Neutral dynamics and family (type) statistics :

Nadav Shnerb (BIU)
Yosi Maruvka (BIU)
David Kessler (BIU)

Gur Yaari (Yale)
Sorin Solomon (HUJI)
Robert Ricklefs (St. Louis)

John Wakeley (Harvard)

PLoS computational biology 5(4): e1000359 (2009)

What is the difference between pants and glasses?

Survival of the fittest

Pants "die" (ripped) due to accumulated wear.

Survival of the Iuckiest

Glasses "die" when they shattered, usually due to random and uncorrelated events

What is the signal to noise ratio in complex system?
 Social dynamics:

The prince, Capitolo XXV
[What fortune can effect in human affairs and how to withstand her]
"Fortune is the mistress of one half our actions, and yet leaves the control of the other half, or a little less, to ourselves"

Deterministic (fitness)

this work, to lay bare the economic law of motion of modern society
Karl Marx, Das Capital (introduction)

Stochastic (neutral)
Cleopatra's nose, had it been shorter, the whole face of the world would have been changed (Pascal)

Ecology and evolution: Neutral vs. adaptive (niche) theories

"When we look at the plants and bushes clothing an entangled bank, we are tempted to attribute their proportional numbers and kinds to what we call chance. But how false a view is this!" Darwin On the Origin of Species (1859)

Hubbell started from a postulate that most consider preposterous: that one tree or one bird is just like any other. His patterns result solely from random fluctuations in births, deaths and the arrival of new species. Scientific American April 292002.

Plugging numbers: Finance and

 $P(x) \approx e^{-\frac{x^{2}}{2 \sigma^{2}}}$
wealth

Neutrality= Gaussian statistics

Pareto: Saying "everything is governed by chance" is a prediction. The central limit theorem guarantees that the resulting statistics will be Gaussian.

$$
\begin{gathered}
x_{t+1}=x_{t} \eta_{t} \\
\eta \in[1 / 2,2] \\
\log \left(x_{t+1}\right)=\log \left(x_{t}\right)+\log \left(\eta_{t}\right)
\end{gathered}
$$

$$
x_{t+1}=x_{t}+\eta_{t}
$$

$$
\eta \in[-1,1]
$$

$$
P(x) \approx e^{-\frac{x^{2}}{\sigma^{2}(t)}}
$$

example for neutral dynamics: surnames

The underlying stochastic process:

Genus = surname
Species = first name
\# of species in genus
varies tremendously

Phylum

$$
\begin{gathered}
n_{m} \approx m^{-\alpha} \\
\log \left(n_{m}\right) \approx-\alpha \log m
\end{gathered}
$$

Fig. 2.-Double logarithmic chart for the frequency distribution of sizes of genera in the Cerambyoincs. Data in Appendix, Table B.

Modeling neutral processes : The Yule process (preferential attachment)

No fitness, no selection, everybody are equal

1. Birth=speciation: A species is chosen at random to reproduce $=$ to undergo speciation (no fitness, selection, whatever).
2. Mytation = speciation that creates new genus: an offspring is identical to its father with probability $1-\mu$ and is a mutant (new species, surname, genus) with probability μ.

$$
\begin{gathered}
b_{n}=\gamma(1-\mu) n \quad(n \geq 1) \quad b_{0}=\mu \gamma \cdot \text { total population } \\
\text { Where } \gamma \text { is the birth rate }
\end{gathered}
$$

Yule-Simon steady state

$$
n_{m}=\left(1+\frac{1}{\mu}\right) \frac{\Gamma(m) \Gamma(2+1 / \mu)}{\Gamma(m+2+1 / \mu)}=\left(1+\frac{1}{\mu}\right) B(m, 2+1 / \mu) \approx m^{-\left(2+\frac{1}{\mu}\right)}
$$

Original Yule 1024 genera

Cerambycidae
Data from catalogue of life

Beyond Yule:
 The Birth-Death-Mutation (BDM) process

Moran Version
("overlapping generations")

1. Birth: choose a random agent to reproduce.
2. Mutation: an offspring is identical to its "mother" with probability 1- μ and is a mutant (new genus, surname, allele) with probability μ.
3. Death: a random agent is chosen to die with probability δ.

Important parameters are μ and the growth rate $\gamma=1-\delta$

Universality

The results are independent of the microscopic details of the process (overlapping or nonoverlapping generations, the order of events, IF

$$
\mu, \gamma<1 .
$$

Under these conditions the number of families of size m, n_{m}, varies only slightly with m so for both Moran and Wright-Fisher process, independent of their details, the family statistics is described by a universal differential equation, the Kummer equation:

$$
\frac{\partial n_{m}}{\partial t}=(\mu-\gamma) \frac{\partial}{\partial m}\left(m n_{m}\right)+\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial m^{2}}\left(m n_{m}\right)
$$

$$
\begin{array}{ll}
\gamma>\mu & n_{m}=\frac{v R_{c} \Gamma(2+v)}{m} U\left(1+v, 0, \frac{R_{c}}{N} m\right) \\
\gamma<\mu & n_{m}=\frac{R_{c} \Gamma(1+v)}{m} U\left(v, 0, \frac{R_{c}}{N} m\right) e^{-\frac{R_{c}}{N} m}
\end{array}
$$

First presented by Manrubia and Zannette, JTB 216461 (2002), in the context of Moran process

Large m asymptotic $n_{m} \approx m^{-1-[\gamma /(\gamma-\mu)]}$

$$
\begin{gathered}
\gamma<\mu \\
n_{m} \approx m^{-1-\frac{\gamma}{\mu-\gamma}} e^{-(\mu-\gamma) m}
\end{gathered}
$$

Effect of sampling

Let us assume that only R_{0} individuals were sampled out of the total population of size N_{0}.

Hypergeometric distribution

Effective sampling strength

$$
v \equiv \frac{\mu}{\gamma-\mu}
$$

$$
n_{m}^{R} \approx \nu R_{c} \mathrm{~B}(2+\nu, m) s_{2}^{m} F_{1}(m, m+1 ; m+2+\nu ; 1-s)
$$

Back to the bugs

Applications Species within genera: animalia

-2 parameters fit.
-Logarithmic binning.

- PDF (NOT cumulative distribution)

www.catalog ueoflife.org

Species 2000 \& ITIS
Catalogue of Life: 2009
Annual Checklist

Inferring historic demographic parameters from current polymorphism (SNP) data

J. Stat. Phys. 1421302 (2011)

Molecular Biology and Evolution 281617 (2011)

The data

1212 sequences (China)

$\mu=0.00241 /$ sequence/generation

The challence:

Infer the growth rate γ
and the effective population size N_{0}

Haplotype (family) statistics:

Any sequence inherited along matiernal lineages is like as surname.

These surnames are subject to a birth-deathmutation process.

Enals up with haplotype (surname, family) statistics: the number of occurrences of singletons, doubletons and so one.

This statistics depends on the demographic parameters, thus in principle we can retrieve this information from it.

Conclusions

The birth-death-mutation process yields the universal distribution function. It deviates strongly from Yule-Simon for small families since families cannot die in Yule.

- Yule is the weak sampling limit of BDM.
- One can use the BDM distribution in order to retrieve demographic parameters like growth rate in the prehistoric times.

Neutral theory, King Solomon Version

Ecclesiastes (Qoheleth), Chapter 2:
14: The wise man's eyes are in his head; but the fool walketh in darkness: and I myself perceived also that one event happeneth to them all.

15: Then said I in my heart, As it happeneth to the fool, so it happeneth even to me; and why was I then more wise?

\mathcal{B} lagodarya 感谢倷

Multumesc
Grazie mille
Dziekuje
NAGYON KÖSZÖNÖM
Gracias

Благодаря
Shukriya

Спасибо

merci beaucoup

Spasibo

กจา ก3／ก

