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ABSTRACT: We investigate periodical oscillations in the conductance of suspended Au and
Pt atomic chains during elongation under mechanical stress. Analysis of conductance and shot
noise measurements reveals that the oscillations are mainly related to variations in a specific
conduction channel as the chain undergoes transitions between zigzag and linear atomic
configurations. The calculated local electronic structure shows that the oscillations originate
from varying degrees of hybridization between the atomic orbitals along the chain as a function
of the zigzag angle. These variations are highly dependent on the directionally and symmetry
of the relevant orbitals, in agreement with the order-of-magnitude difference between the Pt
and Au oscillation amplitudes observed in experiment. Our results demonstrate that the
sensitivity of conductance to structural variations can be controlled by designing atomic-scale
conductors in view of the directional interactions between atomic orbitals.
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In atomic scale conductors, electrical current is transmitted
through discrete conduction channels that are dominated by

the orbital structure of the conductor.1−10 The importance of
studying conductance phenomena in view of orbital structure is
illustrated by the case of single atom contacts.1 The differences
in the conductance values obtained for different metal contacts
were found to result from the number of atomic valence
orbitals for each metal, which sets a limit to the number of
conduction channels through the contact. It is therefore clear
that uncovering the relationship between conductance and
orbital structure is essential for fundamental understanding of
electronic transport through atomic scale conductors. Yet, while
theoretical calculations can estimate the different conduction
channels and their relationship to the orbital structure,11−16

experiments are mostly limited to measuring the overall
conductance.
In this letter, we show that by obtaining the conduction

channels experimentally, we can directly probe the orbital
origin of conductance oscillations observed in Au and Pt atomic
chains. The relative contributions of channels with different
orbital character to the oscillations are inferred from an analysis
of conductance and shot noise measurements. The channel
resolution and observed conductance-length dependence,
together with first-principles calculations, allow us to associate
the oscillations with the evolution of the local orbital structure
as the chain undergoes transitions between zigzag and linear
atomic configurations. Our findings indicate that the con-
ductance sensitivity to structural variations results directly from
the degree of spatial directionality of the orbital structure.

Atomic chains are appealing systems for the study of a large
variety of phenomena, including atomic scale magnetism,17−19

nanoelectromechanics,20,21 and quantum effects in one
dimension.22−25 Chains of atoms suspended between two
electrodes are particularly interesting systems for the study of
electronic transport due to their relative simplicity. Such chains
are observed in break junction experiments when pulling apart
metallic wires of Au, Pt, or Ir.26−30 Relativistic effects taking
place in these metals strengthen the interatomic bonds between
the low-coordinated atoms in the atomic constriction.28,31 As a
result, atoms can be pulled out from the electrodes during the
stretching process, and a suspended chain of several atoms is
formed between the two wire segments. First-principles
calculations suggest that such pulling experiments involve
repeated transitions between zigzag32 and linear atomic
configurations as the chain is elongated,33−35 illustrated
schematically in Figure 1a. Such transitions are predicted to
be accompanied by conductance oscillations with atomic
periodicity. Here, we present experimental evidence for
conductance oscillations driven by transitions between zigzag
and linear atomic configurations taking place in Au and Pt
atomic chains. We focus on the comparison between these
metals because they possess distinct electronic transport
properties resulting from the relative position of the d bands
with respect to the Fermi energy. We then take advantage of
the correlation between structure and conductance to
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demonstrate the explicit relationship between orbital structure
and transport properties at the atomic scale.
We start by examining the structural and conductance

properties of atomic chains that are formed when a metallic
wire with a narrow constriction is pulled apart. Experiments
were performed on Au and Pt wires using a break junction
setup36 at 4.2 K. The conductance was recorded during each
pulling sequence, after which the contact is reformed and pulled
again repeatedly. Figure 1b,c shows examples for conductance
traces recorded for Au and Pt contacts, respectively. The traces
focus on the last conductance plateau before rupture, which is
attributed to a contact with a single atom in the smallest cross-
section of the contact constriction.1 The length of the plateaus
can reach several Å, exceeding the typical interatomic distance.
Collecting the lengths of the last plateau from thousands of
pulling sequences yields the length histograms presented in
Figure 1d,e for Au and Pt, respectively. The series of peaks in
the length histogram reflects the distribution of chains with
different number of atoms in length. The peak positions
indicate the elongations in which the tensile forces in the chain
amount to a degree where it either breaks or an additional atom
is pulled into the chain.20,21 The peak separation (2.6 ± 0.2 Å
for Au and 2.0 ± 0.2 Å for Pt) indicates the average distance by
which the chain is stretched before another atom is added to
the chain.26

As can be observed in the individual traces (i.e., Figure 1b,c),
the conductance of the last plateau varies during elongation. In
some cases, the conductance traces show oscillations with a
period similar to the peak separation in the length histograms
(Figure 1d,e). In order to provide a statistical description that
exposes repeated features in different traces, we calculated the
average trace starting from the beginning of the last plateau. In
both average traces calculated for Au and Pt (Figure 1d,e, blue
line) we find clear conductance oscillations with one-atom

periodicity. Since the average trace is calculated for chains with
different lengths, the oscillations in this trace could reflect
contributions from the final conductance drop during the
rupture process rather than actual oscillations throughout the
whole elongation. In order to examine this possibility, the traces
were divided into three subsets according to their total
elongation. The top, middle, and bottom panels of Figure
1f(g) show the average conductance of Au(Pt) traces that break
at the positions of the first, second, and third peak of the length
histogram, defined by the shaded areas in Figure 1d(e). The
conductance oscillations are observed along the average traces
of all subsets, despite the fact that the breaking events are now
limited to the last shaded area of each trace. This behavior
demonstrates that the oscillations take place during the entire
course of elongation.
A straightforward explanation for the conductance oscil-

lations is based on possible variations in the interatomic
distance during chain elongation. In such a scenario, the
conductance is expected to decrease as the chain is stretched
due to larger interatomic distances that reduce the interatomic
coupling35,37 and to increase following structural relaxation
once an additional atom is pulled into the chain. However, the
relative positions of the observed oscillations with respect to
the peaks in the length histogram (Figure 1d,e) contradict the
mentioned explanation. The conductance increases as the chain
is stretched (between the peaks of the length histograms) and
decreases once an additional atom enters the chain (at the
positions of the peaks). The observed behavior is in very good
agreement, however, with an alternative explanation based on
prior calculations33−35 in which conductance oscillations were
attributed to transitions between zigzag and linear config-
urations. According to these calculations, the conductance
increases as the relatively stable zigzag chain is stretched to a
more linear configuration. Further stretching can pull a new

Figure 1. (a) Schematic illustration of transitions between zigzag and linear configurations in an atomic chain when stretched in a mechanical
controllable break junction. (b,c) Examples for conductance traces showing the last plateau for Au (b) and Pt (c). (d,e) Length histogram (gray area)
and average trace (blue line) for the last plateau before rupture. The trace segments used for the analysis are defined between 0.4−1.2G0 for Au (d)
and 1−2.5G0 for Pt (e). (f,g) Average traces for 2, 3, and 4 atom long atomic chains (top, middle, and bottom panel, respectively) of Au (f) and Pt
(g), defined by the shaded regions enclosing the first three peaks in the respective length histogram (d,e). The presented histograms were calculated
from 5000 Au traces and 20 000 Pt traces.
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atom into the chain, leading to partial relaxation to the less
conductive zigzag configuration. We thus conclude that the
experimental results support the model of repeated transitions
between zigzag and linear configurations during elongation as
the source for conductance oscillations.
We note that the conductance oscillations described here

differ from the parity oscillations reported by Smit et al.23 Parity
oscillations with a double atomic periodicity were infrequently
observed in our experiments for both metals, when oscillations
with one-atom periodicity were suppressed (see Supporting
Information).
To further study the underlying mechanisms for the

oscillations, we obtained the distribution of conduction
channels using shot noise measurements. Shot noise in
quantum conductors depends on the number of channels N
across the conductor and their transmission probabilities τn.

38

This relationship is expressed in the Fano factor F = ∑n = 1
N τn(1

− τn)/∑n = 1
N τn, which describes the ratio between the obtained

shot noise to its full Poissonian value of 2eI (where I is the
current). The transmission probabilities also define the overall
conductance G = G0∑n = 1

N τn, where G0 = 2e2/h is the
conductance quantum. Therefore, by measuring the Fano factor
and the conductance it is possible to obtain two independent
equations for τn. Recently, it was shown that numerical analysis
can extract the set of transmission probabilities {τ1...τN} from
the two measured values.39 This analysis can be applied to more
than two channels (N > 2) at the expense of the accuracy with
which one can determine τn. In general, this type of analysis can
be extended to other systems that can be described by the
Landauer formalism, including molecular junctions, nanotubes,
nanowires, and quantum dots.
To obtain the evolution of the transmission probabilities, we

measured the conductance and shot noise of Pt atomic chains
during elongation. The electronic setup (Figure 2a) is described

in the Supporting Information. After each elongation step,
noise spectra are measured as a function of applied bias (Figure
2b). The spectra are corrected for the RC transfer function and
are averaged in a fixed frequency window (Figure 2c). The
Fano factor was calculated from the bias dependence of the
noise (see Supporting Information). We then employed the
procedure described in ref 39 to determine the transmission
probabilities.
Figures 2d,e present two typical examples for the channel-

resolved evolution of the conductance during the elongation of
Pt atomic chains. As can be seen in the lower panels of Figure
2d,e, the overall conductance is mainly composed of two or
three conduction channels. Remarkably, throughout the
elongation process the main channel maintains a transmission
probability close to unity, while the transmission of the second
channel clearly follows the oscillations in the conductance.
Thus, the conductance oscillations are dominated by
oscillations in the transmission probability of the secondary
channel. We note that because τn are defined arbitrarily by
decreasing transmission, the reference to channel identities
(1st, 2nd, etc.) is based on their gradual evolution with
stretching. A few points of overlap that exist between τ2 and τ3
could allow for a slightly different channel association.
However, this would not change any of the presented
conclusions.
In order to test whether this is a general behavior, we

analyzed the conduction channels in 51 different elongation
sequences. A statistical measure for the contribution of each
channel to the conductance oscillations is provided by
calculating the correlation between the differences in the
conductance ΔG and in the channel transmissions Δτn
following each elongation step. The correlation coefficient for
the nth channel is defined as corr(δG,δτn) = ⟨δGδτn⟩/
(⟨δG2⟩⟨δτn

2⟩)1/2 where δG = ΔG − ⟨ΔG⟩ and δτn = Δτn −

Figure 2. (a) Electronic setup for conductance and shot noise measurements. (b) Noise spectra recorded at different bias voltages for a Pt atomic
contact with conductance of 2.32G0. (c) Noise power vs bias voltage calculated from the average noise in panel b. (d,e) Pt traces showing
conductance oscillations (top panel) and the experimentally resolved first three channel transmissions τ1−τ3 out of six resolved channels (lower
panels). (f−h) Scatter plots of Δτn vs ΔG for n = 1−3 calculated from 51 channel-resolved Pt traces.
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⟨Δτn⟩. The scatter plots for the three main channels are shown
in Figure 2f−h. We find that the correlation coefficients for τ1,
τ2, and τ3 are 0.23, 0.82, and 0.31, respectively. The significant
positive correlation between the oscillations in τ2 and the
conductance oscillations indicates that the dominant contribu-
tion of the second channel to the oscillations is a general
feature.
Previously reported calculations for finite Pt chains11,40

obtained a distribution of channels, which is in good agreement
with our results. Simulations of channel evolution during chain
formation presented in ref 11 capture both the nearly constant
transmission of the first channel and the variance in the second
channel’s transmission. For a linear configuration of the atomic
chain, the authors find that three main channels contribute to
transport. One channel results from a hybridization of s, pz, and
d3r2−z2 orbitals (ml = 0), and two additional channels were found
to be dominated by either dyz or dxz orbital contributions (ml =
± 1), in agreement with the three channels found in our
channel analysis. In contrast, for Au atomic chains a very
different situation is expected since transport is governed by a
single conduction channel, reflecting the dominant s character
of states near the Fermi energy.1,3,4,41

The differences in orbital character between the two metals
are manifested in the oscillation amplitude during the
formation of Au and Pt chains. The significant variation
between the two cases can be seen in the 2D conductance−
displacement histograms (Figure 3a,b, top panels), where the
color code represents the number of times that a certain
combination of conductance and relative electrode displace-
ment was detected. In the Pt histogram, the conductance values
of the last plateau exhibit a wide spread, where 95% of the
values are in the range of 1.1−2.5G0 and the conductance
oscillations are clearly visible. For Au, the last plateau has a

conductance of approximately 1G0 with a much smaller spread
(0.75−1.1G0). In this case, the single channel composition is
clearly manifested as a sharp cut in the probability to obtain
conductance values above 1G0 for elongated chains. The 4-fold
difference in the dispersion of conductance is in good
agreement with chain formation simulations, where transitions
between zigzag and linear configurations resulted in con-
ductance values in the range of 0.9−2.1G0 for Pt

33 and 0.8−
1.0G0 for Au.

35

To examine the differences in oscillation amplitude more
closely, we retrieve the clean oscillation signature by subtracting
a baseline from the average trace (Figure 3a,b, middle panels).
The resulting traces (bottom panels) show that the amplitude
of the Pt oscillations is about an order of magnitude larger than
that of Au. We can therefore conclude that the conductance of
Pt chains is substantially more sensitive to the transitions
between zigzag and linear configurations compared to Au
chains.
In order to understand the origins of the intense

conductance oscillations observed in Pt chains, we performed
first-principles calculations using density functional theory
(DFT).42 The calculations were done using VASP43 code,
applying the Perdew−Burke−Ernzerhof (PBE) exchange-
correlation functional.44 The model system consisted of two
atomic tips oriented along the ⟨111⟩ direction, bridged by a
suspended atom (Figure 4, inset). The stretching of the atomic
chain was simulated by fixing the positions of the tip atoms for
a range of tip separations, with the positions of the bridge atom
and the two apex atoms allowed to relax (see Supporting
Information).
As the atomic contact is stretched, we find that the chain

undergoes a transition from a zigzag to a more linear
arrangement. At a small tip separation (Δz = 8.3 Å), an
angle of 27° with respect to the chain axis is formed between
the three chain atoms. The chain gradually straightens to a
nearly linear configuration (angle of 2.5°) when the tip
separation is increased by 1.4 Å, in good agreement with
previous calculations.33

The main bottleneck for transport is expected to be located
at the central atom, due to the small cross-section of the charge
density at the single-atom constriction. Thus, we have obtained
the projected density of states (PDOS) on the bridge atom for
each of the optimized geometries. We focus on the states near
the Fermi energy that are available for transport. Figure 4a
shows the PDOS integrated over an energy window of 100
meV around the Fermi energy, as a function of the tip
separation, partitioned by the angular momentum component
of each state (in the frame of reference of the entire system). As
can be seen, the overall density of states around the Fermi level
increases significantly as the chain is stretched to a more linear
configuration. Interestingly, the main contribution to this
change comes from states with ml = 0, which can be identified
as the s and dz2 orbitals of the central atom, the latter being
particularly dominant. Conversely, the contributions from
orbitals with larger angular momentum (ml ≥ 1) are found to
be less sensitive to the change in geometry. This behavior is in
good agreement with experimental findings. The significant
increase in the PDOS near the Fermi level for the linear
configuration is consistent with the observed higher con-
ductance. Furthermore, the large variations in the transmission
of the secondary channel can be correlated to the availability of
s and dz2 states at the Fermi energy, while the invariance in the
contribution from d orbitals with ml ≥ 1 are in line with the

Figure 3. Analysis of the oscillation amplitude for Au (a) and Pt (b)
atomic chains. Top panels display 2D conductance−displacement
histograms for the last plateau, aligned by the first conductance drop
below 1.2G0 (Au) and 2.5G0 (Pt). Middle panels show length
histograms (gray area), average traces (blue line), and exponential fits
(y = a e−bx + c) to the average trace (dashed red). Bottom panels show
the differences between the average traces and their exponential fits.
The histograms are constructed from the same data sets used in Figure
1.
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nearly constant transmission of the dominant channel. We have
repeated the calculations for a chain of two atoms between the
apexes and obtained the same qualitative results (see
Supporting Information).
These observations can be understood within the intuitive

chemical picture of hybridization between atomic orbitals of the
center and apex atoms. Because of the higher symmetry in the
linear configuration, the hybridization between the s and dz2
orbitals of the central atom and the rest of the d orbitals on the
apex atom is unfavorable, resulting in a relatively energy-
localized PDOS (Figure 4b). In the zigzag configuration,
symmetry breaking occurs, allowing considerable hybridization.
Consequently, the PDOS of s and dz2 undergoes a spreading
and shifting to lower energies, reducing the number of states at
the Fermi energy (Figure 4c). Remarkably, the better
hybridization in the zigzag configuration results in a counter-
intuitive decrease in the number of states available for transport.
These findings can be well visualized using the real space

distribution of the charge density at the Fermi level (Figure 5).
For the linear chain (top), the significant contribution of the dz2
orbital is manifested in the shape of the charge distribution
around the central atom. The shape of the charge distribution
changes to an apparent dxz character in the zigzag case
(bottom), indicating a significant shift of orbital character due
to the different hybridization with the tip atoms.
Although the conductance oscillations are also observed for

Au, the near-Fermi electronic structure for the two systems is
different. The density of states of Au around the Fermi energy
is dominated by an s character, while the d orbitals contribute
at lower energies and do not readily hybridize with the s
orbital.45 The density of states near the Fermi energy is
therefore less affected by changes in the local geometry,
explaining the order of magnitude lower oscillation amplitude
observed experimentally for Au chains.
In conclusion, we have found that Au and Pt atomic chains

exhibit conductance oscillations during stretching due to
repeated transitions between zigzag and linear chain structures.
From our combined experimental and computational analysis,
we infer that the oscillations result from variations in orbital
overlaps, which are substantially more pronounced when

symmetry and directionality considerations arising from the d
orbitals apply. This conclusion is consistent with the
significantly smaller oscillation amplitude measured for Au
chains, where electron transport takes place through a single
channel dominated by a spherically symmetric s orbital. The
presented principle of conductance sensitivity to the spatial
symmetry of orbitals can be useful for orbital-oriented
engineering of atomic scale conductors. In particular, direc-
tional orbitals can be used to promote conductance
manipulations by orientation changes, and the use of

Figure 4. (a) Orbital contributions to the localized states at the Fermi energy during simulated stretching of an atomic Pt chain. The number of
states shown is obtained for the central atom in an energy window of 100 meV centered at the Fermi energy. Inset shows the calculated atomic
configuration for Δz = 8.3 Å. The tip separation and the zigzag angle are defined as indicated in the inset. (b,c) Density of states projected on the
central atom for s (blue) and dz2 (red) orbital contributions, calculated for linear (Δz = 9.7 Å; b) and zigzag (Δz = 8.3 Å; c) chain configurations.

Figure 5. Spatial distribution of the charge density near the Fermi level
for a linear (Δz = 9.7 Å; top) and zigzag (Δz = 8.3 Å; bottom) chain.
The charge distribution was calculated for a window of 100 meV
centered at the Fermi energy, presented with iso-surface values of 90%
and 99% of the charge as darker and lighter shaded regions,
respectively.
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conductors with spatially isotropic orbitals at the relevant
energies can reduce sensitivity to structural variations.
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(38) Blanter, Y. M.; Büttiker, M. Phys. Rep. 2000, 336, 1−166.
(39) Vardimon, R.; Klionsky, M.; Tal, O. Phys. Rev. B 2013, 88,
161404.
(40) De la Vega, L.; Martín-Rodero, A.; Yeyati, A. L.; Sauĺ, A. Phys.
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S1. Experimental Setup 

Atomic chains are formed using a mechanical controllable break junction setup operated in 

cryogenic temperature conditions (4.2K). The sample consists of an Au or Pt wire (0.1mm 

diameter, 99.99% purity), which is notched at its center and fixed to a flexible phosphor bronze 

substrate covered by an insulating Kapton film (Fig. 1a). Using a piezoelectric element, the 

sample is bent until the wire breaks in its weak spot, forming two atomically sharp tips. A 

triangular voltage waveform is applied on the piezoelectric element in order to repeatedly break 

and reform the atomic contact. A constant bias voltage (10-100mV given by a NI PCI 4461) is 

applied across the contact and the current is amplified by an IV preamplifier (SR570) and 

recorded during the contact evolution. The pulling speed for the presented data is 600nm/s for the 

Pt traces and 300nm/s for Au. 

Noise measurements were performed by amplifying the voltage signal with two sets of low noise 

voltage amplifiers (NF LI-75a followed by Signal recovery 5184) and then calculating the cross-

correlation between the two recorded signals (Fig. 2a) using a SR785 dynamic signal analyzer. 

Clean bias current is supplied by a 4461 DAQ card connected to sample by two 500kΩ resistors. 

The relatively noisy components of the conductance measurement circuit are disconnected from 

the sample when performing noise measurements. At each bias step, the measured spectrum (Fig. 

2b) is obtained by averaging 5,000 recorded spectra. The averaging is performed in order to 

eliminate non-correlated voltage noise originating from the amplifiers.  

  



S2. Shot noise measurements and data analysis 

Shot noise measurements are performed by recording sequences of electronic noise spectra during 

elongation of atomic Pt contacts. For each contact configuration, a set of noise measurements is 

obtained as function of applied bias voltage (Fig. S1a). The noise spectra were measured at a 

frequency range between 0-100kHz. The noise generated by the sample is frequency independent 

in the measured range, however, at relatively high frequencies, the measured noise is reduced due 

to the low pass transfer function of the electronic circuit. The original signal is recovered by 

correcting the spectra according to a fitted RC transfer function (Fig. S1b). The average current 

noise   ( ) is then calculated from a selected frequency window that is free of spurious spikes. 

Figure S1c shows the dependence of   ( ) on applied bias voltage. 

The current noise generated by a ballistic conductor is given by
1
: 

( )   ( )        ∑  
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where    are the transmission probabilities of   conduction channels,   ∑   (    ) 
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     is the Fano factor, and               are the electron charge, applied bias voltage, 

Boltzmann constant, conductance quantum, temperature and the conductance of the sample, 

respectively. At zero bias voltage, the expression reduces to the Johnson-Nyquist expression for 

thermal noise        , while at high bias voltage (     ) the noise has a linear dependence 

on bias         . In order to extract the Fano factor, we follow the procedure introduced by 

Kumar et al.
2
. Two parameters are used to obtain a linear expression from which the Fano factor 

can be determined: 
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Using the reduced parameters, equation (1) can now be written as a linear relation: 

( )  ( )  [ ( )   ]  

The Fano factor is obtained from the slope of a linear fit to eq. (4). An example fit is shown in 

Fig. S1d. The errors in    are determined from the standard deviation of the noise within the 

selected frequency window. The final error in the Fano factor is determined from the accuracy of 

the linear fit. 



 

Figure S1. a, Electronic current noise spectra measured on a single-atom Pt contact (G=1.71G0) as function 

of bias voltage. b, Spectra corrected for the RC transfer function of the electronic circuit (blue). The red 

colored section indicates the frequency window from which the average noise is calculated. c, Average 

noise as a function of bias voltage. d, The data plotted using the reduced parameters, X and Y (blue points) 

and a linear fit (red), which gives a Fano factor of F = 0.30±0.01. 

 

 

  



Each series of noise measurements performed on a specific realization of an atomic contact is 

preceded and followed by measuring the differential conductance (dI/dV) of the contact as 

function of bias voltage (Fig. S2). The measurements are performed using a lock-in technique 

with a reference signal frequency of ~3kHz. The purpose of these measurements is twofold. First, 

they are used to verify the stability of the contact during noise measurements. Similar dI/dV 

spectra before and after the noise measurements (i.e. as in Fig. S2) indicate that the atomic 

configuration of the contact did not change during the time of the measurements. Second, the 

conductance of the contact is determined from the average conductance measured within the 

range of bias voltages used for shot noise measurements (shown as dashed black lines in Fig. S2). 

The error in the conductance    is determined as half the difference between the maximum and 

minimum conductance values measured in the specified bias range, for the data recorded both 

before and after the noise measurements. Measurements with an error of         are 

discarded, ensuring that the conditions of eq. (1), i.e. relatively unvarying transmission 

probabilities, are fulfilled. 

 

 

 

Figure S2. Differential conductance (dI/dV) as function of bias voltage measured on a single atom Pt 

contact. Red/blue curves show the different conductance measured before/after the series of noise 

measurements. Dashed black curves indicate the region from which the average conductance is calculated. 



S3. Observation of parity oscillations 

Smit et al. have previously reported on parity oscillations in the conductance of Au and Pt atomic 

chains with a two-atom period
3
 while oscillations with a one-atom period were not reported. 

Working with different contacts, we find that the manifestation of these two different effects in 

the average trace can vary between measurements. Using the same sample, it is possible to 

observe oscillations with one-atom or two-atom periodicities, and in some cases both types of 

oscillations can even coexist. Figure S3 shows a measured Pt data set in which both effects take 

place. The oscillation pattern in the average trace (top panel) consists of a superposition of both 

one-atom period oscillations and oscillations with a double period, as seen more clearly after 

subtracting the fitted baseline (bottom panel). The data sets in Fig. 3b (in the main text) and in 

Fig. S3 were obtained using the same sample, however between the measurements of the different 

data sets the contact geometry was reshaped by strongly reforming the two tips of the junction 

towards each other by more than 500Å. Although conductance oscillations with one-atom period 

are more common than parity oscillations, the later can occasionally be detected by repeating the 

mentioned practice. 

 

Figure S3. Average conductance of Pt atomic contacts showing a superposition of one-atom and two-atom 

oscillations. Top panel shows length histogram (grey area), average trace (blue line) and an exponential fit 

to the average trace (dashed red). Bottom panel shows the difference between the average trace and its 

exponential fit. The data consists of 10,000 traces measured on the same sample used in Fig. 3(b). 

 



The average trace shows a superposition of both types of oscillations, the zigzag oscillations 

typically having the larger amplitude and thus more visible (as in Fig. 3 of the main article). The 

geometry of the contact and the extent by which similar configurations are reached in different 

pulling sequences determine by how much are the features in the average trace and length 

histogram averaged out. Zigzag oscillations are expected to be more sensitive to such averaging 

since the oscillation wavelength is twice as shorter than for even-odd oscillations
4
. Therefore, in 

cases that significant averaging occurs (e.g. due to more significant phase shifts between 

individual traces), the appearance of zigzag oscillations in the average trace is more effectively 

suppressed and the even-odd oscillations are consequentially more visible. 

 

  



S4. Computational details 

We carried out first-principles calculations within the framework of  density functional theory 

(DFT)
5
 by employing the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional

6
  in a 

projector augmented plane-wave (PAW)
7
 formulation as implemented within the VASP code

8
. 

The plane-wave cutoff energy was chosen as 550eV, with a Fermi-Dirac smearing of the 

occupations in an energy equivalent to 15meV. A single k point was used, in a simple orthogonal 

cell of dimensions 27.1x27.1x40.6Å. In order to deal with the finite extent of our model systems 

within the adopted periodic scheme of calculations, the dimensions of the orthogonal cell were 

chosen such that the edges of two neighboring images were kept separated by a vacuum of about 

13–16Å. This makes sure that the interactions between the system images are negligible for any 

practical purpose. 

The stretching of the junction was simulated by varying the tip separation, while the unit-cell 

dimensions were kept constant. The tip separation is defined as the normal distance between the 

planes containing the three atoms which are located immediately behind the apex atom of each 

electrode.  The positions of the apex and wire atoms were optimized without symmetry 

constraints such that each component of force on every atom does not exceed 5meVÅ
−1

. In this 

study, we have considered the range of 8.3-9.7Å, in which the 3 atom chain was found to be 

energetically stable. For smaller tip separations, the chain returned to a linear configuration, 

however the Pt-Pt bond length between the chain atoms was found to be significantly lower than 

the equilibrium bond length for bulk Pt and the total energy increased substantially. For tip 

separations above 9.7 Å, the Pt-Pt interaction between atom and apex is so weak, that a slight 

perturbation to the position of the central atom pushes the atom towards a configuration where it 

is only bound to one of the tips, suggesting the breaking of the junction in experiment (or the 

pulling of an additional atom into the chain). 

We have tested the effect of varying the number of planes (n) constituting the atomic tip. 

Structures with n > 3 were found to produce similar results, and thus we have fixed n=5. Note 

that due to the tetrahedral symmetry of each tip, there is a dipole moment in the system unless an 

inversion center is enforced by creating a relative angle between tips. However, in this case the 

correspondence with the cell's spherical harmonics will be less than optimal, and thus a system 

with a σ plane was chosen instead.  It was checked and verified that for such a system where tips 

are mirror images of each other, the dipole is adequately small at the central atom position. In 

addition, we have checked the system with inversion symmetry, to see if there is some effect on 

forces and the total DOS and found that this does not have any notable influence in the distances 

and angles studied in this work. 

 



Calculating the projected density of states over spherical harmonics is a standard operation in 

VASP which provides information regarding the local density of states at a specified region in the 

unit cell, typically around selected atoms. Since the states are projected over spherical harmonics 

in the system’s coordinates, the orientation of the chain and tips were chosen in advance such that 

the chain axis is along the  ̂ direction, and such that the zigzag angle is within, or very near to, the 

xz plane. 

  



S5. Effect of structural configuration on the orbital contributions at the Fermi level 

To study the effects of the chain geometry on the electronic structure, we have calculated the 

projected density of states (PDOS) on the central chain atom, which constitutes the bottleneck for 

electron transport due to its small cross-section. We focus on the states in an energy window of 

100meV centered at the Fermi energy, since only these states are relevant for the conducting 

charge carriers, according to the maximal bias voltage of 100mV used in the experiment. As 

discussed in the main text, the increase in the PDOS for the linear chain configuration originates 

from the contribution of states with zero angular momentum, namely   and    . To better 

understand this effect, we obtained the PDOS of these orbitals, as presented in Fig. S4. As one 

can see, the PDOS of   (a) and     (b) states near the Fermi energy undergoes a significant 

increase as the chain is stretched to a more linear configuration. For the initial zigzag 

configuration, both states contribute very little to the PDOS. However, when the chain is brought 

to a more linear configuration, a resonance is gradually built up and shifted towards the Fermi 

energy. 

 

 
Figure S4. Density of states projected on the central atom for   (a) and     (b) orbital contributions, 

calculated for different tip separations between 8.3 Å to 9.7Å.  

 

 

  



The effect of the zigzag angle on the PDOS near the Fermi energy was investigated for both the 

central bridge atom and the tip apex atom. For each case, we have calculated the integrated PDOS 

in an energy window of 100meV around the Fermi level, partitioned by angular momentum 

contributions (in the reference frame of the entire system). The calculations were repeated for a 

four atom chain in order to check whether the effect is consistent. The results are shown in Fig. 

S5 for the 3 atom chain (a,b) and 4 atom chain (c,d). As one can see, the results for two cases are 

qualitatively similar. While in both cases the integrated PDOS for the bridge atoms increases with 

the tip separation, for the apex atoms the density of states is insensitive to junction elongation. 

This insensitivity could be explained by the fact that the apex atom is bonded to three neighbors 

on one side, stabilizing its orbital structure. 

 

 
Figure S5. Orbital contributions to the localized states at the Fermi energy during simulated stretching of 

an atomic Pt chain consisting of three (a,b) and four (c,d) atoms. The number of states shown is obtained 

for a bridge atom (a,c) and a apex tip atom (b,d) in an energy window of 100meV centered at the Fermi 

energy. 

 

  



Note that for the four atom zigzag chain, the stable geometry cannot be rotated so that all the 

atoms are offset from the z axis on a single plane. Therefore, the system's spherical harmonics 

can be less accurately applied to identify the atomic angular content of orbitals at the chain atoms. 

Nevertheless, the integrated PDOS still exhibits the enhancement effect upon transition towards a 

more linear configuration. Figure S6 shows the real space distribution of charge density for a 4-

atom chain in zigzag configuration. Similar to the case of the 3-atom chain, the local charge 

distribution on the bridge atoms shows an apparent     character, while the absence of the     

contribution again results from the hybridization with the remaining d orbitals.  

 

 

Figure S6. Spatial distribution of the charge density near the Fermi level for a 4-atom zigzag (Δz=9.5Å) 

chain. The charge distribution was calculated for a window of 100mV centered at the Fermi energy, 

presented with iso-surface values of 90% and 99% of the charge as darker and lighter shaded regions, 

respectively. 
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