the range of possible values of g;zg‘;z is larger compared to that of A, (Figure 3c). As a result,

this factor will have a larger role in limiting the width of the circulation. Examining the elements in %27-’2
shows a strong dependence on the rotation rate and radius (Figure 3d). Taking the solar system terrestrgial
atmospheres as a proxy, and comparing between the range of the different parameters in R,, shows that
the rotation rate is the only parameter known to vary by 2 orders of magnitude (Earth and Venus), while all
other parameters vary by 1 order of magnitude or less. This together with the strong dependence of R, on the
rotation rate is what makes the rotation rate the limiting factor on the circulation extent. Also, taking a closer
look at the radius dependence, shows that it is not as strong as the rotation rate dependence, considering the
surface gravity dependence on the planetary radius g = 4z Gpa/3. Here p is the planet’s mean density, which
is a more fundamental characteristic of the planet than its surface gravity, and G is the universal gravitational
constant. Therefore, a more useful form to write the thermal Rossby number in this context is

8rpGHA
R_b.

T 3Q2q (10)

Expressing R, in this form emphasizes the circulation dependence on the rotation rate.
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Figure 4. Hovmoller diagram of the streamfunction, y = 2za [ vdp/g, where v is the zonal mean meridional wind, at its
height of global maximum value (color, units 1010 kg/s) and surface temperature (contours, K) for different climates. The
abscissa is a time axis, showing the year fraction. The top row simulations are with an Earth-like rotation rate and the
bottom row simulations are with 1/4 of Earth'’s rotation rate. (a and d) Earth-like simulation with obliquity 23° and an
Earth-like orbital period. (b and e) Simulations with obliquity 90° and an Earth-like orbital period. (c and f) Simulations
with obliquity 90° and four times Earth’s orbital period.

3. Idealized GCM Simulations

3.1. Model Description

In order to test the theoretical framework presented in section 2 in a more complete model, we use an ideal-
ized moist aquaplanet GCM (Frierson et al., 2006), based on the GFDL dynamical core (Anderson et al., 2004),
used in this context by Faulk et al. (2017). The model radiation scheme is augmented to include a diurnal mean
seasonal insolation dependence on obliquity (Pierrehumbert, 2010). Similar to Faulk et al. (2017) the atmo-
spheric optical depth is constant with latitude. The model solves the primitive equations with a horizontal
spectral grid of 2.8° x 2.8° (T42) and 25 uneven vertical levels. To analyze the climate, we use a 50-year cli-
matology after reaching a statistical steady state. Figure 4a shows the model results for Earth-like parameters.
The model shows a generally similar climate as Earth’s (Kaspi & Showman, 2015).

3.2. Simulation Results

Three simulations with different degree of seasonality: Earth-like, obliquity 90° with an Earth-like orbital
period and obliquity 90° with four times Earth’s orbital period, are repeated with an Earth-like rotation rate
and 1/4 of Earth’s rotation rate. Figures 4 and 5 show that shifting the maximal temperature poleward from
a reference Earth-like state (Figure 4a) does not result in a global pole-to-pole Hadley circulation for simula-
tions with an Earth-like rotation rate (Figure 4b), even when the temperature gradient is increased (Figure 4c).
However, slowing down the rotation rate allows the ascending branch to reach the pole, similar to Faulk
et al. (2017). These results coincide with the theoretical solution of equations (5)-(9) (Figure 2), where the
ascending branch, for a realistic range of A, does not reach the pole for an Earth-like rotation rate.

Figure 5 shows that during the solstice of the strong seasonal cases, the meridional streamfunction follows
the angular momentum contours (Figures 5b-5f), implying that the eddy contribution is small. This means
that despite the importance of eddies in the more Earth-like cases for the extent of the Hadley circulation
(e.g., Korty & Schneider, 2008; Walker & Schneider, 2005; 2006) eddies seem to play less of a role in these cases.
This alignment relates to a previously suggested regime transition between an eddy mediated circulation
at equinox to a thermally driven one at solstice, where eddies do not contribute, suggesting that the use of
axisymmetric theory is appropriate (Bordoni & Schneider, 2008, 2010; Geen et al., 2018; Merlis et al., 2013).
Aside from the seasonal regime transition, there is a rotation rate related transition, where by slowing down
the rotation rate, the streamfunction follows angular momentum contours. This regime transition in both
rotation rate and seasonality is a result of weaker eddy momentum flux convergence that in turn allow the
streamfunction to follow the angular momentum contours (Faulk et al., 2017). Consistent with the angular
momentum conserving cell, these simulations do not exhibit superrotation. However, simulations with slower
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Figure 5. Streamfunction (red contours) and angular momentum (gray contours) vertical structure during Northern
Hemisphere summer solstice, for different climates. Blue and Black vertical dashed lines are for the positions of the
ascending and descending branches, respectively, defined to be the latitudes where the streamfunction reaches 5% of
its maximum (Faulk et al., 2017; Walker & Schneider, 2006). The red dashed vertical line is for the position of the
maximum surface temperature. The simulation parameters for the different panels are the same as in Figure 4.

rotation rates (more similar to Titan and Venus) may exhibit superrotation (e.g., Kaspi & Showman, 2015),
though the existence of superrotation together with a strong seasonal cycle is complex (Mitchell et al., 2014).

4. Discussion and Conclusion

Previous studies showed that as a planet rotates faster, the Hadley circulation contracts, the streamfunction
becomes multicellular, and the number of jets increases (Chemke & Kaspi, 2015a, 2015b; Kaspi & Showman,
2015; Navarra & Boccaletti, 2002; Walker & Schneider, 2006). Faulk et al. (2017), studying the effect of the rota-
tion rate in a seasonal cycle, showed that for a planet with an Earth-like rotation rate the Hadley cell ascending
branch and the latitude of the ITCZ do not reach the pole, even when the maximum surface temperature is at
the pole and the seasonal cycle is very long.

Similar to Faulk et al. (2017), using an idealized GCM with different degrees of seasonality, we show that for
Earth-like rotation rate cases the Hadley cell ascending branch does not reach the pole (Figures 4 and 5). A
similar rotation rate limitation arises from the axisymmetric theory, predicting that the Hadley cell ascending
branch latitude is limited for Earth-like rotation rate cases (Figure 2). This rotation rate dependence is a result
of the angular momentum conservation and thermal wind assumptions that makes the width of the circu-
lation to be a function of the thermal Rossby number (Figure 3). The quadratic dependence of the thermal
Rossby number on the rotation rate (equation (10)), and the limited range the other thermal Rossby num-
ber parameters exhibit in the solar system planetary atmospheres, imply that the strongest limiting factor in
controlling the ascending branch of the Hadley circulation is the rotation rate.

Studying these extreme cases, and the climate dependence on different planetary parameters, gives insight
to the expected climate on other planetary atmospheres. Our solar system terrestrial atmospheres are a good
example for a variety of circulations, due to their large variability in planetary characteristics. Of particular
interest is the seasonality on Mars and Titan, both exhibiting a different circulation response to the seasonally
varying surface temperature (Mitchell & Lora, 2016; Read et al.,, 2015). During the Martian solstice, maximum
surface temperature is at the pole; however, the Hadley cell ascending branch is located at midlatitudes (Read
etal,, 2015), consistent with the axisymmetric theory using Mars’ R, (red dotted line in Figure 3a).

On Titan, observational studies show that the maximum surface temperature stays close to the equator dur-
ing Titan's year (Jennings et al., 2016); yet cloud observations show a significant seasonal variation (e.g., Turtle
etal., 2018). Models of Titan's climate vary depending on their physical aspects (Horst, 2017), with some mod-
els associating polar clouds with the Hadley cell ascending branch (e.g., Schneider et al., 2012) while others
locate the ascending branch at midlatitudes (e.g., Lora et al., 2015). The warmest latitude also varies between
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models (e.g., the difference between dry and moist cases in Newman et al., 2016). Particularly, Lora et al. (2015)
is an interesting case, where the peak surface temperature stays close to the equator while the ascending
branch is located poleward, at midlatitudes. This variety of models can be explained using the axsymmetric
theory. Following the blue dotted line in Figure 3a, which represents the R, value of Titan, we indeed find that
if ¢, is taken to be ~10°, the position of the ascending branch is at ~45°, in a general agreement with Lora
etal. (2015). Also, if ¢, > 30 the ascending branch is predicted to be near the pole, similar to the dry case in
Newman et al. (2016).
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