Long-range steady state density profiles induced by localized drives

Tridib Sadhu

Department of physics of complex systems, Weizmann Institute of Science, Rehovot 76100, Israel.

Joint work with Satya N. Majumdar and David Mukamel

In an equilibrium state, away from critical points, typically, local (finite region in an infinite system) perturbations induce local changes.

- In an equilibrium state, away from critical points, typically, local (finite region in an infinite system) perturbations induce local changes.
- Most non-equilibrium stationary states, have long-range correlations.

Example: Power-law profiles in boundary driven lattice gas, heat conduction models *etc.*

- In an equilibrium state, away from critical points, typically, local (finite region in an infinite system) perturbations induce local changes.
- Most non-equilibrium stationary states, have long-range correlations.

Example: Power-law profiles in boundary driven lattice gas, heat conduction models *etc.*

What happens when detailed balance is broken locally, inside bulk, in an otherwise equilibrium system? 1. A localized drive, in an otherwise diffusive system in $d \ge 2$, results in an algebraically decaying density and current profiles.

- 1. A localized drive, in an otherwise diffusive system in $d \ge 2$, results in an algebraically decaying density and current profiles.
- 2. Decay exponent depends on the geometry of the drive.

- 1. A localized drive, in an otherwise diffusive system in $d \ge 2$, results in an algebraically decaying density and current profiles.
- 2. Decay exponent depends on the geometry of the drive.
- 3. A correspondence with electrostatic is established where we can show that the density profile is related to the potential of different arrangement of electric dipoles.

- Locally driven non-interacting particles
 - Analogy to electrostatic potential due to charges
 - Exact solution
- Local drive with exclusion interaction

Summary

Non-interacting particles

- N non-interacting particles on square lattice.
- Drive across a single bond.
- When \(\epsilon = 0\), detailed balance is satisfied w.r.t a flat density profile.
- For non-zero ϵ, detailed balance is broken, and change in density profile decays as 1/r for large r.

The equation for the density profile $\phi(\vec{r}, t)$:

$$\partial_t \phi(ec{r},t) =
abla^2 \phi(ec{r},t) + \epsilon \phi(ec{0}) \left[\delta_{ec{r},ec{0}} - \delta_{ec{r},ec{e}_1}
ight],$$

where discrete Laplacian

 $\nabla^2 \phi(m,n) = \phi(m+1,n) + \phi(m-1,n) + \phi(m,n+1) + \phi(m,n-1) - 4\phi(m,n)$

and $ec{0}\equiv(0,0)$, $ec{e_1}\equiv(1,0)$

$$abla^2 \phi(ec{r}) = -\epsilon \phi(ec{0}) \left[\delta_{ec{r},ec{0}} - \delta_{ec{r},ec{e}_1}
ight]$$

$$\nabla^2 \phi(\vec{r}) = -\epsilon \phi(\vec{0}) \left[\delta_{\vec{r},\vec{0}} - \delta_{\vec{r},\vec{e}_1} \right]$$

• Equation for potential due to a dipole.

$$\nabla^2 \phi(\vec{r}) = -\epsilon \phi(\vec{0}) \left[\delta_{\vec{r},\vec{0}} - \delta_{\vec{r},\vec{e}_1} \right]$$

- Equation for potential due to a dipole.
- Strength of the dipole is not known a priori, but can be determined self-consistently.

$$abla^2 \phi(ec{r}) = -\epsilon \phi(ec{0}) \left[\delta_{ec{r},ec{0}} - \delta_{ec{r},ec{e}_1}
ight]$$

- Equation for potential due to a dipole.
- Strength of the dipole is not known a priori, but can be determined self-consistently.
- Solution:

$$\phi(\vec{r}) = \rho + \epsilon \phi(\vec{0}) \left[G(\vec{r}, \vec{0}) - G(\vec{r}, \vec{e}_1) \right],$$

where G is the lattice greens function $\nabla^2 G(\vec{r}, \vec{r}_o) = -\delta_{\vec{r}, \vec{r}_o}$, ρ is the global average density, and

 $\phi(\vec{0}) =
ho/(1 - \epsilon/4)$

$$abla^2 \phi(ec{r}) = -\epsilon \phi(ec{0}) \left[\delta_{ec{r},ec{0}} - \delta_{ec{r},ec{e}_1}
ight]$$

Equation for potential due to a dipole.

- Strength of the dipole is not known a priori, but can be determined self-consistently.
- Solution:

$$\phi(\vec{r}) = \rho + \epsilon \phi(\vec{0}) \left[G(\vec{r}, \vec{0}) - G(\vec{r}, \vec{e}_1) \right],$$

where G is the lattice greens function $\nabla^2 G(\vec{r}, \vec{r}_o) = -\delta_{\vec{r}, \vec{r}_o}$, ρ is the global average density, and

$$\phi(ec{0})=
ho/(1-\epsilon/4)$$

• At large \vec{r} ,

$$\phi(\vec{r}) =
ho - rac{\epsilon \phi(\vec{0})}{2\pi} rac{ec{e}_1 \cdot ec{r}}{r^2} + \mathcal{O}(rac{1}{r^2})$$

and current

$$ec{j}(ec{r})=-
abla \phi(ec{r})=rac{\epsilon \phi(ec{0})}{2\pi}\,rac{1}{r^2}\,\left[ec{e}_1-rac{2(ec{e}_1\cdotec{r})ec{r})}{r^2}
ight]+\mathcal{O}(rac{1}{r^3}).$$

The analogy to electrostatics holds in higher dimensions.

• Then, in
$$d \ge 2$$

$$\phi(\vec{r}) \sim 1/r^{d-1}$$

▶ In d = 1, Green's function $G(x, x_o) = -|x - x_o|/2$, then

$$\phi(x) = \rho - (\epsilon/2) \phi(0) \operatorname{sgn}(x),$$

Arbitrary driving configuration

$$\begin{aligned} \phi(\vec{r}) &= \rho + \epsilon \phi(\vec{i}_1) \left[G(\vec{r}, \vec{i}_1) - G(\vec{r}, \vec{i}_1 + \vec{1}) \right] \\ &+ \epsilon \phi(\vec{i}_2) \left[G(\vec{r}, \vec{i}_2) - G(\vec{r}, \vec{i}_2 + \vec{1}) \right] \\ &+ \cdots \end{aligned}$$

n self-consistency equations obtained by putting $\vec{r} = \vec{i}_1, \vec{i}_2 \cdots$

These are linear set of equations, and can be solved using known solutions of $G(\vec{r},\vec{0}) - G(\vec{0},\vec{0})$

(i,j)	0	1	2
0	0	$-\frac{1}{4}$	$\frac{2}{\pi} - 2$
1	$-\frac{1}{4}$	$-\frac{1}{\pi}$	$\frac{2}{\pi} - 2$
2	$\frac{2}{\pi} - 2$	$\frac{1}{4} - \frac{2}{\pi}$	$\frac{4}{3\pi}$

Quadrupolar charge configuration

The steady state equation

$$\nabla^2 \phi(\vec{r}) = -\epsilon \phi(\vec{0}) \left[2\delta_{\vec{r},\vec{0}} - \delta_{\vec{r},\vec{e}_1} - \delta_{\vec{r},-\vec{e}_1} \right]$$

Solution

$$\phi(\vec{r}) = \rho - \frac{\epsilon \phi(\vec{0})}{2\pi} \left[\frac{1}{r^2} - 2\left(\frac{\vec{e}_1 \cdot \vec{r}}{r^2}\right)^2 \right] + \mathcal{O}(\frac{1}{r^4}),$$

with $\phi(\vec{0}) = \rho/(1 - \epsilon/2)$.

- Collection of biased bonds do not necessarily imply breakdown of detailed balance.
- ► Detailed balance with respect to potential $V(\vec{r}) = -\ln(1-\epsilon) \delta_{\vec{r},\vec{0}}$
- Consequently, the density profile $\phi(\vec{r}) \propto \exp[-V(\vec{r})]$

Analogy to magnetic fields

In 2-d, magnetic field by (i → j) link

 $H = \ln[e_{ij}]$

Then for a bond

$$H = \ln[e_{ij}] - \ln[e_{ji}]$$
$$= \ln[\frac{e_{ij}}{e_{ji}}]$$

 Kolmogorov criterion: Detailed balance if and only if

$$\alpha_1\alpha_2\alpha_3\alpha_4 = \beta_4\beta_3\beta_2\beta_1$$

on all loops

In terms of magnetic field:

 $H = \begin{cases} \text{zero} \iff & \text{Detailed balance} \\ \text{non-zero} \iff & \text{No detailed balance} \end{cases}$

The steady state equation for density

$$abla^2 \phi(ec{r}) = -\epsilon \langle au(ec{0})(1- au(ec{e_1}))
angle \left[\delta_{ec{r},ec{0}} - \delta_{ec{r},ec{e_1}}
ight],$$

and $\phi(\vec{r}) = \langle \tau(\vec{r}) \rangle$

where

$$au\left(ec{r}
ight) = \left\{ egin{array}{ccc} 1 & ext{ If there is a particle} \\ 0 & ext{ No particle} \end{array}
ight|$$

The steady state equation for density

$$abla^2 \phi(ec{r}) = -\epsilon \langle au(ec{0})(1- au(ec{e}_1))
angle \left[\delta_{ec{r},ec{0}} - \delta_{ec{r},ec{e}_1}
ight],$$

where

$$\tau\left(\vec{r}\right) = \begin{cases} 1 & \text{If there is a particle} \\ 0 & \text{No particle} \end{cases} \quad \left| \text{and } \phi\left(\vec{r}\right) = \langle \tau\left(\vec{r}\right) \rangle \end{cases}$$

 Unlike the non-interacting case, the pre-factor has to be determined separately.
 However, the profile remains the same, at large r.

Exclusion interaction

The d = 1 result is very similar to the profile obtained in SSEP with a battery by [Bodineau, Derrida and Lebowitz].

Exclusion interaction

Tridib Sadhu

Numerical results

Global bias

Steady state equation for Non-interacting case

$$\nabla^{2}\phi(\vec{r}) = -\epsilon\phi(\vec{0}) \left[\delta_{\vec{r},\vec{0}} - \delta_{\vec{r},\vec{e}_{1}} \right] + \mu \left[\phi(\vec{r}) - \phi(\vec{r} - \vec{e}_{1}) \right]$$

Tridib Sadhu

- In diffusive systems, both with and without exclusion interaction, localized drive can give rise to algebraically decaying density profiles at large distances.
- > An electrostatic analogy is established.
- What happens when other kinds of local interactions are switched on?

Thank you