
Sparse Fault-Tolerant BFS Trees

Merav Parter and David Peleg

Weizmann Institute Of Science
BIU-CS Colloquium

16-01-2014

Breadth First Search (BFS) Trees

 Shortest-Path Tree (BFS) rooted at s.

Sparse solution:

 n-1 edges.

 Problem:

 Not robust against edge

 and vertex faults.

 Unweighted graph G=(V,E), source vertex sV.

s

v1 v2

v4 v3

v5

Fault Tolerant BFS Trees

Objective:

Purchase a

collection of edges

(BFS + backup edges)

that is robust

against edge faults.

s

v1 v2

v4 v3

v5

Fault-Tolerant BFS Trees

Subgraph H that contains a BFS tree in G\{e}

for every edge failure e in G.

𝑮 ∖ {𝒆𝟏} 𝑯 ∖ {𝒆𝟏}

s

v1 v2

v4 v3

v5

s

v1 v2

v4 v3

v5

e5

Fault-Tolerant (FT) BFS Trees

Subgraph H that contains a BFS tree in G\{e}

for every edge failure e in G.

𝑮 ∖ {𝒆𝟏} 𝑯 ∖ {𝒆𝟏}

s

v1 v2

v4 v3

v5

s

v1 v2

v4 v3

v5

e5

Fault Tolerant (FT) BFS Trees

Subgraph H that contains a BFS tree in G\{e}

for every edge failure e in G.

𝑮 ∖ {𝒆𝟏} 𝑯 ∖ {𝒆𝟏}

s

v1 v2

v4 v3

v5

s

v1 v2

v4 v3

v5

e5

Fault Tolerant (FT) BFS Trees

Subgraph H that contains a BFS tree in G\{e}

for every edge failure e in G.

𝑮 ∖ {𝒆𝟓} 𝑯 ∖ {𝒆𝟓}

s

v1 v2

v4 v3

v5

s

v1 v2

v4 v3

v5

e5

FT-BFS Tree - Formal Definition

 Consider an unweighted graph G=(V,E)
and a source vetrex s.

 A subgraph H is an FT-BFS of G and s if
for every v in V and e in E:

 d(s,v, H\{e}) = d(s,v, G\{e})

FT-BFS for Multiple Sources (FT-MBFS)

 Consider an unweighted graph G=(V,E)
and a source set S in V.

 A subgraph H is an FT-MBFS of G if for
every s in S, v in V and e in E:

 d(s,v, H \{e}) = d(s,v, G\{e})

The Minimum FT-BFS tree Problem

 Input: unweighted graph G=(V,E)

 source vertex s in V.

 Output:

 An FT-BFS subgraph H⊆ G with
 minimum number of edges.

Outline

 Related work

 Lower bound construction

 Upper bound

 Hardness and approximation algorithm.

Related Work

 Replacement Path

 Fault-Tolerant Spanners

Problem definition:
Given a source s, destination t, for every

e ϵ P(s,t) , compute P(s,t,e) the shortest s-t path

that avoids e.

Trivial algorithm:

For every edge e ϵ P(s,t), run Dijkstra’s algorithm

from s in G\{e}.

Time complexity: O(mn)

A related problem:
the replacement path problem

P(s,t)

s

t

e P(s,t,e)

P(s,t,e) : s-t shortest path in G\{e}

The structure of a replacement path

P(s,t,e) : s-t shortest path in G\{e}

e

s

t

P(s,t)

Detour

Better bounds available for replacement paths problem for

Undirected graphs:

 Time complexity: O(m+n log n)
 [Gupta et al. 1989]

 [Hershberger and Suri, 2001]

Unweighted directed graphs:

 Time complexity: O(m 𝑛) (Randomized MonteCarlo algorithm)

 [Roditty and Zwick 2005]

The replacement paths problem

Single-source replacement paths

Problem definition:
Given a source s, compute P(s,t,e) efficiently for
each t in V and every e ϵ P(s,t).

Time complexity: O(nɯ)
[Grandoni and Williams, FOCS’12]

FT-BFS tree revisited:

An FT-BFS tree H contains the collection of all
single source replacement paths.

Complexity measure: size of H (#edges).

New!

Spanners

 Graph G=(V,E)

 A subgraph H is an 𝒌 -spanner if

for every u,v in V:

d(u,v,H) 𝒌 ·d(u,v,G).

Fault-Tolerant Spanners

A subgraph H is an

𝐟-edge fault tolerant 𝒌−spanner

if for every u,v in V and every set of

𝐟 edges F={e1,e2,…,ef}:

d(u,v,H \F) 𝒌 ·d(u,v,G\F).

Fault-Tolerant Spanners

d(u,v,H \F) (𝟐𝒌 − 𝟏) ·d(u,v,G\F) for all u,v in V

Robust to f-vertex faults:

Stretch: 2k-1

#edges:

𝑶 𝒇𝟐𝒌𝒇+𝟏 ∙ 𝒏𝟏+
𝟏

𝒌 [Chechik et al., 2009]

𝑶 𝒇𝟐−
𝟏

𝒌 ∙ 𝒏𝟏+
𝟏

𝒌 [Dinitz and Krauthgamer, 2011]

Fault-Tolerant Spanners

Robust to f-edge faults:

Stretch: 2k-1

#edges: 𝑶 𝒇 𝒏𝟏+
𝟏

𝒌 [Chechik et al., 2009]

d(u,v,H \F) (𝟐𝒌 − 𝟏) ·d(u,v,G\F) for all u,v in V

FT-Spanners vs. FT-BFS trees

FT-Spanners FT-BFS tree

All-pairs
𝑉 × 𝑉

Single source
s × 𝑉

approximate exact

FT-BFS’s
easier

FT-BFS’s
harder

Outline

 Related work

 Lower bound construction

 Upper bound

 Hardness and approximation algorithm.

Lower Bound

Theorem [Single source]:

For every integer n≥ 𝟏, there exists an n-vertex

graph G=(V,E) and a source vertex s ϵ V such that

every FT-BFS tree H has 𝜴(𝒏 𝒏) edges.

Generalization to multiple sources (FT-MBFS)

Theorem [Multiple sources]:

For every integer n≥ 𝟏, there exists an n-vertex

graph G=(V,E) and a source set S⊆V such that

every FT-BFS tree H has 𝜴(𝒏 𝑺 𝒏) edges.

The Lower Bound Construction

 Complete bipartite graph B(X,Z):

|X|=𝜴(𝒏), |Z|=𝜴(𝒏)

 Path of length |𝒁|

 Collection of |𝒁|
paths which are
- Vertex disjoint
- of monotone
increasing lengths.

X

Z

s

|Z|

The Construction

Total number of vertices: n

𝜴(𝒏) vertex disjoint paths

of increasing length

contain 𝜴(𝒏) vertices.

Total number of

edges: 𝛺(𝑛 𝑛)

X

Z

s

|Z|

𝛺(𝑛 𝑛)
edges

The Construction

Cl. : Every FT-BFS tree H must contain ALL

the edges of the bipartite graph.

 By contradiction:

Assume there exists an

edge ei,j that is not in H.

 Consider the case

where fi fails.

X

Z

s

𝛺(𝑛 𝑛)
edges

xj
zi

ei,j

fi

The Construction

X

Z

s

fi

d(s,xj, H \{fi}) >d(s,xj, G\{fi})

Contradiction
since H is an
FT-BFS tree.

xj

zi

𝛺(𝑛 𝑛)
edges
𝛺(𝑛 𝑛)
edges

vi

vi+1

Outline

 Related work

 Lower bound construction

 Upper bound

 Hardness and approximation algorithm.

Matching Upper Bound

Theorem:

For every graph G=(V,E) and every source s ϵ V

there exists a (polynomially constructible)

FT-BFS tree H with O(𝒏 𝒏) edges.

Algorithm for constructing FT-BFS

Input: unweighted graph G=(V,E), source vertex s.

Output: FT-BFS tree H ⊆ G.

 T0 := BFS(s, G)

 Te := BFS(s, G \{e})

 00 | TeTTH e

*Assume that all shortest paths in G are unique.

s

v1 v2

v4 v3

v5

e5

Algorithm for constructing FT-BFS

 T0 := BFS(s, G)

 Te := BFS(s, G \{e})

s

v1 v2

v4 v3

v5

e5

T0

Algorithm for constructing FT-BFS

 T0 := BFS(s, G)

 Te := BFS(s, G \{e})

s

v1 v2

v4 v3

v5

e5

1e
T

Algorithm for constructing FT-BFS

 T0 := BFS(s, G)

 Te := BFS(s, G \{e})

s

v1 v2

v4 v3

v5

e5

2eT

Algorithm for constructing FT-BFS

 T0 := BFS(s, G)

 Te := BFS(s, G \{e})

s

v1 v2

v4 v3

v5

H

Correctness

The replacement path

P(s,v5,e1) is the s-t path in

Te1=BFS(s, G\{e1}).

s

v1 v2

v4 v3

v5

e5

1e
T

H contains the collection of all
single source replacement paths.

Recall: P(s,t,e) is the s-t shortest path in G\{e}.

Size Analysis – Basic Intuition

Lemma:

Every vertex t has at most

𝑂(𝑛) new edges in H.

An edge e in H is new if it is not in T0.

s

v1 v2

v4 v3

v5

Size Analysis – Basic Intuition

New(t) ={ Last edge of 𝝅(s,t,Te) , e T0} \T0

𝝅(s,t,T): s-t path in tree T

s

v1 v2

v4 v3

v5

 00 | TeTTH e

 VttNewTH),(0

Size Analysis – First Bound

New(t) ={ Last edge of 𝝅(s,t,Te) , e T0} \T0

𝝅(s,t,T): s-t path in tree T

s

v1 v2

v4 v3

v5

Cl. 1: | New(t)| dist(s,t,G)

Proof:

If last edge of 𝝅(s,t,Te)

is new then e 𝝅(s,t,T0)

Size Analysis – Second Bound

New(t) ={ Last edge of 𝝅(s,t,Te) , e T0} \T0

𝝅(s,t,T): s-t path in tree T

s

v1 v2

v4 v3

v5

Cl. 2: | New(t)| 𝟐𝒏

Size Analysis – Second Bound

New(t) ={ Last edge of 𝝅(s,t,Te) , e T0} \T0

𝝅(s,t,T): s-t path in tree T

s

v1 v2

v4 v3

v5

A replacement path
P(s,t,e) whose
last edge is new

Count the number of new ending paths.

New Ending Replacement Paths

 P(s,t,e) is the s-t path in Te=BFS(s, G\{e}).

P(s,t)

P(s,t,e)

e

s

t

New Ending Path

P(s,t)

P(s,t,e)

e

s

t

Non-New Ending Path

Analysis – Second Bound

Show that L≤ 𝟐𝒏

 Strategy: Count the number of new ending paths.

 Consider the set of L new ending replacement paths

 P1=P(s,t,e1), P2=P(s,t,e2) , …., PL=P(s,t,eL)

 where each Pi ends with a distinct new edge of t.

The structure of a new ending replacement path

e

s

t

P(s,t)

Detour

P(s,t,e)
Divergence point

T0=BFS(s,G)

Lemma:
The detour segment is edge disjoint from P(s,t)

Analysis – Basic Intuition

e

s

t

P(s,t)

Cl. 1: The detour segment is edge disjoint from P(s,t)

v
There are two
v-t shortest
paths in G\{e}.

Contradiction!

By Contradiction: P(s,t,e)

New edge

Analysis – Basic Intuition

e1

s

t

P(s,t,e1)

e2

P(s,t)

P(s,t,e2)

Claim 2:
The detour segments
are vertex disjoint!

New edge

Analysis – Basic Intuition

e1

s

t

P(s,t,e1) P(s,t)

b2

P(s,t,e2)

Claim 2: the detours are vertex disjoint!

v

there are two
v-t shortest
paths in G\ {𝒆𝟏, 𝒆𝟐}.

e2

New Ending Replacement Path

di

Notation:

bi:= unique divergence point

of P(s,t,ei) and P(s,t).

Di:=detour segment of P(s,t,ei).

P(s,t)

P(s,t,ei)

ei

s

t

Di

bi

Analysis – Basic Intuition

s

t

b1

b2

b3

bL

bi

The divergence points bi

are distinct!

Set of new ending replacement paths P1, P2 , …., PL.

d(s, b1)>d (s, b2)> … >d(s, bL)

d(s, b1) ≥ d(s, b2) ≥… d(s, bL)

Analysis – Basic Intuition

Set of new ending replacement paths P1, P2 , …., PL.

s

t

bi

Di

| 𝑫𝒊
𝑳
𝒊=𝟏 | = 𝑫𝒊

≥ 𝒊 > 𝑳𝟐 > 𝒏𝑳
𝒊=𝟏 𝑳

𝒊=𝟏

 Towards contradiction assume L > 2𝒏

 The total #vertices in the detours is:

Detours are
vertex disjoint

Divergence
points are
are distinct

≥ 𝒊

Contradiction!

Generalization to multiple sources (FT-MBFS)

Theorem [upper bound]

For every graph G=(V,E) and every source set S⊆V

there exists a (polynomially constructible)

FT-MBFS tree H with O(𝒏 |𝑺| 𝒏) edges.

Outline

 Related work

 Lower bound construction

 Upper bound

 Hardness and approximation algorithm.

Theorem [Hardness]

The Minimum FT-BFS problem is NP-hard and cannot

be approximated to within a factor of (log n) unless

NP⊆TIME(nploylog(n)).

The Minimum FT-BFS tree Problem

(By a gap preserving reduction from Set-Cover)

Theorem [Approximation]

The Minimum FT-BFS problem can be approximated

within a factor of O(log n) .

The Minimum FT-BFS tree Problem

 Solve n-1 instances of Set-Cover.

 A Set-Cover instance of vertex t:

 Universe of vertex t: Ut= E(P(s,t))

Every neighbor v of t is a set Svt:

e P(s,t) is in the set Svt if

dist(s, t, G\{e})=dist(s,v, G\{e})+1

O(log n) Approximation algorithm for
the Min-FT BFS problem

P(s,t)

s

t

e1

e2

e5

 FT-BFS with O(𝒏 𝒏) edges (tight!).

 FT-MBFS (S sources) with O(𝒏 |𝑺| 𝒏) edges

(tight!).

 The Minimum FT-MBFS problem is NP-hard.

 O(log n)-approximation (tight!).

Summary

 Multiplicative stretch =3:

Upper bound: 4n edges.

 Additive stretch :

Lower bound: 𝜴(𝒏𝟏+𝜺𝜷) edges.

What about approximate FT-BFS structure?

P, Peleg, SODA’14

Thanks !

Happy Tu-bishvat!

