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H = E0P0 + E1P1 + · · ·ENPN

I Dephasing Bath

ρ →
time

∑
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PjρPj

Full dynamics in the Markovian approximation:

ρ̇ = L(ρ) = −i [H, ρ] + 2ΓρΓ∗ − ΓΓ∗ρ− ρΓΓ∗

Dephasing bath:

Γ = γ1/2
√
H or Γ ∼ H or Γα ∼ Pα.
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Where one finds dephasing?

I NMR, cold atoms

I E. B. Davies: Description of a heat transport

I J. P. Paz, W. H. Zurek: Quantum to classical transitions

I P. Facchi, S. Pascazio: Zeno effect
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Some properties

Why to study it?

I Family on the halfway between Hamiltonian dynamics and
general open system dynamics. All energy eigenstates remain
stationary,

L(Pj) = 0 j = 0 · · ·N

I Process with no heat exchange

d

dt
Tr(Hρt) = 0

when H is time independent.

I Family to describe a dissipative response
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Adiabatic response theory

I External driving of the Hamiltonian H(φt)

I Compute the response of the state

ρ̇t = L(φt)ρt , ρ0 = P0(0)

I Linear response of the observable F

Tr(ρtF ) = f φ̇+ · · · ,

here f is a response coefficient (e.g. conductance).
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Dissipative response

Energy dissipates proportionally to the symmetric part of f

Ė =
d

dt
Tr(Hρ) = f (φ̇)2.

When the system is initially in the ground state ρ = P0,

Ė = Ė0 +
∑
n

(En − E0)Tn0.

Adiabatic theorem gives transition probabilities:

T0n = − γ

1 + γ2
1

En − E0
Tr(Ṗn(φt)Ṗ0(φt)) + O(φ̇3).
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Tr(Ṗn(φt)Ṗ0(φt)) + O(φ̇3).



Conclusion

The dissipative response coefficient

f =
γ

1 + γ2
Tr(∂φP0∂φP0)

is proportional to the Fubini-Study metric on the manifold of
projections.

Thank for your attention
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