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Breadth First Search (BFS) Trees 

 Shortest-Path Tree (BFS) rooted at s. 
 

Sparse solution:  

 n-1 edges. 

 

 Problem: 

 Not robust against edge  

 and vertex faults. 
 
 
 

 Unweighted graph G=(V,E), source vertex sV. 
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Fault Tolerant BFS Trees 

Objective: 

Purchase a  

collection of edges  

(BFS + backup edges) 

that is robust 

against edge faults. 
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Fault-Tolerant BFS Trees 

Subgraph H that contains a BFS tree in G\{e} 

for every edge failure e in G.  

𝑮 ∖ {𝒆𝟏} 𝑯 ∖ {𝒆𝟏} 
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Fault-Tolerant (FT) BFS Trees 

Subgraph H that contains a BFS tree in G\{e} 

for every edge failure e in G.  
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Fault Tolerant (FT) BFS Trees 

Subgraph H that contains a BFS tree in G\{e} 

for every edge failure e in G.  
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FT-BFS Tree - Formal Definition 

 Consider an unweighted graph G=(V,E) 
and a source vetrex s. 

 

  A subgraph H is an FT-BFS of G and s if 
for every v in V and e in E: 
 
  d(s,v, H\{e}) = d(s,v, G\{e}) 



FT-BFS for Multiple Sources (FT-MBFS) 

 Consider an unweighted graph G=(V,E) 
and a source set S in V. 

 

 A subgraph H is an FT-MBFS of G  if for 
every s in S, v in V and e in E: 
 
  d(s,v, H \{e}) = d(s,v, G\{e}) 



The Minimum FT-BFS tree Problem 

 Input:  unweighted graph G=(V,E)  

   source vertex s in V. 

 

  Output:  

 An FT-BFS subgraph H⊆ G with 
 minimum  number of edges. 
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Related Work 

  Replacement Path 

 

  Fault-Tolerant Spanners 



Problem definition:  
Given a source s, destination t, for every  

e ϵ P(s,t) , compute P(s,t,e) the shortest s-t path 

that avoids e. 
 

 
Trivial algorithm:  

For every edge e ϵ P(s,t), run Dijkstra’s algorithm 

from s in G\{e}. 
 

Time complexity:  O(mn)  
 
 
 

A related problem:  
the replacement path problem  

P(s,t) 

s 

t 

e P(s,t,e) 

P(s,t,e) : s-t shortest path in G\{e}   



The structure of a replacement path 

P(s,t,e) : s-t shortest path in G\{e}   

e 

s 

t 

P(s,t)  

Detour 



Better bounds available for replacement paths problem for 

 

Undirected graphs:  

                 Time complexity: O(m+n log n)   
                                [Gupta et al. 1989]  

                                [Hershberger and Suri, 2001] 

    

 

Unweighted directed graphs:   

                    Time complexity: O(m 𝑛 )  (Randomized MonteCarlo algorithm) 

                                       [Roditty and Zwick 2005] 

 

The replacement paths problem  



Single-source replacement paths 

Problem definition:  
Given a source s, compute P(s,t,e) efficiently for 
each t in V and every e ϵ P(s,t). 
 
Time complexity: O(nɯ)  
[Grandoni  and Williams,  FOCS’12]  

FT-BFS tree revisited: 
 
An FT-BFS tree H contains the collection of all 
single source replacement paths.  
 
Complexity measure: size of H (#edges). 

New! 



Spanners 

  Graph G=(V,E) 
 

  A subgraph H is an 𝒌 -spanner if 

for every u,v in V: 

d(u,v,H)  𝒌 ·d(u,v,G). 

  

  



Fault-Tolerant Spanners 

A subgraph H is an  

𝐟-edge fault tolerant 𝒌−spanner  

if for every u,v in V and every set of 

𝐟 edges F={e1,e2,…,ef}:  

d(u,v,H \F)  𝒌 ·d(u,v,G\F). 

  



Fault-Tolerant Spanners 

d(u,v,H \F)  (𝟐𝒌 − 𝟏) ·d(u,v,G\F)  for all u,v in V  

Robust to f-vertex faults: 

Stretch: 2k-1 

#edges:  

𝑶 𝒇𝟐𝒌𝒇+𝟏 ∙  𝒏𝟏+
𝟏

𝒌  [Chechik et al., 2009] 

𝑶 𝒇𝟐−
𝟏

𝒌 ∙  𝒏𝟏+
𝟏

𝒌  [Dinitz and Krauthgamer, 2011] 



Fault-Tolerant Spanners 

Robust to f-edge faults: 

 

Stretch: 2k-1 

#edges: 𝑶 𝒇 𝒏𝟏+
𝟏

𝒌  [Chechik et al., 2009] 

 

d(u,v,H \F)  (𝟐𝒌 − 𝟏) ·d(u,v,G\F)  for all u,v in V  



FT-Spanners vs. FT-BFS trees 

FT-Spanners FT-BFS tree 

All-pairs 
𝑉 × 𝑉 

 

Single source 
s × 𝑉 

approximate exact 

FT-BFS’s 
easier 

FT-BFS’s 
harder 
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Lower Bound 

Theorem [Single source]: 
 

For every integer n≥ 𝟏, there exists an n-vertex  

graph G=(V,E) and a source vertex s ϵ V such that  

every FT-BFS tree H has 𝜴(𝒏 𝒏) edges. 



Generalization to multiple sources (FT-MBFS) 

Theorem [Multiple sources]: 
 

For every integer n≥ 𝟏, there exists an n-vertex  

graph G=(V,E) and a source set S⊆V such that  

every FT-BFS tree H has 𝜴(𝒏 𝑺  𝒏) edges. 



The Lower Bound Construction 

  Complete bipartite graph B(X,Z): 

|X|=𝜴(𝒏), |Z|=𝜴( 𝒏)  

 
  Path of length |𝒁| 
 
  Collection of |𝒁| 
paths which are 
- Vertex disjoint 
- of monotone  
increasing lengths. 

X 

Z 

s 

|Z| 



The Construction 

Total number of vertices: n 

 

𝜴( 𝒏) vertex disjoint paths 

of increasing length  

contain 𝜴(𝒏) vertices. 

 

Total number of  

edges:  𝛺(𝑛 𝑛) 

  

X 

Z 

s 

|Z| 

𝛺(𝑛 𝑛) 
edges  



The Construction 

Cl. : Every FT-BFS tree H must contain  ALL 

the edges of the bipartite graph. 

 

  By contradiction: 

Assume there exists an 

edge ei,j that is not in H. 

 

 Consider the case  

where fi fails. 

 

  

X 

Z 

s 

𝛺(𝑛 𝑛) 
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zi 

ei,j 
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The Construction 

X 

Z 

s 

fi 

d(s,xj, H \{fi}) >d(s,xj, G\{fi}) 
 
Contradiction  
since H is an  
FT-BFS tree. 

xj 

zi 

𝛺(𝑛 𝑛) 
edges  
𝛺(𝑛 𝑛) 
edges  

vi 

vi+1 
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Matching Upper Bound 

Theorem: 

For every graph G=(V,E) and every source s ϵ V  

there exists a (polynomially constructible)  

FT-BFS tree H with O(𝒏 𝒏) edges. 



Algorithm for constructing FT-BFS 

Input:  unweighted graph G=(V,E),  source vertex s. 

Output: FT-BFS tree H ⊆ G. 

 T0 := BFS(s, G) 

 
 Te := BFS(s, G \{e}) 
 
 
  00 | TeTTH e  

*Assume that all shortest paths in G are unique.  
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Algorithm for constructing FT-BFS 

 T0 := BFS(s, G) 

 
 Te := BFS(s, G \{e}) 
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Algorithm for constructing FT-BFS 

 T0 := BFS(s, G) 

 
 Te := BFS(s, G \{e}) 
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Algorithm for constructing FT-BFS 

 T0 := BFS(s, G) 

 
 Te := BFS(s, G \{e}) 
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Algorithm for constructing FT-BFS 

 T0 := BFS(s, G) 
 
 Te := BFS(s, G \{e}) 
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Correctness 

The replacement path 

P(s,v5,e1) is the s-t path in 

Te1=BFS(s, G\{e1}). 
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T

H contains the collection of all  
single source replacement paths. 

Recall: P(s,t,e) is the s-t shortest path in G\{e}. 



Size Analysis – Basic Intuition 

Lemma: 

Every vertex t has at most   

𝑂( 𝑛) new edges in H. 

An edge e in H is new if it is not in T0. 

     
s 

v1 v2 

v4 v3 

v5 



Size Analysis – Basic Intuition 

New(t) ={ Last edge of 𝝅(s,t,Te) , e  T0} \T0  

𝝅(s,t,T): s-t path in tree T    
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Size Analysis – First Bound 

New(t) ={ Last edge of 𝝅(s,t,Te) , e  T0} \T0  

𝝅(s,t,T): s-t path in tree T    
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Cl. 1:  | New(t)|  dist(s,t,G)    

Proof: 

If last edge of 𝝅(s,t,Te) 

is new then e  𝝅(s,t,T0)  



Size Analysis – Second Bound 

New(t) ={ Last edge of 𝝅(s,t,Te) , e  T0} \T0  

𝝅(s,t,T): s-t path in tree T    
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Cl. 2:  | New(t)|  𝟐𝒏 



Size Analysis – Second Bound 

New(t) ={ Last edge of 𝝅(s,t,Te) , e  T0} \T0  

𝝅(s,t,T): s-t path in tree T    
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A replacement path 
P(s,t,e) whose 
last edge is new 

Count the number of new ending paths. 



New Ending Replacement Paths 

   P(s,t,e) is the s-t path in Te=BFS(s, G\{e}). 

P(s,t) 

P(s,t,e) 

e 

s 

t 

New Ending Path 

P(s,t) 

P(s,t,e) 

e 

s 

t 

Non-New Ending Path 



Analysis – Second Bound 

Show that  L≤ 𝟐𝒏 

  Strategy: Count the number of new ending paths. 
  
 Consider the set of L new ending replacement paths 
 
  P1=P(s,t,e1), P2=P(s,t,e2) , …., PL=P(s,t,eL) 
 
  where each Pi ends with a distinct new edge of t. 
    



The structure of a new ending replacement path 

e 

s 

t 

P(s,t)  

Detour 

P(s,t,e)  
Divergence point 

T0=BFS(s,G) 

Lemma:  
The detour segment is edge disjoint from P(s,t) 



Analysis – Basic Intuition 

e 

s 

t 

P(s,t)  

Cl. 1: The detour segment is edge disjoint from P(s,t) 

v 
There are two 
v-t shortest  
paths in G\{e}. 

Contradiction! 

By Contradiction: P(s,t,e)  

New edge 



Analysis – Basic Intuition 

e1 

s 

t 

P(s,t,e1) 

e2 

P(s,t) 

P(s,t,e2) 

Claim 2: 
The detour segments 
are vertex disjoint! 

New edge 



Analysis – Basic Intuition 

e1 

s 

t 

P(s,t,e1) P(s,t) 

b2 

P(s,t,e2) 

Claim 2: the detours are vertex disjoint! 

v 

there are two 
v-t shortest  
paths in G\ {𝒆𝟏, 𝒆𝟐}. 

e2 



New Ending Replacement Path 

di 

Notation:  
 

bi:= unique divergence point 

of P(s,t,ei) and P(s,t). 

Di:=detour segment of P(s,t,ei). 

 
 

P(s,t) 

P(s,t,ei) 

ei 

s 

t 

Di 

bi 
 



Analysis – Basic Intuition 

s 

t 

b1 

b2 

b3 

bL 

bi 

The divergence points bi 

are distinct! 

Set of new ending replacement paths  P1, P2 , …., PL. 

d(s, b1)>d (s, b2)> … >d(s, bL)  
 

d(s, b1) ≥ d(s, b2) ≥… d(s, bL)  
 



Analysis – Basic Intuition 

Set of new ending replacement paths  P1, P2 , …., PL. 

s 

t 

bi 

Di 

| 𝑫𝒊
𝑳
𝒊=𝟏 | =  𝑫𝒊  

≥  𝒊 > 𝑳𝟐 >  𝒏𝑳
𝒊=𝟏  𝑳

𝒊=𝟏  

  Towards contradiction assume L > 2𝒏 

  The total #vertices in the detours is:  

Detours are 
vertex disjoint 

Divergence  
points are 
are distinct 

≥ 𝒊 

Contradiction! 



Generalization to multiple sources (FT-MBFS) 

Theorem [upper bound] 

For every graph G=(V,E) and every source set S⊆V  

there exists a (polynomially constructible)  

FT-MBFS tree H with O(𝒏 |𝑺| 𝒏) edges. 
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Theorem [Hardness] 

The Minimum FT-BFS problem is NP-hard and cannot 

be approximated to within a factor of (log n) unless 

NP⊆TIME(nploylog(n)). 

 

The Minimum FT-BFS tree Problem 

(By a gap preserving reduction from Set-Cover) 



Theorem [Approximation] 

 

The Minimum FT-BFS problem can be approximated  

within a factor of O(log n) .  

 

The Minimum FT-BFS tree Problem 



 Solve n-1 instances of Set-Cover. 

 A Set-Cover instance of vertex t: 

 Universe of vertex t:  Ut= E(P(s,t)) 

 

Every neighbor v of  t is a set Svt: 

e  P(s,t) is in the set Svt  if 

dist(s, t, G\{e})=dist(s,v, G\{e})+1 

 

 

O(log n) Approximation algorithm for  
the Min-FT BFS problem 

P(s,t) 

s 

t 

e1 

e2 

e5 



  FT-BFS with O(𝒏  𝒏) edges (tight!). 

  FT-MBFS (S sources) with O(𝒏 |𝑺| 𝒏) edges 

(tight!). 

  The Minimum FT-MBFS problem is NP-hard. 

 O(log n)-approximation  (tight!).  

 

 

 

 

Summary 



 Multiplicative stretch =3: 

Upper bound: 4n edges. 

 

 

 Additive stretch  : 

Lower bound: 𝜴(𝒏𝟏+𝜺𝜷) edges.    

What about approximate FT-BFS structure? 

P, Peleg, SODA’14 



Thanks ! 

Happy Tu-bishvat! 


