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Introduction

• Except in a composite with a flat laminar 

micro-structure, electric field and current 

distribution are very complex, even when 

all constituents are simple scalar 

conductors.

• When a magnetic field is present the 

complexity increases: The conductivity is 

now a non-symmetric tensor.



Self-consistent-effective-medium-approximation (SEMA) 

(Bruggeman 1935, Landauer 1952)
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• This is symmetric in the two constituents and has a percolation or conductivity 

threshold, which is a critical point.

• In other respects it is unsatisfactory: Critical exponents have wrong values.

• The approximation is uncontrolled and cannot be improved.
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SEMA for Non-Symmetric Conductivity Tensors

The change in the volume averaged current density J by a single inclusion is:
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Averaging this change over the different types of inclusions j and equating the result to 0 

identifies   host
ˆ ˆ  as  the  macroscopic  or  bulk  effective  :e 
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Our notation

• H=0 is the Hall resistivity

• ┴=0α is the transverse Ohmic resistivity

• ║=0 is the longitudinal Ohmic resistivity

• H≡β/α=ωcτ=μ|B| = H /┴ is the Hall-to-transverse-Ohmic resistivity ratio

• In a free electron gas conductor  = α and is independent of  B,
while  β  |B| .
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High Field Results

• Three coupled equations are found for the three resistivity parameters e, e, 

e . They are explicit but horribly nonlinear, and include transcendental 

functions of these unknown parameters. They can be solved numerically.

• When i >>i and i>>i , an asymptotic expansion leads to e   and to 

closed form results for e, e which exhibit two new critical points.

• A microstructure-independent critical point is found when 1/2=1: At that 

point we find e   . Otherwise we find e
2/3 .

• A microstructure-dependent critical point is found when 1/2 < 0 and
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Two conducting constituents; volume fraction: p1=0.6;
Ohmic resistivity components are comparable and fixed, i.e., 
not metal/insulator mixture

Microstructure-independent Critical Point

(Magier & Bergman 2008)

Transverse Ohmic 

resistivity:

Hall resistivities ratio:

Hall-to-Ohmic resistivity 

ratio in constituent # 1.
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 1 2 1 1log   vs.  log   for  = 0.6  and  different  values  of  e p H  

(Magier & Bergman 2008)



Microstructure-dependent critical point
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This  is  corroborated  by  exact  asymptotics!
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Conclusions

• The self-consistent effective-medium approximation (SEMA) 
leads to explicit coupled nonlinear equations for elements of the 
macroscopic resistivity tensor.

• When the Hall resistivity is much greater than the Ohmic 
resistivities in the constituents an asymptotic solution of those 
equations can be obtained in closed form.

• An exact asymptotic expansion was motivated by those SEMA 
results. It corroborates the leading order SEMA results.

• New critical points were first found using SEMA.

• SEMA is also a useful tool for developing physical insight and 
understanding for the behavior and response of a complex 
composite medium. It should not be discarded!


