The Einstein relation for random walks on Galton–Watson trees

Ofer Zeitouni

Weizmann Institute and University of Minnesota

Joint with G. Ben Arous, Y. Hu, S. Olla

June 2011

Ofer Zeitouni

Stat Phys Day

June 2011 1 / 12

<ロ> <四> <四> <四> <三</p>

One dimensional Brownian motion: W_t ; $EW_t^2 = t$.

Add drift α locally: $W_t^{\alpha} = W_t + \alpha t$; $v_{\alpha} = \lim_{t \to \infty} \frac{W_t^{\alpha}}{t}$ Of course, $v_{\alpha} = \alpha$, hence

$$\lim_{t\to\infty}\frac{EW_t^2}{t}=\frac{v_\alpha}{\alpha}$$

In general, can re-parametrize α , ie have drift $d = d(\alpha)$ with $d'(\alpha)|_{\alpha=0} = 1$. Einstein relation is then the statement

$$\lim_{t \to \infty} \frac{EW_t^2}{t} = \lim_{\alpha \to 0} \frac{V_\alpha}{\alpha} = \lim_{\alpha \to 0} \lim_{t \to \infty} \frac{W_t^\alpha}{t}$$

Ofer Zeitouni

June 2011 2 / 12

<ロ> <四> <四> <四> <三</td>

One dimensional Brownian motion: W_t ; $EW_t^2 = t$.

Add drift α locally: $W_t^{\alpha} = W_t + \alpha t$; $v_{\alpha} = \lim_{t \to \infty} \frac{W_t^{\alpha}}{t}$ Of course, $v_{\alpha} = \alpha$, hence

In general, can re-parametrize α , ie have drift $d = d(\alpha)$ with $d'(\alpha)|_{\alpha=0} = 1$. Einstein relation is then the statement

$$\lim_{t \to \infty} \frac{EW_t^2}{t} = \lim_{\alpha \to 0} \frac{V_\alpha}{\alpha} = \lim_{\alpha \to 0} \lim_{t \to \infty} \frac{W_t^\alpha}{t}$$

Ofer Zeitouni

Stat Phys Day

June 2011 2 / 12

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 同()

One dimensional Brownian motion:

 W_t ; $EW_t^2 = t$. Add drift α locally: $W_t^{\alpha} = W_t + \alpha t$; $v_{\alpha} = \lim_{t \to \infty} \frac{W_t^{\alpha}}{t}$ Of course, $v_{\alpha} = \alpha$, hence

$$\lim_{t\to\infty}\frac{EW_t^2}{t}=\frac{v_\alpha}{\alpha}$$

In general, can re-parametrize α , ie have drift $d = d(\alpha)$ with $d'(\alpha)|_{\alpha=0} = 1$. Einstein relation is then the statement

$$\lim_{t \to \infty} \frac{EW_t^2}{t} = \lim_{\alpha \to 0} \frac{V_\alpha}{\alpha} = \lim_{\alpha \to 0} \lim_{t \to \infty} \frac{W_t^\alpha}{t}$$

Ofer Zeitouni

Stat Phys Day

June 2011 2 / 12

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 同()

One dimensional Brownian motion:

 W_t ; $EW_t^2 = t$. Add drift α locally: $W_t^{\alpha} = W_t + \alpha t$; $v_{\alpha} = \lim_{t \to \infty} \frac{W_t^{\alpha}}{t}$ Of course, $v_{\alpha} = \alpha$, hence

$$\lim_{t\to\infty}\frac{EW_t^2}{t}=\frac{v_\alpha}{\alpha}$$

In general, can re-parametrize α , ie have drift $d = d(\alpha)$ with $d'(\alpha)|_{\alpha=0} = 1$. Einstein relation is then the statement

$$\lim_{t \to \infty} \frac{EW_t^2}{t} = \lim_{\alpha \to 0} \frac{v_\alpha}{\alpha} = \lim_{\alpha \to 0} \lim_{t \to \infty} \frac{W_t^\alpha}{t}$$

Ofer Zeitouni

June 2011 2 / 12

Ct's time random walk X_t , rate of jumps e^{α} to right, $e^{-\alpha}$ to left. At $\alpha = 0$, $EX_t^2/t \rightarrow 2$. When $\alpha \neq 0$, we get

verifying ER. What can be said in disordered systems? Ct's time random walk X_t , rate of jumps e^{α} to right, $e^{-\alpha}$ to left. At $\alpha = 0$, $EX_t^2/t \rightarrow 2$. When $\alpha \neq 0$, we get

$$\lim_{\alpha\to 0}\lim_{t\to\infty}\frac{|X_t|}{t}=2\,,$$

verifying ER.

What can be said in disordered systems?

Ct's time random walk X_t , rate of jumps e^{α} to right, $e^{-\alpha}$ to left. At $\alpha = 0$, $EX_t^2/t \rightarrow 2$. When $\alpha \neq 0$, we get

$$\lim_{\alpha\to 0}\lim_{t\to\infty}\frac{|X_t|}{t}=2\,,$$

verifying ER. What can be said in disordered systems?

In a rather general setup, a tagged particle X_t moves in a random environment, satisfying the invariance principle, and $EX_t^2/t \rightarrow \sigma^2$.

This is usually proved by considering the environment viewed from the point of view of particle, and applying the Kipnis-Varadhan

theory; works well in reversible situations.

Apply external force αf and obtain process X_t^{α} .

Theorem (Lebowitz-Rost)

Under quite general conditions, for any c > 0,

$$\lim_{\alpha\to 0}\frac{X^{\alpha}_{c/\alpha^2}}{\alpha c/\alpha^2}=\frac{f\sigma^2}{2}\,.$$

Verified for tagged particle in environment of interacting particles, for random walk on random conductance network and fo

Orenstein-Uhlenbeck process in random medium.

In a rather general setup, a tagged particle X_t moves in a random environment, satisfying the invariance principle, and $EX_t^2/t \rightarrow \sigma^2$.

This is usually proved by considering the environment viewed from the point of view of particle, and applying the Kipnis-Varadhan

theory; works well in reversible situations.

Apply external force αf and obtain process X_t^{α} .

Theorem (Lebowitz-Rost)

Under quite general conditions, for any c > 0,

$$\lim_{\alpha \to 0} \frac{X^{\alpha}_{c/\alpha^2}}{\alpha c/\alpha^2} = \frac{f\sigma^2}{2} \,.$$

Verified for tagged particle in environment of interacting particles, for random walk on random conductance network and for

Orenstein-Uhlenbeck process in random medium.

Ofer

Zeitouni	

In a rather general setup, a tagged particle X_t moves in a random environment, satisfying the invariance principle, and $EX_t^2/t \rightarrow \sigma^2$.

This is usually proved by considering the environment viewed from the point of view of particle, and applying the Kipnis-Varadhan

theory; works well in reversible situations.

Apply external force αf and obtain process X_t^{α} .

Theorem (Lebowitz-Rost)

Under quite general conditions, for any c > 0,

$$\lim_{\alpha \to 0} \frac{X^{\alpha}_{\mathbf{c}/\alpha^2}}{\alpha \mathbf{c}/\alpha^2} = \frac{f\sigma^2}{2} \,.$$

Verified for tagged particle in environment of interacting particles, for random walk on random conductance network and for

Orenstein-Uhlenbeck process in random medium.

Ofer Zeitouni			

In a rather general setup, a tagged particle X_t moves in a random environment, satisfying the invariance principle, and $EX_t^2/t \rightarrow \sigma^2$.

This is usually proved by considering the environment viewed from the point of view of particle, and applying the Kipnis-Varadhan

theory; works well in reversible situations.

Apply external force αf and obtain process X_t^{α} .

Theorem (Lebowitz-Rost)

Under quite general conditions, for any c > 0,

$$\lim_{\alpha \to 0} \frac{X^{\alpha}_{\mathbf{c}/\alpha^2}}{\alpha \mathbf{c}/\alpha^2} = \frac{f\sigma^2}{2}.$$

Verified for tagged particle in environment of interacting particles, for random walk on random conductance network and for

Orenstein-Uhlenbeck process in random medium.

Ofer Zeitouni	Stat Phys Day	June 2011 4 / 12

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result: Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/ra

conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result:

Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/random conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result: Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/random conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result:

Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/random conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result:

Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/random conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result:

Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/random conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Verification using Kipnis-Varadhan theory and control on relaxation time of dynamics:

Loulakis '02 Tagged particle in symmetric exclusion process, $d \ge 3$. Komorowsky-Olla '05 SEP, with creation/desctruction; random walk in random conductance with specific (2-valued) structure. Latter uses a duality

argument.

Verification using extension of the Lebowitz-Rost result:

Gantert-Mathieu-Piatnitskii '10 Diffusion in random potential/random conductance model.

Approach of [GMP] uses regeneration times: [LR] tell us ER holds by time c/α^2 . Control on regeneration times says that by that time, relaxation to equilibrium in perturbed system has occured.

Control on regeneration times is **uniform** in environment because traps are of bounded size.

What about systems with arbitrarily large traps?

Galton-Watson trees

 \mathcal{T} : random tree, Galton Watson, offspring distribution { p_k }, $p_0 = 0$, $p_1 < 1$, $m = \sum kp_k$ mean offspring. Start random walk on \mathcal{T} : if *u* is an offspring of *v* then jump rate is 1. Jump rate to parent is λ .

Theorem (Lyons, Pemantle, Peres '95)

λ > m (drift toward root): {X_n} positive recurrent, |X_n|/n → 0.
λ < m (drift away from root): {X_n} transient, |X_n|/n → v > 0
(ballistic). There is a sequence of regeneration times τ_i, such that (τ_{i+1} - τ_i, |X|_{τ_{i+1}} - |X|_{τ_i}) are i.i.d. (annealed).
: λ = 1 < m: an explicit invariant measure for the environment viewed from the point of view of particle is known. Speed v = ∑ p_k(k - 1)/(k + 1).

• $\lambda = m$: critical case. Walk is null recurrent (Lyons).

イロト 不得 とくき とくき とうき

Galton-Watson trees

 \mathcal{T} : random tree, Galton Watson, offspring distribution { p_k }, $p_0 = 0$, $p_1 < 1, m = \sum k p_k$ mean offspring. Start random walk on \mathcal{T} : if u is an offspring of v then jump rate is 1. Jump rate to parent is λ .

• $\lambda > m$ (drift toward root): { X_n } positive recurrent, $|X_n|/n \rightarrow 0$. • $\lambda < m$ (drift away from root): {X_n} transient, $|X_n|/n \rightarrow v > 0$ •: $\lambda = 1 < m$: an explicit invariant measure for the environment viewed

• $\lambda = m$: critical case. Walk is null recurrent (Lyons).

イロト 不得 とくき とくき とうき

Galton-Watson trees

 \mathcal{T} : random tree, Galton Watson, offspring distribution { p_k }, $p_0 = 0$, $p_1 < 1$, $m = \sum k p_k$ mean offspring. Start random walk on \mathcal{T} : if *u* is an offspring of *v* then jump rate is 1. Jump rate to parent is λ .

Theorem (Lyons, Pemantle, Peres '95)

• $\lambda > m$ (drift toward root): $\{X_n\}$ positive recurrent, $|X_n|/n \to 0$.

• $\lambda < m$ (drift away from root): $\{X_n\}$ transient, $|X_n|/n \rightarrow v > 0$ (ballistic). There is a sequence of regeneration times τ_i , such that $(\tau_{i+1} - \tau_i, |X|_{\tau_{i+1}} - |X|_{\tau_i})$ are i.i.d. (annealed). •: $\lambda = 1 < m$: an explicit invariant measure for the environment viewed from the point of view of particle is known. Speed $v = \sum p_k(k-1)/(k+1)$.

• $\lambda = m$: critical case. Walk is null recurrent (Lyons).

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 同()

Assume $\{p_k\}_{k\geq 1}$ has exponential moments.

Theorem (Peres-Z '08)

($\lambda = m$) There is a deterministic $\sigma^2 > 0$ such that, for almost every ${\cal T}$,

$$\left\{\frac{|X_{[nt]}|}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0} \to \{|B_t|\}_{t\geq 0}\,.$$

 $(\lambda < m)$ (easier):

Ofer Zeitouni

$$\left\{\frac{|X_{[nt]}|-vt}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0}\to \{B_t\}_{t\geq 0}\,.$$

For $\lambda < m$, walk has positive speed, and regeneration times can be used.

For $\lambda = m$, crucial role played by an explicit invariant measure of environment viewed from particle, and σ^2 becomes explicit.

Stat Phys Day

June 2011

7/12

Assume $\{p_k\}_{k\geq 1}$ has exponential moments.

Theorem (Peres-Z '08)

 $(\lambda = m)$ There is a deterministic $\sigma^2 > 0$ such that, for almost every T,

$$\left\{\frac{|X_{[nt]}|}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0} \to \{|B_t|\}_{t\geq 0}\,.$$

 $(\lambda < m)$ (easier):

$$\left\{\frac{|X_{[nt]}|-vt}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0}\to \{B_t\}_{t\geq 0}\,.$$

For $\lambda < m$, walk has positive speed, and regeneration times can be used.

For $\lambda = m$, crucial role played by an explicit invariant measure of environment viewed from particle, and σ^2 becomes explicit.

Assume $\{p_k\}_{k\geq 1}$ has exponential moments.

Theorem (Peres-Z '08)

 $(\lambda = m)$ There is a deterministic $\sigma^2 > 0$ such that, for almost every T,

$$\left\{\frac{|X_{[nt]}|}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0} \to \{|B_t|\}_{t\geq 0}\,.$$

 $(\lambda < m)$ (easier):

$$\left\{\frac{|X_{[nt]}|-vt}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0}\to \{B_t\}_{t\geq 0}\,.$$

For $\lambda < m$, walk has positive speed, and regeneration times can be used.

For $\lambda = m$, crucial role played by an explicit invariant measure of environment viewed from particle, and σ^2 becomes explicit.

Assume $\{p_k\}_{k\geq 1}$ has exponential moments.

Theorem (Peres-Z '08)

 $(\lambda = m)$ There is a deterministic $\sigma^2 > 0$ such that, for almost every T,

$$\left\{\frac{|X_{[nt]}|}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0} \to \{|B_t|\}_{t\geq 0}\,.$$

 $(\lambda < m)$ (easier):

$$\left\{\frac{|X_{[nt]}|-vt}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0}\to \{B_t\}_{t\geq 0}\,.$$

For $\lambda < m$, walk has positive speed, and regeneration times can be used.

For $\lambda = m$, crucial role played by an explicit invariant measure of environment viewed from particle, and σ^2 becomes explicit.

Assume $\{p_k\}_{k\geq 1}$ has exponential moments.

Theorem (Peres-Z '08)

 $(\lambda = m)$ There is a deterministic $\sigma^2 > 0$ such that, for almost every T,

$$\left\{\frac{|X_{[nt]}|}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0} \to \{|B_t|\}_{t\geq 0}\,.$$

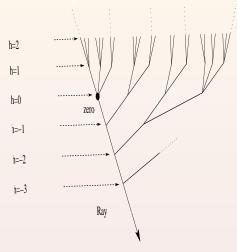
 $(\lambda < m)$ (easier):

$$\left\{\frac{|X_{[nt]}|-vt}{\sqrt{\sigma^2 n}}\right\}_{t\geq 0}\to \{B_t\}_{t\geq 0}\,.$$

For $\lambda < m$, walk has positive speed, and regeneration times can be used.

For $\lambda = m$, crucial role played by an explicit invariant measure of environment viewed from particle, and σ^2 becomes explicit.

Galton-Watson trees - invariant measure



Invariant measure for $\lambda = m$

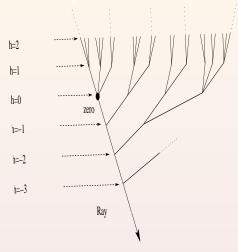
For $\lambda < m$: not explicit (and possibly not absolutely continuous with respect to IGW) 4 $\square \Rightarrow$ 4 $\square \Rightarrow$

Ofer Zeitouni

Stat Phys Day

June 2011 8 / 12

Galton-Watson trees - invariant measure



Invariant measure for $\lambda = m$

Stat Phys Day

Set $\lambda = me^{-\alpha}$, $v_{\alpha} = \lim_{t \to \infty} |X_t^{\alpha}|/t$. Recall that $|X_{[nt]}|/\sqrt{n} \to \sigma^2 |B_t|$.

Theorem (Ben Arous, Hu, Olla, Z '11)

$$\lim_{\alpha\searrow 0}\frac{v_{\alpha}}{\alpha}=\frac{1}{2}\sigma^2.$$

There is also a statement when $\alpha < 0$, walk on extended tree, using (explicit) expression for invariant measure.

Set $\lambda = me^{-\alpha}$, $v_{\alpha} = \lim_{t \to \infty} |X_t^{\alpha}|/t$. Recall that $|X_{[nt]}|/\sqrt{n} \to \sigma^2 |B_t|$.

Theorem (Ben Arous, Hu, Olla, Z '11)

$$\lim_{\alpha\searrow 0}\frac{v_{\alpha}}{\alpha}=\frac{1}{2}\sigma^{2}.$$

There is also a statement when $\alpha < 0$, walk on extended tree, using (explicit) expression for invariant measure.

Set $\lambda = me^{-\alpha}$, $v_{\alpha} = \lim_{t \to \infty} |X_t^{\alpha}|/t$. Recall that $|X_{[nt]}|/\sqrt{n} \to \sigma^2 |B_t|$.

Theorem (Ben Arous, Hu, Olla, Z '11)

$$\lim_{\alpha\searrow 0}\frac{\nu_{\alpha}}{\alpha}=\frac{1}{2}\sigma^2.$$

There is also a statement when $\alpha < 0$, walk on extended tree, using (explicit) expression for invariant measure.

• No explicit expression for invariant measure when $\alpha > 0$.

- Due to existence of arbitrary large traps, no uniform control on slow-down.
- Lack of uniform control translates to bad control of moments of regeneration times (as function of α).

But... Tree structure allows for recursions, which can be used to compute hitting times.

• No explicit expression for invariant measure when $\alpha > 0$.

• Due to existence of arbitrary large traps, no uniform control on slow-down.

• Lack of uniform control translates to bad control of moments of regeneration times (as function of α).

But... Tree structure allows for recursions, which can be used to compute hitting times.

- No explicit expression for invariant measure when $\alpha > 0$.
- Due to existence of arbitrary large traps, no uniform control on slow-down.
- Lack of uniform control translates to bad control of moments of regeneration times (as function of α).
- But... Tree structure allows for recursions, which can be used to compute hitting times.

- No explicit expression for invariant measure when $\alpha > 0$.
- Due to existence of arbitrary large traps, no uniform control on slow-down.
- Lack of uniform control translates to bad control of moments of regeneration times (as function of α).

But... Tree structure allows for recursions, which can be used to compute hitting times.

- No explicit expression for invariant measure when $\alpha > 0$.
- Due to existence of arbitrary large traps, no uniform control on slow-down.
- Lack of uniform control translates to bad control of moments of regeneration times (as function of α).

But... Tree structure allows for recursions, which can be used to compute hitting times.

- No explicit expression for invariant measure when $\alpha > 0$.
- Due to existence of arbitrary large traps, no uniform control on slow-down.
- Lack of uniform control translates to bad control of moments of regeneration times (as function of α).
- But... Tree structure allows for recursions, which can be used to compute hitting times.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A relevant quantity is $\beta(x) = P_{\mathcal{T}}^{x}(\{X_n\}_{n \ge 1} \cap x = \emptyset)$. Set $B(x) = \lambda^{-1} \sum_{x_i \text{ child of } x} \beta(x_i)$.

$$B(x) = \lambda^{-1} \sum_{i} \frac{B(x_i)}{1 + B(x_i)}.$$

This implies

 $\mathsf{EB} = \mathsf{e}^{lpha} \mathsf{E}(\mathsf{B}/(1+\mathsf{B})) \le \mathsf{e}^{lpha} \mathsf{EB}/(1+\mathsf{EB}) \Rightarrow \mathsf{EB} \le (\mathsf{e}^{lpha}-1)$.

Computation: for some *C* independent of α ,

 $EB \ge C(e^{\alpha}-1), \quad EB^2 \le C(E(B))^2$

Hence B/EB is tight, i.e. B/α is tight, and converges (as $\alpha \rightarrow 0$) to a random variable Y.

fer			

A relevant quantity is $\beta(x) = P_{\mathcal{T}}^{x}(\{X_{n}\}_{n \geq 1} \cap x = \emptyset)$. Set $B(x) = \lambda^{-1} \sum_{x_{i} \text{ child of } x} \beta(x_{i})$.

$$B(\mathbf{x}) = \lambda^{-1} \sum_{i} \frac{B(\mathbf{x}_i)}{1 + B(\mathbf{x}_i)}.$$

This implies

 $EB = e^{\alpha}E(B/(1+B)) \le e^{\alpha}EB/(1+EB) \Rightarrow EB \le (e^{\alpha}-1).$

Computation: for some *C* independent of α ,

 $EB \ge C(e^{\alpha} - 1), \quad EB^2 \le C(E(B))^2$

Hence B/EB is tight, i.e. B/α is tight, and converges (as $\alpha \rightarrow 0$) to a random variable Y.

fer			

A relevant quantity is $\beta(x) = P_{\mathcal{T}}^{x}(\{X_n\}_{n \ge 1} \cap x = \emptyset)$. Set $B(x) = \lambda^{-1} \sum_{x_i \text{ child of } x} \beta(x_i)$.

$$B(\mathbf{x}) = \lambda^{-1} \sum_{i} \frac{B(\mathbf{x}_i)}{1 + B(\mathbf{x}_i)}.$$

This implies

 $EB = e^{\alpha}E(B/(1+B)) \le e^{\alpha}EB/(1+EB) \Rightarrow EB \le (e^{\alpha}-1).$

Computation: for some *C* independent of α ,

 $EB \ge C(e^{\alpha} - 1), \quad EB^2 \le C(E(B))^2$

Hence B/EB is tight, i.e. B/α is tight, and converges (as $\alpha \rightarrow 0$) to a random variable Y.

Ofer Zeitouni

Stat Phys Day

A relevant quantity is $\beta(x) = P_{\mathcal{T}}^{x}(\{X_n\}_{n \ge 1} \cap x = \emptyset)$. Set $B(x) = \lambda^{-1} \sum_{x_i \text{ child of } x} \beta(x_i)$.

$$B(\mathbf{x}) = \lambda^{-1} \sum_{i} \frac{B(\mathbf{x}_i)}{1 + B(\mathbf{x}_i)}.$$

This implies

$$EB = e^{\alpha}E(B/(1+B)) \le e^{\alpha}EB/(1+EB) \Rightarrow EB \le (e^{\alpha}-1).$$

Computation: for some *C* independent of α ,

$$EB \ge C(e^{\alpha} - 1), \quad EB^2 \le C(E(B))^2$$

Hence B/EB is tight, i.e. B/α is tight, and converges (as $\alpha \rightarrow 0$) to a random variable Y.

Ofer Zeitouni

Stat Phys Day

A relevant quantity is $\beta(x) = P_{\mathcal{T}}^{x}(\{X_n\}_{n \ge 1} \cap x = \emptyset)$. Set $B(x) = \lambda^{-1} \sum_{x_i \text{ child of } x} \beta(x_i)$.

$$B(\mathbf{x}) = \lambda^{-1} \sum_{i} \frac{B(\mathbf{x}_i)}{1 + B(\mathbf{x}_i)}.$$

This implies

$$EB = e^{\alpha}E(B/(1+B)) \le e^{\alpha}EB/(1+EB) \Rightarrow EB \le (e^{\alpha}-1).$$

Computation: for some *C* independent of α ,

$$\textit{EB} \geq \textit{C}(e^{lpha}-1), \quad \textit{EB}^2 \leq \textit{C}(\textit{E}(\textit{B}))^2$$

Hence B/EB is tight, i.e. B/α is tight, and converges (as $\alpha \rightarrow 0$) to a random variable Y.

Ofer Zeitouni

Stat Phys Day

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

 ${\it B}/\alpha
ightarrow$ Y, Y satisfies

$$\mathbf{Y} \stackrel{d}{=} \frac{1}{m} \sum_{i} \mathbf{Y}_{i} \,,$$

This allows to identify law of Y, but also that

$$\lim_{\alpha\to 0}\frac{EB}{\alpha}=\frac{\sigma^2}{2m}\,.$$

Missing element: with $T_n = \min\{t : |X_t| = n\}$, evaluate ET_n . Uses recursions similar to *B*, but also a representation of expectations in terms of a spine random walk, and a renewal argument.

 ${\it B}/\alpha
ightarrow$ Y, Y satisfies

$$Y\stackrel{d}{=}\frac{1}{m}\sum_{i}Y_{i},$$

This allows to identify law of Y, but also that

$$\lim_{\alpha\to 0}\frac{EB}{\alpha}=\frac{\sigma^2}{2m}\,.$$

Missing element: with $T_n = \min\{t : |X_t| = n\}$, evaluate ET_n . Uses recursions similar to *B*, but also a representation of expectations in terms of a spine random walk, and a renewal argument.

 ${\it B}/\alpha
ightarrow$ Y, Y satisfies

$$Y\stackrel{d}{=}\frac{1}{m}\sum_{i}Y_{i},$$

This allows to identify law of Y, but also that

$$\lim_{\alpha\to 0}\frac{EB}{\alpha}=\frac{\sigma^2}{2m}\,.$$

Missing element: with $T_n = \min\{t : |X_t| = n\}$, evaluate ET_n .

Uses recursions similar to *B*, but also a representation of expectations in terms of a spine random walk, and a renewal argument.

 ${\it B}/\alpha
ightarrow$ Y, Y satisfies

Ofer Zeitouni

$$\mathbf{Y} \stackrel{d}{=} \frac{1}{m} \sum_{i} \mathbf{Y}_{i} \,,$$

This allows to identify law of Y, but also that

$$\lim_{\alpha\to 0}\frac{EB}{\alpha}=\frac{\sigma^2}{2m}\,.$$

Missing element: with $T_n = \min\{t : |X_t| = n\}$, evaluate ET_n . Uses recursions similar to *B*, but also a representation of expectations in terms of a spine random walk, and a renewal argument.