Sparse Fault-Tolerant BFS Trees

Merav Parter and David Peleg Weizmann Institute Of Science BIU-CS Colloquium 16-01-2014

Breadth First Search (BFS) Trees

□ Unweighted graph G=(V,E), source vertex s∈V.
 □ Shortest-Path Tree (BFS) rooted at s.

Fault Tolerant BFS Trees

- **Objective:**
- Purchase a
- collection of edges
- (BFS + backup edges)
- that is robust
- against edge faults.

Fault-Tolerant BFS Trees

Fault-Tolerant (FT) BFS Trees

Fault Tolerant (FT) BFS Trees

Fault Tolerant (FT) BFS Trees

FT-BFS Tree - Formal Definition

Consider an unweighted graph G=(V,E) and a source vetrex s.

A subgraph H is an FT-BFS of G and s if for every v in V and e in E:

 $d(s,v, H \in) = d(s,v, G \in)$

FT-BFS for Multiple Sources (FT-MBFS)

□ Consider an unweighted graph G=(V,E) and a source set S in V.

A subgraph H is an FT-MBFS of G if for every s in S, v in V and e in E:

 $d(s,v, H \setminus \{e\}) = d(s,v, G \setminus \{e\})$

The Minimum FT-BFS tree Problem

□ <u>Input</u>: unweighted graph G=(V,E) source vertex s in V.

Output:

An FT-BFS subgraph $H \subseteq G$ with minimum number of edges.

□ Related work

Lower bound construction

Upper bound

□ Hardness and approximation algorithm.

Related Work

Replacement Path

□ Fault-Tolerant Spanners

A related problem: the replacement path problem P(s,t,e) : s-t shortest path in G\{e}

P(s,t)

P(s,t,e)

Problem definition: Given a source *s*, destination *t*, for every $e \in P(s,t)$, compute P(s,t,e) the shortest s-t path that avoids *e*.

- Trivial algorithm:
- For every edge $e \in P(s,t)$, run Dijkstra's algorithm from s in $G \in \mathbb{R}$.
- Time complexity: O(mn)

The structure of a replacement path

P(s,t,e) : s-t shortest path in G\{e}

The replacement paths problem

Better bounds available for replacement paths problem for

Undirected graphs:

Time complexity: O(m+n log n) [Gupta et al. 1989] [Hershberger and Suri, 2001]

Unweighted directed graphs:

Time complexity: $O(m\sqrt{n})$ (Randomized MonteCarlo algorithm) [Roditty and Zwick 2005]

Problem definition:

Given a source *s*, compute P(s,t,e) efficiently for each t in V and every $e \in P(s,t)$.

Time complexity: O(n^w) [Grandoni and Williams, FOCS'12]

FT-BFS tree revisited:

An FT-BFS tree H contains the collection of all single source replacement paths.

Complexity measure: size of H (#edges).

\Box Graph G=(V,E)

\Box A subgraph H is an k-spanner if

for every \mathbf{u}, \mathbf{v} in V:

$d(u,v,H) \leq k \cdot d(u,v,G).$

Fault-Tolerant Spanners

- A subgraph H is an
- f-edge fault tolerant k-spanner
- if for every **u**, **v** in **V** and every set of
- f edges F={ e_1, e_2, \dots, e_f }: d(u,v,H \F) $\leq k \cdot d(u,v,G \setminus F)$.

Fault-Tolerant Spanners

 $d(u,v,H \setminus F) \leq (2k-1) \cdot d(u,v,G \setminus F)$ for all u,v in V

Robust to **f-vertex** faults:

```
Stretch: 2k-1
```

#edges:

 $\widetilde{O}\left(f^{2}k^{f+1} \cdot n^{1+\frac{1}{k}}\right) \text{ [Chechik et al., 2009]}$ $\widetilde{O}\left(f^{2-\frac{1}{k}} \cdot n^{1+\frac{1}{k}}\right) \text{ [Dinitz and Krauthgamer, 2011]}$

Fault-Tolerant Spanners

 $d(u,v,H \setminus F) \leq (2k-1) \cdot d(u,v,G \setminus F)$ for all u,v in V

Robust to f-edge faults:

Stretch: 2k-1 #edges: $O\left(f n^{1+\frac{1}{k}}\right)$ [Chechik et al., 2009]

FT-Spanners vs. FT-BFS trees

Related work

Lower bound construction

Upper bound

□ Hardness and approximation algorithm.

Lower Bound

- Theorem [Single source]:
- For every integer $n \ge 1$, there exists an n-vertex graph G=(V,E) and a source vertex $s \in V$ such that every FT-BFS tree H has $\Omega(n\sqrt{n})$ edges.

Theorem [Multiple sources]:

For every integer $n \ge 1$, there exists an n-vertex graph G=(V,E) and a source set $S \subseteq V$ such that every FT-BFS tree H has $\Omega(n\sqrt{|S|n})$ edges.

The Lower Bound Construction

- □ Complete bipartite graph B(X,Z): $|X| = \Omega(n), |Z| = \Omega(\sqrt{n})$
- Path of length |Z|
- \Box Collection of |Z| paths which are
- Vertex disjoint
- of monotone increasing lengths.

The Construction

The Construction

The Construction

Related work

Lower bound construction

Upper bound

□ Hardness and approximation algorithm.

Matching Upper Bound

Theorem:

For every graph G=(V,E) and every source $s \in V$ there exists a (polynomially constructible) FT-BFS tree H with $O(n\sqrt{n})$ edges.

- <u>Input</u>: unweighted graph G=(V,E), source vertex s. <u>Output</u>: FT-BFS tree $H \subseteq G$.
 - * Assume that all shortest paths in G are unique.


```
\Box T_0 := BFS(s, G)
```

```
\Box T_e := BFS(s, G \setminus \{e\})
```


$$\Box T_0 := BFS(s, G)$$

 $\Box T_e := BFS(s, G \setminus \{e\})$

$$\Box T_0 := BFS(s, G)$$

 $\Box T_e := BFS(s, G \setminus \{e\})$

$\Box T_0 := BFS(s, G)$

$\Box T_e := BFS(s, G \setminus \{e\})$

Correctness

 T_{e_1}

e

V2

٧л

67

S

Ś

V₃

Recall: P(s,t,e) is the s-t shortest path in G\{e}.

H contains the collection of all single source replacement paths.

The replacement path $P(s, v_5, e_1)$ is the s-t path in T_{e1} =BFS(s, $G \setminus \{e_1\}$).

An edge e in H is new if it is not in T_0 .

Lemma:

Every vertex t has at most

 $O(\sqrt{n})$ new edges in H.

 $\pi(s,t,T)$: s-t path in tree T

New(t) = { Last edge of $\pi(s,t,T_e)$, $e \in T_0$ } \ T_0

$$H = T_0 \bigcup \{New(t), t \in V\}$$

$$H = T_0 \bigcup \{T_e \mid e \in T_0\}$$

Size Analysis - First Bound

$\pi(s,t,T)$: s-t path in tree T

- New(t) ={ Last edge of $\pi(s,t,Te)$, $e \in T_0$ } \ T_0
- $|C|. 1: |New(t)| \leq dist(s,t,G)$
- Proof: If last edge of $\pi(s,t,T_e)$ is new then $e \in \pi(s,t,T_0)$

Size Analysis - Second Bound

$\pi(s,t,T)$: s-t path in tree T

New(t) = { Last edge of $\pi(s,t,T_e)$, $e \in T_0$ } T_0

Size Analysis - Second Bound

$\pi(s,t,T)$: s-t path in tree T

New(t) = { Last edge of $\pi(s,t,T_e)$, $e \in T_0$ } \ T_0

V2

Vҕ

A replacement path P(s,t,e) whose last edge is new

Count the number of new ending paths.

New Ending Replacement Paths

P(s,t,e) is the s-t path in $T_e=BFS(s, G \setminus \{e\})$.

Non-New Ending Path

New Ending Path

Analysis - Second Bound

Strategy: Count the number of new ending paths.

Consider the set of L new ending replacement paths

 $P_1 = P(s, t, e_1), P_2 = P(s, t, e_2), ..., P_L = P(s, t, e_L)$

where each P_i ends with a *distinct* new edge of **t**.

Show that $L \leq \sqrt{2n}$

The structure of a new ending replacement path

Lemma:

The detour segment is edge disjoint from P(s,t)

Cl. 1: The detour segment is edge disjoint from P(s,t)

Claim 2: the detours are vertex disjoint!

 $P(s,t,e_1)$ $P(s,t,e_2)$

there are two v-t shortest paths in $G \setminus \{e_1, e_2\}$.

New Ending Replacement Path

Notation:

- b_i := unique divergence point of $P(s,t,e_i)$ and P(s,t).
- D_i :=detour segment of $P(s,t,e_i)$.

Set of new ending replacement paths P_1 , P_2 , ..., P_L .

 $d(s, b_1) \geq d(s, b_2) \geq \dots d(s, b_L)$

The divergence points b_i are distinct!

d(s, b₁)>d (s, b₂)> ... >d(s, b_L)

Set of new ending replacement paths P_1 , P_2 , ..., P_L .

- $\Box \quad \text{Towards contradiction assume } L > \sqrt{2n}$
 - The total #vertices in the detours is:

 $|\bigcup_{i=1}^{L} D_{i}| = \sum_{i=1}^{L} |D_{i}| \ge \sum_{i=1}^{L} i > L^{2} > n$ Detours are Divergence vertex disjoint points are are distinct **Contradiction!**

Theorem [upper bound]

For every graph G=(V,E) and every source set $S\subseteq V$

- there exists a (polynomially constructible)
- **FT-MBFS** tree **H** with $O(n \sqrt{|S|} n)$ edges.

Related work

Lower bound construction

Upper bound

□ Hardness and approximation algorithm.

The Minimum FT-BFS tree Problem

- Theorem [Hardness]
- The Minimum FT-BFS problem is NP-hard and cannot be approximated to within a factor of $\Omega(\log n)$ unless NP \subseteq TIME $(n^{ploylog(n)})$.

(By a gap preserving reduction from Set-Cover)

The Minimum FT-BFS tree Problem

Theorem [Approximation]

The Minimum FT-BFS problem can be approximated within a factor of $O(\log n)$.

O(log n) Approximation algorithm for the Min-FT BFS problem

- □ Solve n-1 instances of Set-Cover.
- □ A Set-Cover instance of vertex **†**:
- \Box Universe of vertex t: U_t = E(P(s,t))

- Every neighbor v of t is a set S_{vt} :
- $e \in P(s,t)$ is in the set S_{vt} if
- dist(s, t, G\{e})=dist(s,v, G\{e})+1

- \Box FT-BFS with $O(n\sqrt{n})$ edges (tight!).
- \Box FT-MBFS (S sources) with $O(n \sqrt{|S|} n)$ edges
- (tight!).
- The Minimum FT-MBFS problem is NP-hard.
 O(log n)-approximation (tight!).

What about approximate FT-BFS structure?

Multiplicative stretch = 3: Upper bound: 4n edges.

□ Additive stretch β : Lower bound: $\Omega(n^{1+\epsilon_{\beta}})$ edges.

P, Peleg, SODA'14

Thanks!

Happy Tu-bishvat!

