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» Dephasing Bath

p —
time

Full dynamics in the Markovian approximation:

p=L(p) = —ilH,p] +2Tpl* —TT"p — pI'T*

Dephasing bath:

F:71/2\/ﬁ or T~H or [y~ P,
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» J. P. Paz, W. H. Zurek: Quantum to classical transitions

» P. Facchi, S. Pascazio: Zeno effect



Some properties

Why to study it?
» Family on the halfway between Hamiltonian dynamics and
general open system dynamics. All energy eigenstates remain

stationary,
L(P;)=0 j=0---N



Some properties

Why to study it?
» Family on the halfway between Hamiltonian dynamics and
general open system dynamics. All energy eigenstates remain

stationary,
L(P;)=0 j=0---N

> Process with no heat exchange

d
—Tr(Hp:) =0

when H is time independent.



Some properties

Why to study it?

» Family on the halfway between Hamiltonian dynamics and
general open system dynamics. All energy eigenstates remain
stationary,

L(P)=0 j=0---N

> Process with no heat exchange

d
—Tr(Hp:) =0

when H is time independent.

» Family to describe a dissipative response



Adiabatic response theory

» External driving of the Hamiltonian H(¢¢)



Adiabatic response theory

» External driving of the Hamiltonian H(¢;)

» Compute the response of the state

pe = L(de)pe,  po = Po(0)



Adiabatic response theory

» External driving of the Hamiltonian H(¢;)

» Compute the response of the state
pr = L(¢e)pt,  po = Po(0)
> Linear response of the observable F
Tr(peF) = F -

here f is a response coefficient (e.g. conductance).
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Dissipative response

Energy dissipates proportionally to the symmetric part of f

E= S Ti(Hp) = (6

When the system is initially in the ground state p = Py,

E=E+ Z(En — Eg) Tro.

Adiabatic theorem gives transition probabilities:

vy 1
1+72En_EO

Ton = Tr(Pn(¢e)Po(¢)) + O(4°).
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Thank for your attention



