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The Kovacs Effect: A glassy puzzle
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Non-Equilibrium state: a glass
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A. J. Kovacs, Adv. Polym. Sci. 3, 394 (1963)

Material: polyvinyl acetate (PVA, a glassy polymer)
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» The effect is generic and is observed in a variety of
different glassy systems (e.g. colloidal glasses,
ferroelectrics, gelatin gels, granular materials).

« Many specific models were shown to exhibit phenomena
analogous to the Kovacs effect (e.g. coarsening dynamics
In domain growth models, the trap model, the harmonic-
oscillator—spherical-spin model).

« Main gquestion:

Is there a generic non-equilibrium
thermodynamic theory of the Kovacs effect?



Non-equilibrium thermodynamics of driven

amorphous materials
Basic idea 1: Separable Configurational + Kinetic/Vibrational Subsystems

Total Energy =~ HC + HK

H. = HC{FU} = configurational energy of the v’th inherent-structure

{ru} = set of molecular positions at the potential-energy
minimum for the v’th inherent-structure, SLOW dof

H, = HK{p, 5ru} = Kinetic energy + harmonic potential energy for
small excursions from configurational minima,
FAST dof

Weak coupling between these two subsystems

EB & JS Langer, Physical Review E 80, 031131 (2009)
EB & JS Langer, Physical Review E 80, 031132 (2009)



Basic idea 2: The non-equilibrium state of the system can be
characterized by coarse-grained internal variables

Uc(Se Vo ANy 4= Sc(Uc,

The reyversible part of the deformation

A subextensive number of coarse-grained internal variables,
represent internal degrees of freedom that are coupled to deformation

Non-equilibriumentropy  S. (U.,V, .{A, })—IriQ UV, .{A})

A constrained measure of the number of configurations

When Aot —{AY} ScUc Vg, {A}) =S (U V)

EB & JS Langer, Physical Review E 80, 031131 (2009)
EB & JS Langer, Physical Review E 80, 031132 (2009)



Basic idea 2: The non-equilibrium state of the system can be
(cont.) characterized by coarse-grained internal variables
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EB & JS Langer, Physical Review E 80, 031131 (2009)
EB & JS Langer, Physical Review E 80, 031132 (2009)



The Kovacs effect was recently observed in MD simulations of OTP
[S. Mossa and F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004)]
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Major new discoveries of the MD study
[S. Mossa and F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004)]

Tj=150K Thermal vibrations timescale: 7, = 1ps
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Major observation:

The dynamics in stage 111 follow a sequence of quasi-
equilibrium states fully characterized by an effective
temperature, while stage 11 cannot be described by an
effective temperature alone.

- A hierarchy of different non-equilibrium behaviors!



A Thermodynamic Theory of the Kovacs Effect

Two steps:

Step 1 - Identify internal state variables and associate with them energy and entropy
N, - vacancy-like “defects” N, - “misalignment defects”

ié'[ep 2 —(5)erive equ?tions ~¥ “;"‘“_'1“_‘ ~ased on e laws of thermodlynami_r‘c
nergy and excess volume €, and vy, Energy and excess volume ¢, and v,

Journal of Non-Crystalline Solids 172-174 (1994) 69-76
Rotational dynamics in ortho-terphenyl: a microscopic view

Laurent J. Lewis*?* Goran Wahnstrom®
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- orientational motion takes place despite N o
g8 the near absence of translational motion. The na- = @ @

Mture of this orientational motion covers a large

k spectrum of cases, but we find a preponderance of

.J rapid reorientations, 1.e., jumps or ‘two- (or more-)

jlevel systems’.

v, ~ significan t fraction of the volume per molecule —0.07nm°, v, =0.1v,

EB & JS Langer, to appear in Soft Matter (2010)
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A Thermodynamic Theory of the Kovacs Effect (cont.)

Step 2 — Derive equations of motion based on the laws of thermodynamics
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Results
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Conclusions

The Kovacs effect can be described within
a non-equilibrium thermodynamics framework

A hierarchy of non-equilibrium processes are at play:

1) Ashort time visco-elastic response (unique to extreme quenching rates)

2) Intermediate timescales processes:

An internal variable (n,) that goes in and out of equilibrium
directly with the heat bath

An internal variable (n ) that goes in and out of equilibrium
with the effective disorder temperature

3) Long timescales structural relaxation in which the effective temperature
equilibrates with the heat bath (quasi-equilibrium)



