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One dimensional
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Wt ; EW 2

t = t .

Add drift α locally: Wα
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In general, can re-parametrize α, ie have drift d = d(α) with
d ′(α)|α=0 = 1. Einstein relation is then the statement
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Random walk setup (on ZZ )

Ct’s time random walk Xt , rate of jumps eα to right, e−α to left. At
α = 0, EX 2

t /t → 2.
When α 6= 0, we get

lim
α→0

lim
t→∞

|Xt |
t

= 2 ,

verifying ER.
What can be said in disordered systems?
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Lebowitz-Rost (1994)

In a rather general setup, a tagged particle Xt moves in a random
environment, satisfying the invariance principle, and EX 2

t /t → σ2.
This is usually proved by considering the environment viewed from the point of view of particle, and applying the Kipnis-Varadhan

theory; works well in reversible situations.

Apply external force αf and obtain process Xα
t .

Theorem (Lebowitz-Rost)

Under quite general conditions, for any c > 0,

lim
α→0

Xα
c/α2

αc/α2 =
fσ2

2
.

Verified for tagged particle in environment of interacting particles, for random walk on random conductance network and for

Orenstein-Uhlenbeck process in random medium.

Argument uses a Girsanov transformation that eliminates the drift, and
an estimate on the resulting Radon-Nykodim derivative.
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Verification of ER

Verification using Kipnis-Varadhan theory and control on relaxation
time of dynamics:
Loulakis ’02 Tagged particle in symmetric exclusion process, d ≥ 3.
Komorowsky-Olla ’05 SEP, with creation/desctruction; random walk in
random conductance with specific (2-valued) structure. Latter uses a duality

argument.
Verification using extension of the Lebowitz-Rost result:
Gantert-Mathieu-Piatnitskii ’10 Diffusion in random potential/random
conductance model.
Approach of [GMP] uses regeneration times: [LR] tell us ER holds by
time c/α2. Control on regeneration times says that by that time,
relaxation to equilibrium in perturbed system has occured.
Control on regeneration times is uniform in environment because traps
are of bounded size.
What about systems with arbitrarily large traps?
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Galton-Watson trees

T : random tree, Galton Watson, offspring distribution {pk}, p0 = 0,
p1 < 1, m =

∑

kpk mean offspring.
Start random walk on T : if u is an offspring of v then jump rate is 1.
Jump rate to parent is λ.

Theorem (Lyons, Pemantle, Peres ’95)

• λ > m (drift toward root): {Xn} positive recurrent, |Xn|/n → 0 .
• λ < m (drift away from root): {Xn} transient, |Xn|/n → v > 0
(ballistic). There is a sequence of regeneration times τi , such that
(τi+1 − τi , |X |τi+1 − |X |τi ) are i.i.d. (annealed).
•: λ = 1 < m: an explicit invariant measure for the environment viewed
from the point of view of particle is known. Speed
v =

∑

pk (k − 1)/(k + 1).
• λ = m: critical case. Walk is null recurrent (Lyons).
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Galton-Watson trees - CLT

Assume {pk}k≥1 has exponential moments.

Theorem (Peres-Z ’08)

(λ = m) There is a deterministic σ2 > 0 such that, for almost every T ,
{ |X[nt]|√

σ2n

}

t≥0
→ {|Bt |}t≥0 .

(λ < m) (easier):
{ |X[nt]| − vt√

σ2n

}

t≥0
→ {Bt}t≥0 .

For λ < m, walk has positive speed, and regeneration times can be
used.
For λ = m, crucial role played by an explicit invariant measure of
environment viewed from particle, and σ2 becomes explicit.
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Galton-Watson trees - invariant measure

zero

Ray

h=−1

h=−2

h=−3

h=2

h=1

h=0

Invariant measure for λ = m
For λ < m: not explicit (and possibly not absolutely continuous with respect to IGW)
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Galton-Watson trees - Einstein Relation

Set λ = me−α, vα = limt→∞ |Xα
t |/t . Recall that |X[nt]|/

√
n → σ2|Bt |.

Theorem (Ben Arous, Hu, Olla, Z ’11)

lim
αց0

vα
α

=
1
2
σ2 .

There is also a statement when α < 0, walk on extended tree, using
(explicit) expression for invariant measure.
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Galton-Watson trees - Proof of Einstein Relation

Difficulties
• No explicit expression for invariant measure when α > 0.
• Due to existence of arbitrary large traps, no uniform control on
slow–down.
• Lack of uniform control translates to bad control of moments of
regeneration times (as function of α).
But. . . Tree structure allows for recursions, which can be used to
compute hitting times.
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Some elements of proof of ER - basic recursion

A relevant quantity is β(x) = Px
T ({Xn}n≥1 ∩ x = ∅). Set

B(x) = λ−1 ∑

xichild of x β(xi).

B(x) = λ−1
∑

i

B(xi)

1 + B(xi)
.

This implies

EB = eαE(B/(1 + B)) ≤ eαEB/(1 + EB) ⇒ EB ≤ (eα − 1) .

Computation: for some C independent of α,

EB ≥ C(eα − 1), EB2 ≤ C(E(B))2

Hence B/EB is tight, i.e. B/α is tight, and converges (as α → 0) to a
random variable Y .
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Some elements of proof of ER - basic recursion II

B/α → Y , Y satisfies

Y d
=

1
m

∑

i

Yi ,

This allows to identify law of Y , but also that

lim
α→0

EB
α

=
σ2

2m
.

Missing element: with Tn = min{t : |Xt | = n}, evaluate ETn.
Uses recursions similar to B, but also a representation of expectations
in terms of a spine random walk, and a renewal argument.
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