Self-consistent Effective-medium Approximation for Strong-field Magneto-transport in a Composite Medium

> David J. Bergman School of Physics & Astronomy Tel Aviv University (TAU)

Yakov M. Strelniker – Bar Ilan University David Stroud – Ohio State University Ronen Magier – TAU PhD student Lior Verniya – TAU MSc student

TEL AVIV UNIVERSITY

אוניברסיטת תל-אביב

Introduction

- Except in a composite with a flat laminar micro-structure, electric field and current distribution are very complex, even when all constituents are simple scalar conductors.
- When a magnetic field is present the complexity increases: The conductivity is now a non-symmetric tensor.

Self-consistent-effective-medium-approximation (SEMA) (Bruggeman 1935, Landauer 1952)

- This is symmetric in the two constituents and has a percolation or conductivity threshold, which is a critical point.
- In other respects it is unsatisfactory: Critical exponents have wrong values.
- The approximation is uncontrolled and cannot be improved.

SEMA for Non-Symmetric Conductivity Tensors

$\mathbf{E}_{\text{internal}} = \hat{\gamma} \cdot \mathbf{E}_0$ for any ellipsoidal inclusion

$$\left(\frac{1}{\hat{\gamma}}\right)_{\alpha\beta} = \delta_{\alpha\beta} - \sum_{\omega} \frac{n_{\alpha\omega} \left(\sigma_{\omega\beta}^{(\text{host})} - \sigma_{\omega\beta}^{(\text{inclusion})}\right)}{\left(\sigma_{\alpha\alpha}^{(\text{host})} \sigma_{\omega\omega}^{(\text{host})}\right)^{1/2}}, \text{ where } \hat{n} \text{ is the depolarization tensor.}$$

The change in the volume averaged current density $\langle J\rangle$ by a single inclusion is:

$$\langle \mathbf{J} \rangle - \hat{\sigma}_{\text{host}} \langle \mathbf{E} \rangle = \frac{V_{\text{incl}}}{V} (\hat{\sigma}_{\text{incl}} - \hat{\sigma}_{\text{host}}) \cdot \mathbf{E}_{\text{internal}} = \frac{V_{\text{incl}}}{V} (\hat{\sigma}_{\text{incl}} - \hat{\sigma}_{\text{host}}) \cdot \hat{\gamma} \cdot \mathbf{E}_{0}$$

Averaging this change over the different types of inclusions *j* and equating the result to 0 identifies $\hat{\sigma}_{\text{host}}$ as the macroscopic or bulk effective $\hat{\sigma}_{e}$:

$$0 = \sum_{j} p_{j} \left(\hat{\sigma}_{j} - \hat{\sigma}_{e} \right) \cdot \hat{\gamma} \left(\hat{\sigma}_{j}, \hat{\sigma}_{e} \right)$$

Our notation

 $\mathbf{B} \parallel z$, isotropic conductor:

$$\hat{\rho} \equiv \begin{pmatrix} \rho_{\perp} & -\rho_{H} & 0 \\ \rho_{H} & \rho_{\perp} & 0 \\ 0 & 0 & \rho_{\parallel} \end{pmatrix} = \rho_{0} \begin{pmatrix} \alpha & -\beta & 0 \\ \beta & \alpha & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

- $\rho_H = \rho_0 \beta$ is the Hall resistivity
- $\rho_{\perp} = \rho_0 \alpha$ is the transverse Ohmic resistivity
- $\rho_{\parallel} = \rho_0 \lambda$ is the longitudinal Ohmic resistivity
- $H \equiv \beta / \alpha = \omega_c \tau = \mu / \mathbf{B} | = \rho_H / \rho_\perp$ is the Hall-to-transverse-Ohmic resistivity ratio
- In a free electron gas conductor $\lambda = \alpha$ and is independent of **B**, while $\beta \propto |\mathbf{B}|$.

High Field Results

- Three coupled equations are found for the three resistivity parameters α_e , β_e , λ_e . They are explicit but horribly nonlinear, and include transcendental functions of these unknown parameters. They can be solved numerically.
- When $\beta_i >> \alpha_i$ and $\beta_i >> \lambda_i$, an asymptotic expansion leads to $\lambda_e \cong \langle \lambda \rangle$ and to closed form results for α_e , β_e which exhibit two new critical points.
- A microstructure-independent critical point is found when $\beta_1/\beta_2=1$: At that point we find $\alpha_e \cong \langle \alpha \rangle$. Otherwise we find $\alpha_e \propto \beta^{2/3}$.
- A microstructure-dependent critical point is found when $\beta_1/\beta_2 < 0$ and

$$p_1 = p_{1c} \equiv \frac{1}{1 - \beta_2 / \beta_1}.$$

Microstructure-independent Critical Point

Two conducting constituents; volume fraction: $p_1=0.6$; Ohmic resistivity components are comparable and fixed, i.e., not metal/insulator mixture

 $\log \alpha_e$ vs. $\log(\beta_1/\beta_2)$ for $p_1 = 0.6$ and different values of H_1

Microstructure-dependent critical point

Conclusions

- The self-consistent effective-medium approximation (SEMA) leads to explicit coupled nonlinear equations for elements of the macroscopic resistivity tensor.
- When the Hall resistivity is much greater than the Ohmic resistivities in the constituents an asymptotic solution of those equations can be obtained in closed form.
- An exact asymptotic expansion was motivated by those SEMA results. It corroborates the leading order SEMA results.
- New critical points were first found using SEMA.
- SEMA is also a useful tool for developing physical insight and understanding for the behavior and response of a complex composite medium. It should not be discarded!