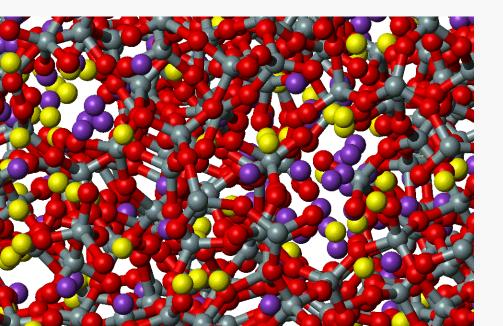
Non-Equilibrium Thermodynamics of Glasses: The Kovacs Effect

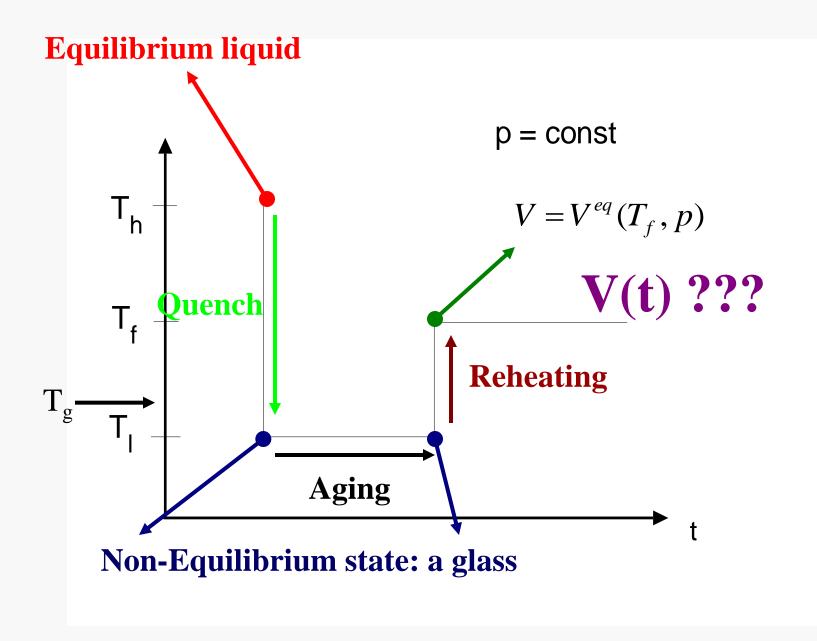
Eran Bouchbinder Weizmann Institute of Science



Work with James S. Langer UC Santa Barbara

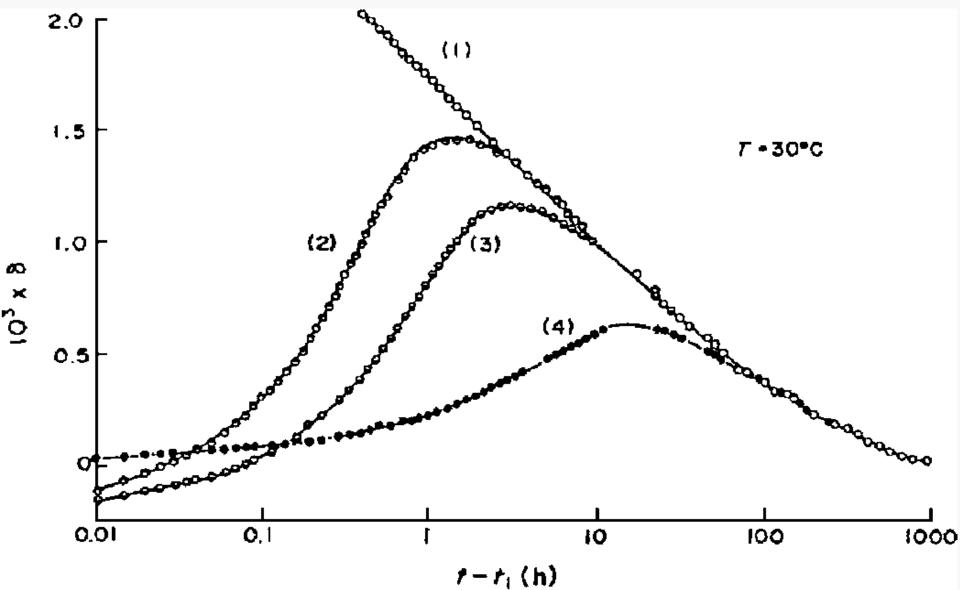
> **Statistical Mechanics Day Weizmann, June 2010**

The Kovacs Effect: A glassy puzzle



A. J. Kovacs, Adv. Polym. Sci. 3, 394 (1963)

Material: polyvinyl acetate (PVA, a glassy polymer)



- The effect is generic and is observed in a variety of different glassy systems (e.g. colloidal glasses, ferroelectrics, gelatin gels, granular materials).
- Many specific models were shown to exhibit phenomena analogous to the Kovacs effect (e.g. coarsening dynamics in domain growth models, the trap model, the harmonicoscillator-spherical-spin model).

• Main question:

Is there a generic non-equilibrium thermodynamic theory of the Kovacs effect?

Non-equilibrium thermodynamics of driven amorphous materials

Basic idea 1: Separable Configurational + Kinetic/Vibrational Subsystems

Total Energy $\cong H_C + H_K$

 $H_C = H_C \{r_v\}$ = configurational energy of the v'th inherent-structure

 $\{r_{v}\}$ = set of molecular positions at the potential-energy minimum for the v'th inherent-structure, SLOW dof

 $H_{K} = H_{K} \{p, \delta r_{v}\}$ = kinetic energy + harmonic potential energy for small excursions from configurational minima, FAST dof

Weak coupling between these two subsystems

EB & JS Langer, Physical Review E 80, 031131 (2009) EB & JS Langer, Physical Review E 80, 031132 (2009) **<u>Basic idea 2</u>**: The non-equilibrium state of the system can be characterized by coarse-grained internal variables

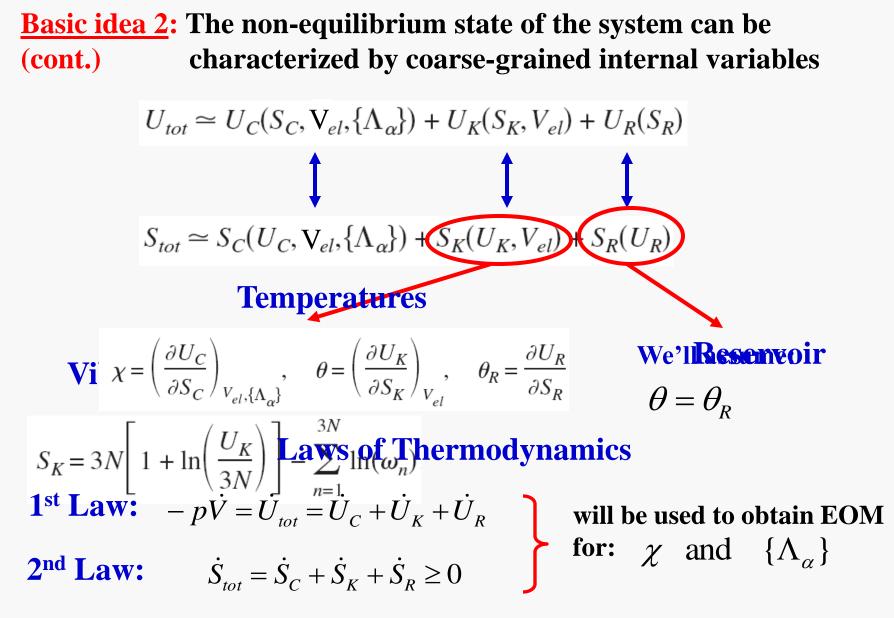
$$U_{C}(S_{C}, V_{el}, \{\Lambda_{\alpha}\}) \longleftrightarrow S_{C}(U_{C}, V_{el}, \{\Lambda_{\alpha}\})$$

The reversible part of the deformation
A subextensive number of coarse-grained internal variables,
represent internal degrees of freedom that are coupled to deformation
Non-equilibrium entropy $S_{C}(U_{C}, V_{el}, \{\Lambda_{\alpha}\}) = \ln \Omega_{C}(U_{C}, V_{el}, \{\Lambda_{\alpha}\})$

A <u>constrained</u> measure of the number of configurations

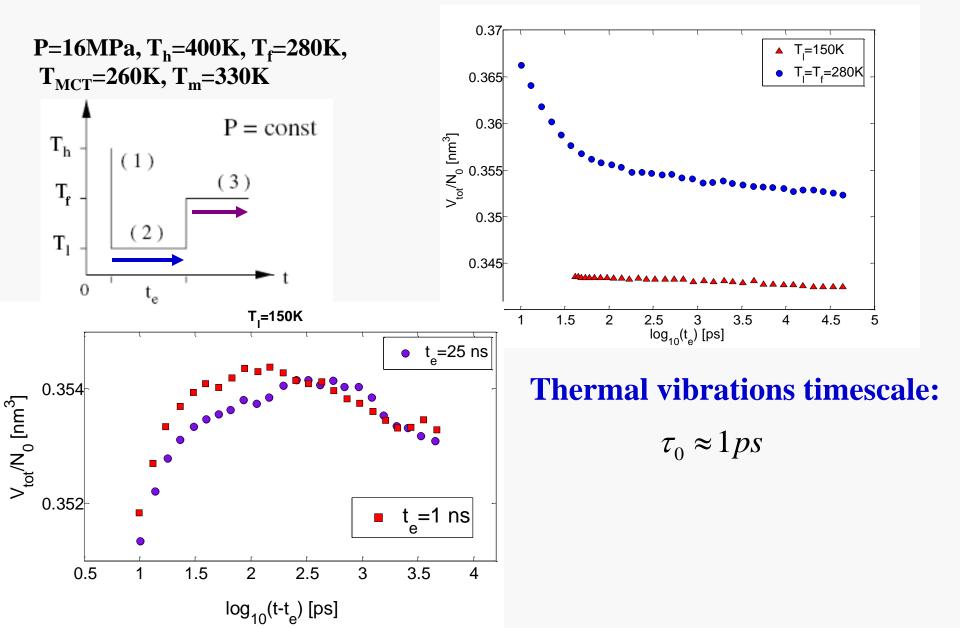
When $\{\Lambda_{\alpha}\} \rightarrow \{\Lambda_{\alpha}^{eq}\}$ $S_{C}(U_{C}, V_{el}, \{\Lambda_{\alpha}\}) \rightarrow S_{C}^{eq}(U_{C}, V)$

EB & JS Langer, Physical Review E 80, 031131 (2009) EB & JS Langer, Physical Review E 80, 031132 (2009)

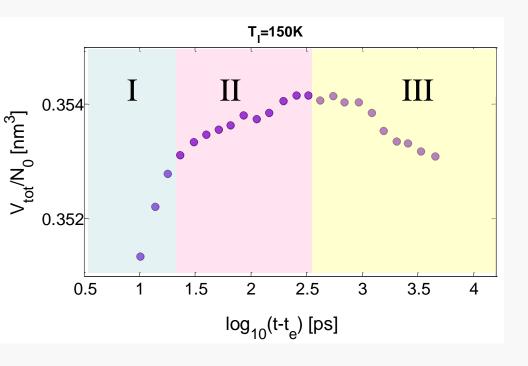


EB & JS Langer, Physical Review E 80, 031131 (2009) EB & JS Langer, Physical Review E 80, 031132 (2009)

The Kovacs effect was recently observed in MD simulations of OTP [S. Mossa and F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004)]



Major new discoveries of the MD study [S. Mossa and F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004)]



Thermal vibrations timescale: $\tau_0 \approx 1 ps$

Three stages:

- I: Short timescales quenching effects
- II: Intermediate timescales pre-peak dynamics
- III: Long timescales post-peak aging

Major observation:

The dynamics in stage III follow a sequence of quasiequilibrium states fully characterized by an effective temperature, while stage II cannot be described by an effective temperature alone.

A hierarchy of different non-equilibrium behaviors!

A Thermodynamic Theory of the Kovacs Effect

Two steps:

Step 1 – Identify internal state variables and associate with them energy and entropy N_v - vacancy-like "defects" **Step 2** – Derive equations \hat{e}_v and v_v bed on the laws of thermodynamics Energy and excess volume e_a and v_a

Journal of Non-Crystalline Solids 172-174 (1994) 69-76

Rotational dynamics in ortho-terphenyl: a microscopic view

Laurent J. Lewis*,^a, Göran Wahnström^b

tes with χ

Equilibrates with θ

orientational motion takes place despite $N_a v_a$ the near absence of translational motion. The nature of this orientational motion covers a large spectrum of cases, but we find a preponderance of rapid reorientations, i.e., jumps or 'two- (or more-) level systems'.

 $v_v \approx \text{significant fraction of the volume per molecule} \rightarrow 0.07 \text{nm}^3$, $v_a = 0.1 v_v$

EB & JS Langer, to appear in Soft Matter (2010)

A Thermodynamic Theory of the Kovacs Effect (cont.)

Step 2 – Derive equations of motion based on the laws of thermodynamics 2^{nd} law:

$$-\left[p v_{a} + \left(\frac{\partial U_{K}}{\partial N_{a}}\right)_{S_{K}, V_{el}}\right] \dot{N}_{a}$$

$$-\left[p v_{0} + \left(\frac{\partial U_{C}}{\partial N_{v}}\right)_{S_{C}, V_{el}}\right] \dot{N}_{v}$$

$$-\left[p - p_{C}(\chi, V_{el}) - p_{K}(\theta, V_{el})\right] \dot{V}_{e} - (\theta - \chi) \dot{S}_{K} \ge 0.$$

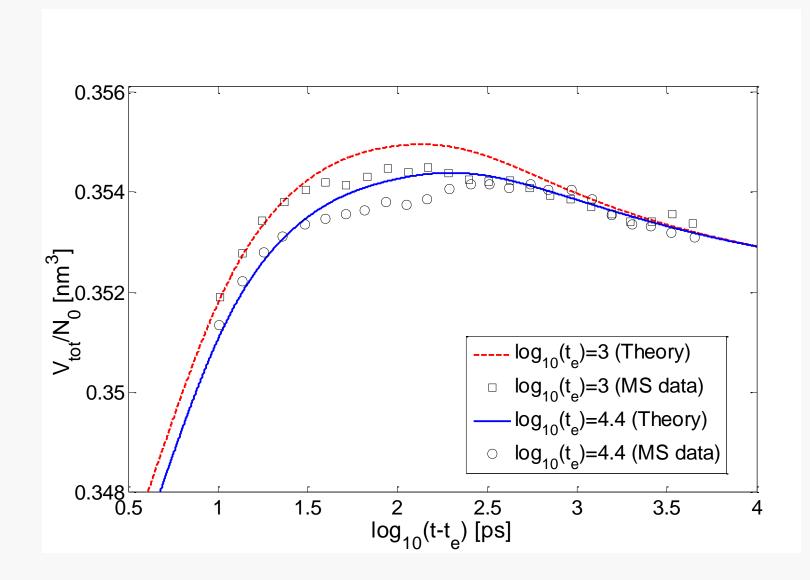
$$4 \text{ independent inequalities}$$

1st law:

$$\begin{split} \chi \, \dot{S}_C &= -\left[h_v - \chi \, \frac{\partial S_0(N_v)}{\partial N_v}\right] \, \dot{N}_v - \left[h_a - \theta \, \frac{\partial S_0(N_a)}{\partial N_a}\right] \, \dot{N}_a \\ &+ \frac{\gamma \, \bar{\lambda}}{V_0} \left[V_{el} - V_{el}^{eq}(\chi, \theta, p)\right]^2 + A(\chi, \theta) \, \left(1 - \frac{\chi}{\theta}\right). \end{split}$$

EB & JS Langer, Soft Matter (2010)

Results



Conclusions

The Kovacs effect can be described within a non-equilibrium thermodynamics framework

A hierarchy of non-equilibrium processes are at play:

- 1) A short time visco-elastic response (unique to extreme quenching rates)
- 2) Intermediate timescales processes:

An internal variable (n_a) that goes in and out of equilibrium directly with the heat bath

An internal variable (n_v) that goes in and out of equilibrium with the effective disorder temperature

3) Long timescales structural relaxation in which the effective temperature equilibrates with the heat bath (quasi-equilibrium)