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Experimental Relevance

Nonlinear Optics

Bose Einstein Condensates (BECs)

Competition between randomness and nonlinearity



The Nonlinear Schroedinger (NLS) 

Equation
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1D continuum version
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Does Localization Survive the

Nonlinearity???

0   localization



Does Localization Survive the 

Nonlinearity???

• Yes, if there is spreading the magnitude of 

the nonlinear term decreases and 

localization takes over.

• No, assume wave-packet width is        

then the relevant energy spacing is            

the perturbation because of the nonlinear 

term is                        and all depends on

• No, but does not depend on  

• No, but it depends on realizations    
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Does Localization Survive the 

Nonlinearity?

• No, the NLSE is a chaotic dynamical 

system, will it remain chaotic for all 

densities??

• No, but localization asymptotically 

preserved beyond some front that is 

logarithmic in time 



Numerical Simulations

• In regimes relevant for experiments looks that 
localization takes place

• Spreading for long time (Shepelyansky, 
Pikovsky, Molina, Kopidakis, Komineas, Flach, 
Aubry)

• We do not know the relevant space and time 
scales

• All results in Split-Step

• No control (but may be correct in some range)

• Supported by various heuristic arguments



Pikovsky,  Sheplyansky 

Slope does not change (contrary to Fermi-Ulam-Pasta) 



S.Flach, D.Krimer and S.Skokos Pikovsky,  Shepelyansky
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Effective Noise Theories

• D. Shepeyansky and A. Pikovsky

• Ch. Skokos, D.O. Krimer, S. Komineas 

and S. Flach
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Scaling Properties of Chaos
Arkady Pikovsky
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( )x Are dynamical variables

( ) ( 0) tt t e    Largest Lyapunov exponent

0  Chaos
Is it possible that chaos disappears?

Growth of deviations

Initial data, nearly homogeneous spreading  in space   



Divide chain into intervals of length 
0L Number of intervals
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Assuming independence, if intervals large enough 

The probability to be regular:
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Scaling
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Spreading

No chaos

Localization ?



Perturbation Theory

The nonlinear Schroedinger Equation on a Lattice in 1D
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Perturbation theory steps

• Expansion in nonlinearity

• Removal of secular terms

• Control of denominators

• Probabilistic bound on general term

• Control of remainder 

• Use perturbation theory to obtain a 

numerical solution that is controlled a 

posteriori
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4th order, W=4, J=1

Linear

full

………



* 2
( ) 0.1N

linQ t 



The Bound on the remainder
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One can show that for strong disorder ( , ) 0A N
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 Expansion Asymptotic

For fixed order and time

Difficulties in the calculation of Aexp( )A Looks that 

1
lnx t


Front logarithmic in time

Localization for x x

nx Localization center of state n

For limited time



Bound on error

• Solve linear equation for the remainder of 
order 

• If bounded to time              perturbation 
theory accurate to that time.

• Order of magnitude estimate                    if 
asymptotic                   hence                    
for optimal order (up to constants).

• validity time of perturbation 
theory  
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Summary Perturbation Theory

1. A perturbation expansion in     was developed

2. Secular terms were removed

3. A bound on the general term was derived 

4. Perturbation theory was used to obtain a 
controlled numerical solution

5. A bound on the remainder was obtained, 
indicating that the series is asymptotic.

6. For limited time tending to infinity for small 
nonlinearity, front logarithmic in time                   

7. Improved for strong disorder
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Emerging Picture

• For small  nonlinearity initially no spreading

• For strong nonlinearity some part does not spread

• For some nonlinearity wide regime of sub-diffusion

• Asymptotic spreading at most logarithmic:

a. perturbation theory

b. rigorous results in the limit of strong disorder

• Unlikely that sub-diffusion continues forever: 

a. scaling theory

b. Effective noise “theories”

Coherent picture for various regimes?        


