
Long-range steady state density profiles induced
by localized drives

Tridib Sadhu

Department of physics of complex systems,
Weizmann Institute of Science, Rehovot 76100, Israel.

Joint work with

Satya N. Majumdar and David Mukamel

Tridib Sadhu Long-range profile



The problem

I In an equilibrium state, away from critical points, typically,
local (finite region in an infinite system) perturbations induce
local changes.

I Most non-equilibrium stationary states, have long-range
correlations.
Example: Power-law profiles in boundary driven lattice gas,
heat conduction models etc.

I What happens when detailed balance is broken locally, inside
bulk, in an otherwise equilibrium system?
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Main result

1. A localized drive, in an otherwise diffusive system in d ≥ 2,
results in an algebraically decaying density and current profiles.

2. Decay exponent depends on the geometry of the drive.

3. A correspondence with electrostatic is established where we
can show that the density profile is related to the potential of
different arrangement of electric dipoles.
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Outline

I Locally driven non-interacting particles
I Analogy to electrostatic potential due to charges
I Exact solution

I Local drive with exclusion interaction

I Summary

Tridib Sadhu Long-range profile



Non-interacting particles

I N non-interacting particles
on square lattice.

I Drive across a single bond.

I When ε = 0, detailed
balance is satisfied w.r.t a
flat density profile.

I For non-zero ε, detailed
balance is broken, and
change in density profile
decays as 1/r for large r .
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Master equation

The equation for the density profile φ(~r , t):

∂tφ(~r , t) = ∇2φ(~r , t) + εφ(~0)
[
δ~r ,~0 − δ~r ,~e1

]
,

where discrete Laplacian

∇2φ(m, n) = φ(m+1, n)+φ(m−1, n)+φ(m, n+1)+φ(m, n−1)−4φ(m, n)

and ~0 ≡ (0, 0), ~e1 ≡ (1, 0)
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I Steady state equation

∇2φ(~r) = −εφ(~0)
[
δ~r ,~0 − δ~r ,~e1

]

I Equation for potential due to a dipole.

I Strength of the dipole is not known a priori, but can be determined
self-consistently.

I Solution:
φ(~r) = ρ+ εφ(~0)

[
G (~r ,~0)− G (~r ,~e1)

]
,

where G is the lattice greens function ∇2G (~r ,~ro) = −δ~r ,~ro ,
ρ is the global average density, and

φ(~0) = ρ/(1− ε/4)

I At large ~r ,

φ(~r) = ρ− εφ(~0)

2π

~e1 ·~r
r2

+O(
1

r2
)

and current

~j(~r) = −∇φ(~r) =
εφ(~0)

2π

1

r2

[
~e1 −

2(~e1 ·~r)~r

r2

]
+O(

1

r3
).
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In d-dimensions

The analogy to electrostatics holds in higher dimensions.

I Then, in d ≥ 2
φ(~r) ∼ 1/rd−1

I In d = 1, Green’s function G (x , xo) = −|x − xo |/2, then

φ(x) = ρ− (ε/2)φ(0) sgn(x),
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Arbitrary driving configuration

φ(~r) = ρ + εφ(~i1)
[
G (~r ,~i1)− G (~r ,~i1 +~1)

]
+ εφ(~i2)

[
G (~r ,~i2)− G (~r ,~i2 +~1)

]
+ · · ·

n self-consistency equations obtained by
putting ~r =~i1,~i2 · · · .

These are linear set of equations, and can be
solved using known solutions of

G (~r ,~0)− G (~0,~0)

(i,j) 0 1 2

0 0 − 1
4

2
π − 2

1 − 1
4 − 1

π
2
π − 2

2 2
π − 2 1

4 −
2
π

4
3π
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Quadrupolar charge configuration

The steady state equation

∇2φ(~r) = −εφ(~0)
[
2δ~r ,~0 − δ~r ,~e1 − δ~r ,−~e1

]
.

Solution

φ(~r) = ρ− εφ(~0)

2π

[
1

r2
− 2

(
~e1 ·~r

r2

)2
]

+O(
1

r4
),

with φ(~0) = ρ/(1− ε/2).
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A side note

I Collection of biased bonds
do not necessarily imply
breakdown of detailed
balance.

I Detailed balance with
respect to potential
V (~r) = − ln(1− ε) δ~r ,~0

I Consequently, the density
profile φ(~r) ∝ exp[−V (~r)]
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Analogy to magnetic fields

I In 2-d , magnetic field
by (i → j) link

H = ln[eij ]

I Then for a bond

H = ln[eij ]− ln[eji ]

= ln[
eij
eji

]
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I Kolmogorov criterion: Detailed
balance if and only if

α1α2α3α4 = β4β3β2β1

on all loops

I In terms of magnetic field:

H =

{
zero⇐⇒ Detailed balance

non-zero⇐⇒ No detailed balance
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Exclusion interaction

I The steady state equation for density

∇2φ(~r) = −ε〈τ(~0)(1− τ(~e1)〉
[
δ~r ,~0 − δ~r ,~e1

]
,

where

τ (~r) =

{
1 If there is a particle
0 No particle

∣∣∣ and φ (~r) = 〈τ (~r)〉

I Unlike the non-interacting case, the pre-factor has to be
determined separately.
However, the profile remains the same, at large r .
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Exclusion interaction

I The d = 1 result is very similar to
the profile obtained in SSEP with a
battery by [Bodineau, Derrida and
Lebowitz].

I In d = 2
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Numerical results

On a 200× 200 lattice with ρ = N/L2 = 0.6

Non-Interacting: φ(~0) = ρ
1−ε/4

Exclusion interaction: 〈τ(~0)(1− τ(~e1)〉 = 0.3209 measured
separately
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Global bias

Steady state equation for Non-interacting case

∇2φ(~r) = −εφ(~0)
[
δ~r ,~0 − δ~r ,~e1

]
+ µ [φ(~r)− φ(~r − ~e1)]
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Summary

I In diffusive systems, both with and without exclusion
interaction, localized drive can give rise to algebraically
decaying density profiles at large distances.

I An electrostatic analogy is established.

I What happens when other kinds of local interactions are
switched on?
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Thank you
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