Competition, feedback and fluctuations in genetic regulatory modules

Ofer Biham

Adiel Loinger Eitan Rotem Azi Lipshtat Baruch Barzel Yishai Shimoni

Nathalie Q. Balaban Hanah Margalit Shoshy Altuvia

Introduction

The E. coli transcription network

Taken from: Shen-Orr et al. Nature Genetics 31:64-68(2002)

Properties of the Network

- Approx. Scale-Free Network
- Includes Modular Structures Motifs Autorepressor
 Feed-Forward Loop
 Single-Input Module
 No Feedback Loops

Multistability

Oscillations

В

The Auto-repressor

- Protein A acts as a repressor to its own gene
- It can bind to the promoter of its own gene and suppress the transcription

The Auto-repressor

Rate equations – Michaelis-Menten form

$$\frac{d[A]}{dt} = \frac{g}{1+k[A]^h} - d[A]$$

h = Hill coefficient

k=b/u = repression strength

Rate equations – Extended Set

$$\frac{d[A]}{dt} = g(1-[r]) - d[A] - b[A](1-[r]) + u[r]$$

$$\frac{d[A]}{dt} = b[A](1-[r]) - u[r]$$

It's a noisy business!

(McAdams & Arkin, 1999)

From Michael Elowitz, Science (2002)

The Auto-repressor

 $P(N_A, N_r)$: Probability for the cell to contain N_A free proteins and N_r bound proteins

1

The Master Equation

$$\begin{aligned} \frac{d}{dt} P(N_A, N_r) &= g(1 - N_r) [P(N_A - 1, N_r) - P(N_A, N_r)] \\ &+ d[(N_A + 1)P(N_A + 1, N_r) - N_A P(N_A, N_r)] \\ &+ b[N_r(N_A + 1)P(N_A + 1, N_r - 1) - (1 - N_r)N_A P(N_A, N_r)] \\ &+ u[(N_r + 1)P(N_A - 1, N_r + 1) - N_r P(N_A, N_r)] \end{aligned}$$

The Auto-repressor

The Genetic Switch

- A mutual repression circuit.
 - Two proteins A and B negatively regulate each other's synthesis

Bistability

- The probability distribution is composed of two peaks
- The separation between these peaks determines the quality of the switch

Lipshtat, Loinger, Balaban and Biham, Phys. Rev. Lett. 96, 188101 (2006) Lipshtat, Loinger, Balaban and Biham, Phys. Rev. E 75, 021904 (2007)

The Exclusive Switch

Switching Time as a first passage problem

B. Barzel and O. Biham, Phys. Rev. E 78, 041919 (2008)

Mixed feedback loops

Shimoni, G. Friedlander, S. Altuvia, H. Margalit and O. Biham, Preprint (2011)

Stochastic Timer

Persistence

Bacterial persistence is a phenomenon in which a small fraction of genetically identical bacteria cells survives after an exposure to antibiotics

Survival fraction Α **B** Microfluidic device Flow channe PDMS grooves Membrane PEMS 30 40 50 0 10 20 Time on ampicillin (h) C 0:00 D 0:59 E 1:45 F 6:50 G 7:38 H 8:39 Growth medium (GM1) Ampicillin (A) Growth medium (GM2)

What is the mechanism?

Figure taken from: N.Q Balaban et al., Science 305, 1951 (2004)

HipA – Stable toxin

HipB – Unstable Antitoxin, Neutralizes HipA

Cells that contain a large number of A proteins divide slowly and are not affected by antibiotics.

This state is characterized by a long **lag time**.

Threshold behavior

Fraction of persisters = $Prob(A > A_0)$ [Threshold]

Dependence on A and B production

E. Roten, A. Loinger, I. Ronin, I. Levin-Reizman, H. Gabay, N. Shoresh, O. Biham and N.Q. Balaban, PNAS 107, 12541 (2010)

miRNA Regulation

Summary

- We have studied several modules of genetic networks using deterministic and stochastic methods
- The combination of competition, feedback and fluctuations has an important effect on the function of these modules. In particular, it gives rise to phenotypic diversity in populations of identical cells.
- Current work is aimed at extending the results to more complex networks