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Abstract
We present a randomized distributed algorithm that computes a Depth-First Search (DFS) tree
in Õ(D) rounds, in any planar network G = (V,E) with diameter D, with high probability. This
is the first sublinear-time distributed DFS algorithm, improving on a three decades-old O(n)
algorithm of Awerbuch (1985), which remains the best known for general graphs. Furthermore,
this Õ(D) round complexity is nearly-optimal as Ω(D) is a trivial lower bound.

A key technical ingredient in our results is the development of a distributed method for
(recursively) computing a separator path, which is a path whose removal from the graph leaves
connected components that are all a constant factor smaller. We believe that the general method
we develop for computing path separators recursively might be of broader interest, and may
provide the first step towards solving many other problems.
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1 Introduction and Related Work

Depth First Search (DFS) is “one of the most versatile sequential algorithm techniques known
for solving graph problems” [42]. Along with its cousin BFS, these two have a long history:
DFS dates back to the 19th century [11], and BFS dates back to the 1950s [44]. Both were
first used for solving different kinds of mazes, but are nowadays among basic building blocks
in graph algorithms, covered in elementary courses, and with a wide range of applications.

In the centralized setting, computing BFS and DFS are straightforward. However, in
the distributed setting, there is a stark contrast, and DFS turns out to be much harder. Let
us first recall the definition of the distributed model.

Throughout, we use a standard message passing model of distributed computing called
CONGEST [40]. The network is abstracted as an n-node graph G = (V,E), with one
processor on each network node. Initially, these processors do not know the graph. They
solve the given graph problems via communicating with their neighbors. Communications
happen in synchronous rounds. Per round, each processor can send one O(logn)-bit message
to each of its neighboring processors.

Distributedly computing both BFS and DFS need Ω(D) rounds, in graphs of diameter
D. BFS can be computed easily in O(D) rounds, in any graph with diameter D. In contrast,
the best known distributed algorithm for DFS takes O(n) rounds, regardless of how small
diameter D is; see e.g., [40, Section 5.4] and [4]. We note that designing algorithms with
complexity o(n), when D = o(n), and ideally close to O(D), has become the target of
essentially all the distributed graph algorithms for global optimization problems, since the
pioneering work of Garay, Kutten, and Peleg [14, 30] which gave an O(D + n0.61) round
algorithm for minimum spanning tree. See, e.g., [6,8,9,13,15,16,19,20,27,28,32,33,36–38].

Despite this, there has been no progress on the problem over the last three decades,
and no sublinear-time distributed algorithm for DFS is known. This, and especially the
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lack of any sub-linear time distributed DFS, is certainly not for the lack of trying. It is
widely understood that DFS is not easy to parallelize/decentralize; it has even been called
“inherently sequential” [42] and “a nightmare for parallel processing” [35].

1.1 Our Contribution
In this paper, making a first step of progress on the distributed complexity of this classical
problem, we present a randomized distributed algorithm that computes a DFS in O(D ·
poly logn) rounds in planar graphs, with high probability. This time complexity is nearly
optimal as it matches the trivial Ω(D) lower bound up to poly-logarithmic factors.

I Theorem 1. There is a randomized distributed algorithm that computes a DFS in
any n-node planar network with diameter D in O(D · poly logn) rounds, with high
probability.

Turning to general graphs, we note that the parallel algorithms by Aggarwal and Ander-
son [1] and Goldberg, Plotkin and Vaidya [22] can be adapted to give an Õ(

√
Dn + n3/4)-

round DFS algorithm for graphs with diameters D. Therefore, a DFS can be computed
in sublinear number of rounds for graphs with sublinear diameter D = o(n). This simple
corollary of [1] and [22] is shown in Appendix D. Improving the bound for general graphs
remains an important open problem.

1.2 A High-Level Discussion of Our Method
Our method relies on separator paths. Generally, separators have been a key tool in working
with planar graphs, starting with the seminal work of Lipton and Tarjan [34]. In a rough
sense, separators are subgraphs whose removal from the graph leaves connected components
that are all a constant factor smaller than the initial graph. Typically, one desires the
separator to be small. However, unlike [34], we do not insist on a small separator, but
instead it is crucial for us that the separator is a simple path. This allows us to use the
separator path, with some iterations of massaging and modifications in the style of [1], as a
part of a partial DFS. See Section 3 for the explanations. Now that this separator is put in
the partial DFS, the left over graph is made of a number of connected components, each a
constant factor smaller than the initial graph. Hence, we would have the hope to be able to
solve each of these subproblems recursively, and moreover, to do that simultaneously for all
the subproblems.

But two key issues remain: (1) How do we compute the separator path distributedly?
This itself is the main technical contribution of our paper, and is explained in Section 4.
But a crucial part of the challenge of that lies in the next point. (2) How do we recurse
and most importantly, how do we compute the separator path throughout the recursions?
Once we remove the first separator, the left over components are smaller in size, but they
may have considerably larger diameter, even up to Θ(n). This large diameter can be a
major obstacle for distributed algorithms. For instance, we cannot even assume that we
can compute a BFS of each component. More generally, if we are to have a fast separator
path algorithm, we cannot confine the algorithm for each subproblem to stay within the
connected component of that subproblem. On the other hand, allowing the algorithm to use
the other parts creates the possibility of congestion as now many subproblems may need to
use the same edge, perhaps many times each.

Our solution uses a number of novel algorithmic ideas. It would be hard to summarize
these ideas out of context, and thus we refer the interested reader to the technical sections.
One key tool from prior work, which is worth pointing out and makes our life significantly
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easier, is low-congestion shortcucts for planar graphs, developed by Ghaffari and Haeupler
[18]. In a very rough sense, this tool opens the road for working on many disjoint potentially
large-diameter subgraphs of the base graph G at the same time, and still enjoying the small
diameter of the base graph G. Though, this is possible only in certain conditions and only
for a very limited class of problems. We usually need quite some work to break our problems
into modules that fit these conditions and classifications.

Separators have a wide range of applications, in centralized algorithms for planar graphs.
Though, computing the separators distributedly and especially computing them recursively
in the distributed setting when the remaining components have large diameter is highly
non-trivial. We thus hope that the methods developed in this paper may open the road
for recursive computation of separators in the distributed setting, and thus be a first step
towards solving many other problems.

1.3 Related Work

Distributed Graph Algorithms in Sublinear Time: Over the past two decades,
starting with the seminal work of Garay, Kutten, and Peleg [14, 30], there has a been a
big body of work presenting sublinear-time distributed algorithms for various graph prob-
lems (for graphs with diameter D = o(n), as otherwise that is impossible). See for in-
stance1 [6, 8, 9, 13, 15, 16, 19, 20, 27, 28, 32, 33, 36–38]. There are also lower bounds [7, 10, 41]
which for instance show that in general graphs, computing minimum spaning trees requires
Ω̃(D +

√
n) rounds, hence ruling out the possibility of Õ(D) round MST algorithms. A

similar lower bound holds for many other problems, even when approximating, e.g., min-
cut, shortest paths, min-cost connected dominated set etc. See [7]. By now, most of the
classical graph problems are known to have sublinear-time distributed algorithms, at least
when relaxing the problem to allow some approximation. A prominent exception is DFS!
Distributed Graph Algorithms in Planar Networks: Starting with the work of Ghaf-
fari and Haeupler [17, 18], some attention has been paid to developing more efficient dis-
tributed algorithms for (global) network optimizations on planar or near-planar networks.
This was in part motivated by trying to circumvent the aforementioned Ω̃(D+

√
n) general-

graph lower bound. Another motivation was also to bring in the vast array of the techniques
and methodologies developed for efficient centralized algorithms for planar networks to the
distributed domain.

In [18], the aformentioned lower bound was ruled out for planar networks by showing
an Õ(D) algorithm for MST in planar networks. A key tool in this MST algorithm was
the concept of low-congestion shortcuts, which was introduced in [18]. An algorithm for
computing this structure was also given in [18], which as one of its subroutines made use
of the planar embedding algorithm of [17]. It was shown later by Haeupler, Izumi and
Zuzic [23] that even without having the embedding, one can compute an approximate version
of the low-congestion shortcuts, which is good enough for many applications. Furthermore,
low congestion shortcuts were later extended to some near-planar graphs, concretely graph
families with fixed tree-width or genus [24].
Parallel DFS Algorithms: DFS has received vast attention in the parallel literature. It
is known that computing the lexicographically-first DFS —where the smallest ID unvisited
neighbor should be visited first — is P -complete [42], and is thus unlikely to admit an
efficient parallel algorithm. This was the reason that DFS was deemed “inherently sequen-
tial" [42]. However, over the years, several sophisticated but efficient parallel algorithms

1This is merely a sample, and is by no means exhaustive.
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were developed for DFS, which compute some depth first search tree (not necessarily the
lexicographically-first one). We here review the related work on only undirected graphs.
Smith [45] gave an O(log3 n)-time parallel DFS algorithm for planar graphs. Shannon [43]
improved this to an O(log2 n)-time parallel DFS algorithm for planar graphs, while also using
only linear number of processors. Anderson gave a Õ(

√
n)-time [2] and then a 2O(

√
logn)-

time [3] parallel DFS algorithm for general graphs. Aggarwal and Anderson [1] gave the
first poly-logarithmic time parallel algorithm for DFS in general undirected graphs. Kao [29]
gave the first deterministic NC algorithm for DFS in planar networks. Then Hagerup [25]
gave an O(logn)-time randomized parallel DFS algorithms for planar networks. Finding a
deterministic NC algorithm for DFS in general graphs remains open, though a quasi-NC
algorithm was given very recently in [12].

We note that our distributed DFS algorithm for planar graphs is quite different than
the parallel DFS algorithms for planar graphs (e.g., [43, 45]), mainly because we do not
compute a separator cycle distributedly. Our algorithm is morally closer to the methodology
of Aggarwal and Anderson (for general graphs) [1] which can work with (collections of)
separator paths.

2 Preliminaries

Basic Notions: Let G = (V,E) be a simple undirected planar graph. Given a tree T ⊆ G
and a non-tree edge e = (v, u) /∈ T , the cycle formed by e and the tree path connecting v to
u is called the fundamental cycle defined by e. Let F(G) = {F1, . . . , Fk} be the faces of the
planar graph G. Let G′ = (V ′, E′) be the dual graph of G, defined by including one node
v′i ∈ V ′ for each face Fi ∈ F and connecting two nodes v′i, v′j ∈ V ′ if their corresponding
faces share an edge2. We may interchange between the dual-nodes v′i and the faces Fi. A
superface F is a collection of faces whose boundary is a simple cycle.
Dual Tree and its Distributed Representation: Given a spanning tree T of G, we
define its dual-tree in the dual-graph G′ as follows: Let φF : F(G) → V ′ be the bijection
between the faces of G and the dual-nodes of G′. The nodes of dual tree T ′ are the faces of
G, and two dual-nodes v′i and v′j are connected iff the two faces φ−1

F (v′i) and φ−1
F (v′j) share

an non-tree edge e /∈ T . We define a bijection φE : E \E(T )→ E(T ′) between the non-tree
edges G \ T and the dual-tree edges of T ′, where in the aforementioned example, we have
φE(e) = {v′i, v′j}.

In the distributed representation of this dual-tree, the leader `(e′) of a dual-edge e′ ∈ T ′
is the higher-ID endpoint of the edge φ−1

E (e′) = {u, v}. The leader `(v′) of the dual-node
v′ is the node in the face φF (v′) of maximum ID. The dual-tree is known in a distributed
manner where for every edge e′ ∈ T ′, its leader `(e′) knows that this edge belongs to T ′.
The nodes v′ ∈ V (T ′) and dual edges e′ ∈ E(T ′) will be simulated by their leader nodes
`(v′) and `(e′) respectively.
Planar Embeddings: The geometric planar embedding of graph G is a drawing of G on
a plane so that no two edges intersect. A combinatorial planar embedding of G determines
the clockwise ordering of the edges of each node v ∈ G around that node v such that all
these orderings are consistent with a plane drawing (i.e., geometric planar embedding) of
G. Ghaffari and Haeupler [17] gave a deterministic distributed algorithm that computes a
combinatorial planar embedding in O(Dmin{logn,D}) rounds, where each node learns the
clockwise order of its own edges.

2In-fact, the dual-graph is a multigraph as there might be many edges between two dual-nodes
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Low-Congestion Shortcuts: In a subsequent paper [18], Ghaffari and Haeupler intro-
duced the notion of low-congestion shortcuts which plays a key role in several algorithms
for planar graphs (e.g., MST, min-cut). We will also make frequent use of this tool. The
definition is as follows.

I Definition 2. (α-congestion β-dilation shortcut) Given a graph G = (V,E) and a
partition of V into disjoint subsets S1, . . . , SN ⊆ V , each inducing a connected subgraph
G[Si], we call a set of subgraphs H1, . . . ,HN ⊆ G, where Hi is a supergraph of G[Si], an
α-congestion β-dilation shortcut if we have the following two properties: (1) For each i, the
diameter of the subgraph Hi is at most β, and (2) for each edge e ∈ E, the number of
subgraphs Hi containing e is at most α.

Ghaffari and Haeupler [18] proved that any partition of a D-diameter planar graph into
disjoint subsets S1, . . . , SN ⊆ V , each inducing a connected subgraph G[Si], admits an α-
congestion β-dilation shortcut where α = O(D logD) and β = O(D logD). They also gave
a randomized distributed algorithm that computes such a shortcut in Õ(D) rounds, with
high probability. We will make black-box use of this result, frequently.

3 Outline of the Depth First Search Tree Construction

Towards proving Theorem 1, in this section, we explain the outline of our Õ(D)-round
algorithm for computing a Depth-First Search (DFS) tree. Detailed steps are explained in
later sections.

We compute a DFS tree of a graph G = (V,E) rooted in a given node s ∈ V . The
algorithm is based on a divide-and-conquer style approach. A key technical ingredient is
a separator path algorithm, which we use for dividing the problem into independent sub-
problems of constant factor smaller size. We describe this separator algorithm in the next
section. In this section, we explain how via recursive (black-box) applications of a separator
path subroutine, we compute a DFS.

We note that our approach is inspired by an idea of Aggarwal and Anderson [1]. However,
the overall method is quite different. On one hand, we have an easier case here because we
need to deal with only a single path instead of a large collection of them, thanks to the nice
structure of planar graphs. On the other hand, computing this single path, and especially
being able to do it recursively, has its own challenges, as we discuss in the next section. We
will have to deal with a number of difficulties that are unique to the distributed setting, as
we will point out.
High-Level Outline: The high-level outline of the approach is as follows. The method
is recursive. In each (independent) branch of the recursion, we have a connected induced
subgraph C ⊆ G and a root r ∈ C and we need to compute a DFS of C rooted in r. In
the beginning, we simply have C = G and r = s. Furthermore, in each step of recursion,
we will assume that C is biconnected, that is, removing any single node v ∈ C from C leaves
a connected subgraph C \ {v}. Notice that this may not hold at the beginning, that is, G
may have some cut-nodes. We will later discuss how to deal with cut nodes, by dividing
the problem further into a number of independent subproblems, one for each biconnected
component. For now, we assume that C is biconnected.
The Framework of One Recursion Level: We wish to compute a partial DFS T of C
rooted at r such that each connected component of C\T has size at most 2|C|/3. This partial
DFS T of C is such that it can be completed to a full DFS of C rooted at r. In particular, it
has the following validity property: there are no two branches of T which are connected to
each other via a path with all its internal nodes in C \T . In other words, for each connected
component Ci of C \ T , all neighbors of Ci in T are in one branch (i.e., rooted path) of
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T . Once we compute this partial DFS T , we can then recurse on each of those remaining
connected components of C \ T , all in parallel. As the component size decreases by a 2/3
factor per level of recursion, the recursion has depth O(logn).

The Procedure for One Recursion Level: Thus, the key is to grow a partial DFS T of
C in Õ(D) rounds, in a way that each connected component of C \T has size at most 2|C|/3.
We will do this in Õ(D) rounds. For that purpose, we compute a separator path P ⊆ C of C.
That is, each connected component of the graph C \ P has size at most 2|C|/3. We explain
this subroutine in the next section. For now, let us assume that such a path P is computed.

Let Q be a simple path that connects the root r to some node in P (and is other-
wise disjoint from P). Let v be the endpoint of Q in path P and suppose that P =
u1, u2 . . . , u`, v, w1, w2, . . . , w`′ . Let P1 = u1, u2 . . . , u`, v and P2 = v, w1, w2, . . . , w`′ . We
will use the longer one of P1 and P2 and append it to the path Q connecting the root r to v.
Without loss of generality, suppose that the longer subpath is P2. We add the path Q ∪P2
as the first branch of the DFS T . Moreover, we update the separator P to be the remaining
part of the separator path, concretely P1 in the assumed case. We note that this is the idea
that we borrow from Aggarwal and Anderson [1]. We have two important properties: (1)
the new path P is still a separator of C \ T , and (2) the length of the new separator path P
is at most half of the length of the previous separator.

Thanks to these two properties, we have the means to continue and exhaust the separator
path in O(logn) repetitions. Each time we grow the partial DFS T further. Let us explain
one step of this repetition. Figure 1 illustrates an example for this step. We find the deepest
node r′ in the current partial DFS T rooted at r that is directly or indirectly connected to a
node in the current separator P, in the graph C \T . Notice that this deepest node is unique,
due to the validity of the current partial DFS, as all neighbors of the connected component
of C \ T containing P are in one branch of T . We then find a path Q as above starting
from r′ and connecting to some node v in P. This is done with the help of an Õ(D) round
minimum spanning tree (MST) algorithm of Ghaffari and Haeupler [18], as we outline next.

𝒫

𝑇

𝑄

Figure 1 Growing the partial DFS tree. The
green tree shows the current partial DFS T , and the
rest of the nodes are those of C \ T . The red path
shows the current separator path P. The black path
is Q, which connects the deepest point of T to some
node in P. The green dotted line indicated the path
that will be added to the DFS, which is composed of
Q and the longer half of P from the point of inter-
section with Q. After this DFS growing, the leftover
separator P will be the single edge at the left end-
point of P. This is still a separator path of C \ T , for
the new T .

In particular, let each node of T send
its DFS depth to its neighbors in C \ T .
Then, we run a connected component
identification algorithm of [18] on the sub-
graph C′ = C \ T of G. In identifying
the connected components of the graph
C′ = C\T , the component leader is chosen
according to having a T -neighbor with
deepest DFS depth. This finds the deep-
est node r′ of T that is in the connected
component of P and thus has a path to P.
Furthermore, we can find a pathQ ⊂ C\T
connecting r′ to P in a similar manner.

Let us explain this step for finding
path Q, in Õ(D) rounds. On the graph
C′, give an edge weight of 0 to each P edge
and edge weight of 1 to each C′ \ P edge.
Then, compute an MST of C′ according
to these weights using the algorithm of
[18]. The unique path of weight-1 edges
in the MST that connects node r′ to a
node v ∈ P is our desired path Q. This
path Q can be identified in Õ(D) rounds.
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One endpoint of it r′ is clear by now. We first identify the other endpoint v, as follows:
Discard all the zero-weight edges of the MST. Then, with another iteration of [18] on the
subgraph edge-induced by weight-1 edges of the MST, we can identify the node v ∈ P who
is the endpoint of the path Q connecting r′ to P. This is the only P-node in the same
component with r′. Now that we have the two endpoints r′ and v of our path Q, which is
a part of the computed MST, we can fully mark this path Q in Õ(D) rounds, easily. We
defer the details of that step to Appendix C.2, where we explain a routine for marking a
tree-path connecting two nodes.

Now that we have found a path Q connecting the deepest possible node r′ of T to a
node v ∈ P, we work as before. We break P at v, as depicted in Figure 1, and append the
longer half to Q, and then add the resulting path to the DFS T , essentially hanging it from
node r′ ∈ T . This is the dotted green path in Figure 1. One can see that, as we chose v
to be the deepest T -node with a connection to P, the resulting new tree T preserves the
validity property. That is, each remaining connected component of C \ T has neighbors in
only one branch of the this new DFS tree T . This is because each newly added node is
connected to the deepest possible point in the DFS. After each such repetition, the length of
the remaining separator path P decreases by a 1/2 factor. Hence, after O(logn) iterations,
we exhaust P. At that point, we have a valid partial DFS T rooted at r and furthermore,
C \ T is made of connected components, each of which has size at most 2|C|/3.

Preparation for Next Recursions: At this point, we are almost ready for recursing on
the connected components of C \ T , each as a subproblem of its own. Though, we should do
a preparation step so that each subproblem is in the format that we assumed above, while
describing the recursive step. In particular, we should identify the connected components
C1, C2, . . . , C` of C \ T , by giving a connected component identifier to each of them, and
more importantly, we should declare a DFS root for each of them. Let each node in T sends
its DFS depth to each of its neighbors in C \ T . Then, for each component Ci, we define the
component leader and also the DFS root ri to be a node v ∈ Ci that received the greatest
DFS depth from its T neighbors (breaking ties based on the id of v). Notice that for each
component, this greatest depth T -node is uniquely defined, because of the validity of the
partial DFS. Moreover, this is a valid DFS root, in the sense that adding a DFS of Ci rooted
at ri to the current partial DFS T would be a correct partial DFS. These component leaders
(i.e., component-wise DFS roots ri) can be identified for all the connected components in
parallel in Õ(D) rounds, using the connected component identification algorithm of Ghaffari
and Haeupler [18] for planar graphs. It is crucial to note that here D is the diameter of the
very base graph G and not just C. See [18] for details.

Dealing with Cut Nodes: Finally, we come back to the assumption of the connected
component C being biconnected, and we address the possibility of having cut nodes. Figure 6
illustrates an example for this case, where a connected component C is drawn which has
several cut nodes. In this case, we break the problem into several independent DFS problems
that can be solved independently. In particular, we will partition the graph into edge-disjoint
parts, each being one of the biconnected components of C, and we solve a rooted DFS problem
in each of these biconnected components. The root of the biconnected component containing
root r is node r itself. For each other biconnected component C, the DFS root is the cut
node of C that lies on the shortest path to the root r. It is easy to see that if we compute
these rooted DFSs and glue them together in the natural way—hanging the DFS of each
biconnected component C from its root as a subtree of DFS of the neighboring biconnected
component closer to the node r — we get a DFS of C. Computing a rooted DFS in each of
these biconnected component is performed using the recursive method explained above. So,
what remains to be explained is identifying two things (1) the biconnected components of
C, and (2) the corresponding DFS roots. We describe these components in Appendix C.1.
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4 Computing A Separator Path

4.1 Method Outline and Challenges
A celebrated result of Lipton and Tarjan [34] demonstrates the existence of a separator path
in planar graphs. Their proof shows that

Any spanning tree T in a planar graph G = (V,E) contains a tree path P ⊆ T which is
a separator path. That is, each connected component of G \ P contains at most 2|V |/3
nodes.

If one takes T to be a BFS (i.e., shortest path tree) of G, then the separator consists of at
most two shortest paths. Hence, in this case, the separator path also has a small length
of O(D). For our purposes in this section, we do not need a small separator. Moreover,
for reasons that shall become clear during the recursive steps, we will not be able to pick
our separators based on BFS trees (of the remaining components). We will work with more
general trees, and thus will not insist on the separator path being small. As a side remark,
we note that if we did not need the separator to be a path, then there would be ways for
having it be also small (even throughout the recursions).

In most applications of separators, we need to compute the separators not once but rather
many times, recursively. That is, after computing a separator path in G, the separator is
removed and the graph breaks into connected components; then in each component, we
compute a separator and recurse. The first recursion level where we compute the separator
in G may be delusively simple. This is because, whereas the diameter of G is D, in later
levels, we need to compute the separator in connected induced subgraphs C, which potentially
may have much larger diameter than D.

Throughout this section, we describe how to compute a separator for a given induced
subgraph C ⊆ G, which is biconnected, but may have diameter much larger than D. We
note that in reality, there are potentially many subgraphs C1, C2, . . . , CN for which we
are computing separators, at the same time. Our description focuses on just one of these.
Dealing with all these disconnected subgraphs in parallel will follow by standard usage of
low-congestion shortcuts.

To avoid cumbersome notation, let us abuse notation and use n as the size of the subgraph
C. Our algorithm will compute a path P that breaks C \P into components of size [n/(3(1+
ε)), 2(1 + ε)n/3], for a small constant ε > 0, say ε = 0.01.
Algorithm Outline: Here, we describe a high-level outline of the algorithm for finding a
separator path. A more concise description of the algorithm is given in Appendix B.2. We
start by computing a spanning tree T in C. This is done using the MST algorithm of [18],
in Õ(D) rounds, where D is the diameter of the base graph G rather then the diameter of
the subgraph C. Our separator path will correspond to a fundamental cycle of the MST tree
T in C. Picking this primal tree T also leads to defining a dual tree T ′, containing the dual
edges of the non T -edges, as described in Section 2. See Figure 2. In this dual-tree T ′, each
two faces who share a non-tree edge e /∈ T are adjacent. We will use this dual tree T ′ to find
a collection of faces, i.e., dual nodes, that can be merged into a superface whose boundary
can be used as a separator.

To choose a separator path on the tree T , we introduce the notion of weight for the dual-
tree T ′. We define the weight of a superface to be the number of nodes on the superface
boundary plus the number of nodes inside the superface. Let Fi denote the superface
corresponding to the dual-node v′i, obtained by merging the faces of all dual-nodes in the
subtree T ′(v′i), i.e., the subtree of the dual tree T ′ rooted in v′i. The weight of the subtree
T ′(v′i) is the weight of the superface Fi.
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Figure 2 Shown is a planar graph and its path separator as computed by our algorithm. Solid edges
are T -edges and the dashed blue edges are the non T -edges. These non-tree edges define the edges of
the dual-tree T ′. The dual-nodes are depicted as squares and the dual-edges of T ′ are the curved green
edges in the figure. The dual-node v′

b is a balanced dual-node as the total weight of its superface (shown
in the figure) is in [n/(3(1 + ε)), 2(1 + ε)n/3]. The boundary of the superface of v′

b—i.e., the subtree of
dual rooted in v′

b—consists of one non T -edge e = {u, v} and a T -path. The path-separator, indicated
via thick black edges, is the T -path between u and v.

Our algorithm would not be able to compute the exact weights and instead it would
compute a (1 + ε)-approximation of these weights. Using these approximated weights, we
explain how the algorithm chooses a separator path. First, the algorithm attempts to
find an (approximate) balanced dual-node v′b such that the weight of its subtree T ′(v′b) is in
[n/(3(1+ε)), 2(1+ε)n/3]. If such a dual-node exists, then the boundary of the corresponding
superface—obtained by merging all the faces in the dual subtree of v′b—is a cycle separator.
It is indeed a fundamental cycle of T . See Fig. 2 for an illustration. Otherwise, if no
balanced dual-node exists, there must be a dual-node v′c such that the weight of its subtree
T ′(v′c) is larger than 2(1 + ε)n/3 but the weight of each of its descendants sub-trees is less
than n/(3(1 + ε)). We call v′c a critical dual-node.

In the case that we have a critical dual-node, we will compute a separator path slightly
differently. This will be essentially by mimicking the separator computation of Lipton and
Tarjan in the triangulated version of G. In fact, it will suffice to triangulate only the face
corresponding to the dual-node v′c. We note that generally, it is unclear how to efficiently
simulate triangulation in distributed manner as this requires simulating many virtual edges.
Our construction, however, only uses triangulation implicitly in the analysis. That is, we
compute a separator and then show that it is the same as computed by the algorithm of
Lipton and Tarjan on the triangulated version of C.

Challenges and Our Approach for Overcoming Them: Our goal is to implement the
above algorithm in Õ(D) rounds, where D is the diameter of the base graph G. Note that
the diameter of C might be as large as Θ(n). We face two key challenges: (CI) we need to
simulate each dual-node in a distributed manner. Note that a dual node is made of a face,
which can be long, and it may interact with other faces through far apart parts of this face.
(CII) More severely, we need to implement communications on the dual tree. The nodes
and edges of this tree are not real nodes and edges of the graph. Even simulating each node
of it is not straightforward, and is the challenge mentioned before. To add insult to injury,
the diameter of the dual tree (even in terms of dual-nodes) can be much larger than D. For
instance, it is possible that the primal graph has diameter D = O(1) and yet, the diameter
of the dual graph is Θ(n). We next briefly outline the methods we use for overcoming these
two challenges.

To deal with challenge (CI), we use the low-congestion shortcuts of [18], as defined in
Definition 2, one shortcut for each of the faces. This application is not straightforward
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because an important requirement for low-congestion shortcuts is not met in our setting.
To use the low-congestion shortcuts of [18], the collection of subsets S1, . . . , Sk must be
node-disjoint. In our case, however, the Si sets are the nodes of faces. Hence, these sets
are not node-disjoint; in fact, a node may belong to several different faces. We bypass this
obstacle by transforming the graph G into an auxiliary graph Ĝ, in which the sets Si, that
correspond to the faces of C, are mapped to node-disjoint connected sets. We then show
that the auxiliary graph Ĝ can be simulated efficiently in the original graph G.

To deal with challenge (CII), our approach is inspired by a method of [18, Section 5] for
aggregating information on a tree with large diameter in planar graphs with low diameter.
They used this method for aggregating information on the MST. Though, we need to adjust
this method to suit our case. A straightforward combination would suggest a round complex-
ity of Õ(D2). This is because, our method for communication inside faces (i.e., dual-nodes)
itself takes Õ(D) rounds, and on top of that, the method of [18, Section 5] for dealing with
large-diameter trees needs Õ(D) iterations of communicating on the dual-nodes. Thus, the
naive combination would be Õ(D2). We will however be able to put the ideas together in a
way that leads to a round complexity of Õ(D).

Roadmap: In Section 4.2, we present the basic computational tools for efficient distributed
communication inside a dual-node and on a dual tree, i.e., dealing with challenges (CI) and
(CII) respectively. Then, in Appendix B.2, we present our algorithm for computing a path-
separator in an arbitrary (biconnected) induced subgraph C ⊆ G, using the tools explained
in Section 4.2. The related analysis appears in Appendix B.3. Some smaller subroutines are
deferred to Appendix C.

4.2 Key Tools

We begin by explaining how to preform communication inside nodes of each face, and later
how to perform communication on the dual tree.

4.2.1 Tool (I): Communication Inside Dual-Nodes

To simulate communication inside the dual-nodes, we consider two basic tasks.

(T1) Face identification: Assign each face Fi in C a unique ID, ID(Fi), such that each
node knows the IDs of the faces to which it belongs. In addition, for each edge {u, v} ∈ C,
the endpoints of this edge should know the two face IDs, (ID(Fi), ID(Fj)), to which the
edge {u, v} belongs.

(T2) Low-Congestion Shortcuts for all Faces: Let Si denote the nodes of face Fi.
Compute an (α, β) low-congestion shortcuts Hi for the Si sets, for α, β = Õ(D).

To tackle both of these tasks, we transform the original planar graph G into a virtual planar
graph Ĝ in which the subsets of nodes belonging to the faces of C are mapped to node-
disjoint subsets Ŝi for which low-congestion shortcuts can be computed. We then show that
any r-round algorithm for Ĝ can be simulated in G using 2r rounds.

The virtual graph Ĝ is defined as follows. See Figure 3. First, it contains all edges of
G \ C. The edges of C are transformed in the following manner. Consider a node v that
belongs to y faces Fi1 , . . . , Fiy in C, ordered in a clockwise manner. Then, v creates y many
virtual copies of itself named v1, . . . , vy. In Ĝ, the identifier of the `th copy of v is (IDv, `).
By computing the embedding of the original graph G, each node v knows the clockwise
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Figure 3 The transformation from G to Ĝ, which maps faces to node-disjoint connected subsets. The
left figure depicts the graph before the transformation, and the right one depicts it after the transforma-
tion. The dotted links show the star-edge ES . Notice that in the graph Ĝ after the transformation, if we
remove the star-edges, we get a collection of connected components, each corresponding to a face of C.

ordering of all its edges in G. This can be used to deduce the clockwise ordering3 of its
edges in C. The clockwise ordering of the edges of v in C imposes a local numbering of its
faces in C, each two consecutive edges in the clock-wise order define one new face. On each
edge {u, v}, the nodes u and v exchange their local face numberings for that edge. Since a
given edge appears in at most two faces, this can be done in 2 rounds. In the graph Ĝ, we
connect v to y copies v1, . . . , vy, one per face in C. In addition, for each edge {v, u} ∈ C
belonging to the ith face of v and the jth face of u, we connect vi to uj . We use ES to
denote the set of star-edges {v, vi} in Ĝ.

The graph Ĝ is planar. Furthermore, it has the additional benefit that the nodes cor-
responding to the faces of the C are now node-disjoint subsets, while still each face induces
a connected subgraph. Hence, one can construct low-congestion shortcuts for these node
sets in the graph Ĝ. Notice that Ĝ has diameter at most 3D. This is because every edge
{u, v} ∈ C becomes a path (u − ui − vj − v) in Ĝ, and every edge not in C is unchanged.
Since each edge belongs to two faces, we have:

I Lemma 3 (Simulation of Ĝ in G). Any r-round algorithm A in Ĝ can be implemented in
G within at most 2r rounds.

Missing proofs of this section are in Appendix A. From now on, it suffices to consider
algorithms in Ĝ. Since the node faces are the connected components of Ĝ \ ES , we have:

I Lemma 4. The Faces Identification task can be solved in Õ(D) rounds.

Turning to the second task of computing low congestion shortcuts for each face Fi, we
have:

I Lemma 5. Let S1, . . . , SN be the nodes on faces F1, . . . , FN of the graph C. W.h.p.,
one can construct in Õ(D) rounds, an (α, β) low-congestion shortcut graphs H1, . . . ,HN for
α, β = O(D logD).

I Corollary 6. One can compute any aggregate function, which has O(logn)-bit size values,
in all faces of C in parallel in Õ(D) rounds.

3Note that since the diameter of C can be larger than D, we cannot afford computing the embedding
for C from scratch, via communicating only inside C.
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4.2.2 Tool (II): Communication on the Dual Tree
In tool (I), we described how to perform efficient communication within each face, that is,
inside each node of the dual tree. We now explain how to perform efficient communication
on the dual tree T ′ of a spanning tree T of the subgraph C. We mainly need to solve the
following two computational tasks in the dual tree T ′: (D1) Edge Orientation: orienting the
dual-edges towards a given dual root, and (D2) Subset-OR: given a rooted dual tree T ′, and
initial binary input values x(v′) for each dual-node v′, the leader node `(v′) of the dual node
v′ should learn the OR of its subtree, that is, the value y(v′) = ∨u′∈T ′(v′)x(u′).

An important tool for both of these tasks is a recursive fragment merging process, which
we describe next. In Appendix B.1, we then describe how to use this recursive merging
to solve the two tasks (D1) and (D2). Our final path-separator algorithm is presented in
Appendix B.2.
Recursive Face-Merging Process: To avoid computation in time O(Diam(T ′)), we
employ an idea of [18, Section 5]. It is worth noting that this idea itself is inspired by
merges in the style of Boruvka’s classical minimum spanning tree algorithm [39].

We have O(logn) levels of merging faces, where each merge happens along some edge of
the dual-tree node T ′. The faces involved in each merge correspond to a connected subgraph
of the dual tree, which we will call a fragment or a face-fragment, stressing that it is a merge
of some faces. The dual-tree gets partitioned into fragments in a hierarchical fashion, where
the fragments of level i are formed by merging fragments of level i − 1. See Figure 7 for
an illustration. Considering that the dual-tree nodes are faces of the primal graph, the
fragments of the ith-level are obtained by merging the (sets of) faces corresponding to the
fragments of level i− 1.

The O(logn) levels of face-fragment merging of the dual tree T ′ are implemented by
using low-congestion shortcuts in G, as described next. For every fragment j in level i, let
Si,j be the set of nodes appearing on the faces of fragment j. By using the tools provided
in Section 4.2.1 and mainly Lemma 5, we construct low-congestion shortcut subgraphs for
each set Si,j (i.e., despite the fact that these sets are not disjoint). Here, we slightly change
the definition of the auxiliary graph Ĝ that was defined in Section 4.2.1. For simplicity,
consider the first level of the face merging process where two faces of C, say Fj and Fk, are
merged. Let e = {u, v} be a common edge of Fj and Fk. The endpoint u indicates the
merging of these faces in the auxiliary graph Ĝ, by adding an edge between its copies uj
and uk corresponding to the merged faces Fj and Fk. As a result, the nodes on the faces
Fj and Fk now belong to the same connected component in the graph Ĝ \ ES (where ES
are the star-edges {u, uj}). Since the face identification is done by identifying the connected
components of Ĝ \ ES , this step ensures that Fj and Fk would be identified as one merged
face.

Equipped with the low-congestion shortcut subgraphs for each face-fragment (i.e., the
node sets Si,j), all nodes inside each fragment can communicate in their fragment in parallel,
for all fragments in level i, in Õ(D) rounds. Hence, the O(logn) face merging process can
be done in Õ(D) rounds. A detailed description of the face merging process is described in
Appendix B.1.
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Appendix

A Missing Proofs for Section 4.2.1

Proof of Lemma 3. The edges of C are transformed into two types of edges in Ĝ: star-
edges between v and its copies, whose simulation requires no real communication in G, and
face-edges {vj , ui}. Since each edge {u, v} in G simulates the communication of two edges,
namely, {ui1 , vj1} and {ui2 , vj2} in Ĝ, every round r of A in Ĝ can be implemented in G
using two rounds. J

Proof of Lemma 4. Let C be the induced subgraph of G, which is biconnected, and for
which we are computing a separator path. Let Ĉ be the subgraph of Ĝ. We employ the
Õ(D)-round connectivity algorithm of [18] in the graph Ĝ \ ES but only for the nodes of
C. Recall that ES denotes the star edges in Ĝ. By using Lemma 3, this algorithm can
be simulated in G in Õ(D) rounds. Let the ID of each connected component of Ĉ \ ES be
the node with maximum ID in the component. Since each connected component of Ĉ \ ES
corresponds to a face of C, each node now knows the IDs of its faces, in particular, it knows
the face IDs of each of its copies in Ĉ. In addition, each node v ∈ C also learns the IDs of
the two faces ID(Fi) and ID(Fj) of each of its edges {u, v} in C. The lemma follows. J

Proof of Lemma 5. Consider the algorithm A of [18] for constructing the low-congestion
shortcuts in Ĝ. By Lemma 3, Algorithm A can be simulated in G in Õ(D) rounds. Let Ĥi

be the (α, β/2) low-congestion shortcuts computed for the sets Ŝi in Ĝ. Let Hi be obtained
from Ĥi by omitting star-edges {v, vj} and replacing {ui, vj} edges with {u, v} edges. The
subgraphs Hi are (α, β) low-congestion shortcuts for the sets Si in C. J

B Missing Details for the Path Separator Algorithm

B.1 Tool (II): Communication on the Dual Tree
So-far, we described how to perform efficient communication within each face, that is, inside
each node of the dual tree. We now explain how to perform efficient communication on the
dual tree T ′ of a spanning tree T of the subgraph C. We mainly need to solve the following
two computational tasks in the dual tree T ′:

(D1) Edge Orientation Towards the Root: For a given dual-root, the leader `(e′) of
each dual-edge e′ should know the orientation of the edge such that all edges of T ′ are
oriented towards the root.

(D2) Subset-OR: Given a rooted dual tree T ′, and initial binary input values x(v′) to
each dual-node v′, the leader node `(v′) of the dual node v′ computes or of its subtree
as y(v′) = ∨u′∈T ′(v′)x(u′).

An important tool for both of these tasks is a recursive fragment merging process, which
we describe next. Once we have described this process, we will come back to using it to
implement the above two tasks (D1) and (D2).
Recursive Face-Merging Process: To avoid computation in time O(Diam(T ′)), we
employ an idea of [18, Section 5]. It is worth noting that this idea itself is inspired by
merges in the style of Boruvka’s classical minimum spanning tree algorithm [39].
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We have O(logn) levels of merging faces, where each merge happens along some edge of
the dual-tree node T ′. The faces involved in each merge correspond to a connected subgraph
of the dual tree, which we will call a fragment or a face-fragment, stressing that it is a merge
of some faces. The dual-tree gets partitioned into fragments in a hierarchical fashion, where
the fragments of level i are formed by merging fragments of level i − 1. See Fig. 7 for
an illustration. Considering that the dual-tree nodes are faces of the primal graph, the
fragments of the level-u are obtained by merging the (sets of) faces corresponding to the
fragments of level i − 1. We now describe this fragment-merging process. The identifier of
each dual-node v′ is the ID of its face φF (v′), which can be computed in Õ(D) rounds by
solving the Face Identification problem as described in Lemma 4.

Initially, all edges of G are unmarked. Throughout the process, some merges happen
along dual edges of T ′. Then, we mark the non-tree G-edges that correspond to the dual-
edges of T ′ that have been merged. At the beginning of each level i ≥ 0, we have the
following: a partition Pi of the faces of C into face-fragments Fi,1, . . . ,Fi,Ni . Let Si,j ⊆ V
be the nodes that belong to the faces of Fi,j . The ID of the fragment Fi,j , denoted by
ID(Fi,j), is the maximum face ID, ID(Fk), that belongs to the fragment Fi,j . Each node
in Si,j knows its fragment ID. Each fragment Fi,j has a leader node `i,j ∈ Si,j , which is
simply the leader `(Fk) of the face Fk of maximum ID in Fi,j .

Level i = 0 of the Merges: We first show that these properties can be achieved for level
0. The initial partition P0 is trivial, where each face fragment F0,j = {Fj} consists simply
of a single face. Using Lemma 4, each node knows its face ID and for each edge e = {u, v} in
C, its endpoints u and v know the IDs of the two faces this edge belongs to. In addition, by
Corollary 6, each face can compute the node of maximum ID to be the leader of that face.
We use Lemma 5 to compute low-congestion shortcuts H0,1, . . . ,H0,N for each face. Using
the random delay approach of [31], a BFS tree B0,j in H0,j and rooted at the leader can be
constructed for all faces F0,j in Õ(D) rounds. This completes the information for level 0.
From now on, we assume that at the beginning of level i, we are given this information, and
we describe how to proceed to the next level.

Level i ≥ 1 of the Merges: For each unmarked non-MST edge e ∈ G \ T , let e′ = φE(e)
be the dual edge of e, and let its ID be (ID(Fi,j1), ID(Fi,j2)) where Fi,j1 ,Fi,j2 ∈ Pi. The
leader `(e′) ∈ V sends this edge to the leaders `i,j1 and `i,j2 of the face-fragments Fi,j1 and
Fi,j2 , using the BFS trees Bi,j1 , Bi,j2 respectively. We upcast only one such dual-edge on
each such tree Bi,j , breaking ties arbitrarily. Note that the leader `(e′) belongs to the sets
Si,j1 and Si,j2 and hence belongs to both BFS trees Bi,j1 and Bi,j2 . Since these subtrees
are subgraphs of the low-congestion shortcuts Hi,j ’s, using the random-delay approach [31],
within Õ(D) rounds, the leader `i,j of each face-fragment Fi,j selects one outgoing dual-edge
in T ′. This elected dual-edge is downcast on the BFS trees Bi,j , so that their leaders (who
suggested these edges) would know if their edge-suggestion is accepted.

At the same time, the leader `(Fi,j) of face-fragment Fi,j ∈ Pj tosses a coin and down-
casts the coin toss result to all its nodes on Bi,j . The leaders `(e′) of the elected dual
edges e′ = (Fi,j ,Fi,j′)—i.e., whose edges have been elected by the face leader `(Fi,j)—
acknowledge the leader `(Fi,j) only if the following condition is satisfied: `(Fi,j) has a head
coin and `(Fi,j′) has a tail coin. This acknowledgement means that the related edge is ac-
cepted for a merge. Notice that because of these coins, the merge are star shapes, centered
at face-fragments who draw a head coin.

Finally, we want each node to know the new leader of the merged fragment along with
the ID of the new fragment. To do that the leaders of the elected dual-edges (Fi,j ,Fi,j′)
send on the BFS tree Bi,j of the head fragment, say Fi,j . The nodes on Bi,j upcast the
information (ID, leader) of the fragment with the maximum ID. The leader and the ID of
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𝑣
𝑣1

𝑣2

𝑣3𝑣

𝑒
𝑒′

ℓ(𝑒′)

Figure 4 The transformed graph Ĝi after merging of faces. In the figure, red edges are tree edges
T and green edges are the dual tree edges T ′. The thick dual edge has been merged at level i. In the
transformed graph Ĝi, the node v adds an edge (shown in green) between the two v copies corresponding
to the two merged faces.

the merged fragment is downcast on the tree and then passed through the leaders of the
merged dual-edges on the BFS trees Bi,j′ of the merged face-fragments. Finally, the leaders
of the merged dual-edges mark their corresponding primal edges in G as merged.

At that point, all nodes know their fragment-ID in the new partition Pi+1. Also, for
each dual-edge {u, v}, the leader of the edge knows the new ID’s of the two face-fragments
in Pi+1 of this edge. To compute the low-congestion shortcuts for the face-fragments of
partition Pi+1, we again consider the virtual graph Ĝi but with slight changes: we construct
Ĝi as before, i.e., containing all edges of G\C, and for every v ∈ C, creating copies v1, . . . , vy

of node v for each of its faces in C, all these copies are connected to v via a star. Only this
time, for each v ∈ C, we also add edges between copies of vi that belong to the same merged
face. That is, Ĝi consists of all edges of Ĝi−1 with additional edges connecting the copies
of v that correspond to faces that have been merged in level i. See Figure 4, where on the
right side, the one dashed green edge depicts such a connection between copies of the same
node, effectively merging the two components.

Let EiS be the star edges between each v to all its copies and let Ĉi be the edges of
Ĝi restricted to the nodes of C. By adding the internal edges between v’s copies, we get
that the connected components Ĉi \ EiS are exactly the fragments of the partition Pi+1.
We can then compute low-congestion subgraphs Ĥi+1,j for each connected component in
Ĉi \EiS and this translates to low-congestion shortcuts in the original graph. That is because
each edge belongs to at most two faces, see Lemma 5. Finally, we compute the BFS tree
Bi+1,j ⊆ Hi+1,j rooted at the leader of each face-fragment. This completes the description
of the face-merging process.

Since in each phase i, the number of faces is reduced by constant factor, within L =
O(logn) iterations, we are left with one merged face. Next, we explain how we use this
O(logn) face-fragment merging process to solve tasks (D1) and (D2).

Task (D1), Orientation of the Dual Tree T ′: We proceed by describing how to orient
the dual tree towards an arbitrary root. Let F∗ be the face with the maximum ID. We then
root T ′ at the dual-node v′∗ = φF (F∗).

We employ the recursive procedure of merging dual-tree fragments, as explained above.
Consider the very last level L in which we have one face-fragment formed by a star-merge
of the level (L− 1) face-fragments. Using the low-congestion shortcuts within each of these
(L−1) face-fragments, the leader `(v′∗) belonging to the face of maximum ID can notify that
(its maximality) to its entire face-fragment. Consider a merged dual-edge which is merged in
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this transition from level (L− 1) fragments to level L fragments. The leader of this merged
dual-edge, who is in the face-fragment that contains the root, updates the other fragment
to which it belongs and also orient its dual edge accordingly. The dual-node which is the
other endpoint of the merged dual-edge is the root of its own (L − 1) fragment. With one
more application of this process (as the star shape of merges has diameter ≤ 2), all nodes of
the (L− 1) fragments know the dual-root node. Moreover, the dual-edges of T ′ of this last
star-merge are now oriented towards the (L− 1) face-fragment that contains the dual-root.
The other endpoints of these dual star-edges are the dual-roots of their fragments.

Then, we remove the T ′-edges between these level (L− 1) fragments. Then, we recurse,
going one level deeper, each time orienting the edges merged in that level. Since in each
level i, we have low-congestion shortcuts for each of the fragments, we can identify their
dual-roots and orient the dual-edges accordingly, in a total of O(D logD log2 n) rounds.

Task (D2), Computing the Subset-OR: Recall that in the Subset-OR problem, we are
given a rooted dual tree T ′, and initial binary input values x(v′) to each dual-node v′. The
goal is to have each leader node `(v′) compute the value y(v′) = ∨u′∈T ′(v′)x(u′). Again our
approach is inspired by the solution for of the Subset-SUM problem that has been considered
in [18].

The first step, which is done for simplicity, is to redefine the O(logn) face-fragmentation
process such that the level-i face-fragment is made of merging a level-(i− 1) face-fragment
and some of its level-(i−1) fragment children. To do that, in iteration i, each face-fragment
suggests the dual-edge to its parent fragment for the merge and then, the head face-fragment
accepts the merge suggestions from all its children that are tail face-fragments. This is
implemented as follows. The leader `(e′) of each dual edge e′ knows the IDs ID(Fj) and
ID(Fj′) of the two faces to which that edge belongs. In addition, it knows the orientation
of the edge, say, Fj′ its the parent of Fj in T ′. It also knows the (i − 1) face-fragments of
these two faces, let is be Fj ∈ Fi−1,k and Fj′ ∈ Fi−1,k′ where Fi−1,k,Fi−1,k′ ∈ Pi−1. Now it
offers the edge e′ only to the face-fragment Fi−1,k that contains the parent face Fj . Again,
we can easily see that after L = O(logn) levels, w.h.p., we reach a single face fragments.

With these redefined fragment merges, we are ready to compute the subset-OR for each
dual-node. We solve it by doing two types of recursion: an outer top-down recursion and an
internal bottom-up recursion. Specifically, as we soon explain, every step of the top-down
recursion is solved using a a bottom-up recursion. In level-L, we have one face-fragment
made of a star merge of a level (L−1) face-fragment and its level (L−1) children fragment.
We first want to be able to remove the dual-edges of this last merge, thus allowing the
top-down recursion to go one level deeper and focus on only level (L− 1) fragments.

To do that, we make the root of each child level (L− 1) fragment learn the value of its
fragment. Then, this root passes the value to the parent fragment. Once that is done, we can
remove the edges merged in level L− 1, and recurse in the top-down recursion. Specifically,
for each dual-edge that connects the parent fragment to a child fragment, the leader of this
dual-edge belongs to both of the fragments. Thus, this leader can pass this information to
the parent fragment. Once, the leader of the dual-edge of each child fragment passes that
subset-OR of its subtree to the parent fragment, we can remove these dual-edges and recurse
top-down in each of the (L− 1)-fragments, all in parallel.

To make the root of the child L− 1 fragment learn the value of its fragment, we now do
the second recursion, this time a bottom-up recursion, from level 0 to L−1. We iterate over
the L − 1 levels, starting with the first level, and keep the invariant that the root of each
face-fragment knows the OR value of its fragment. In level-1 fragment, each fragment is a
face Fj and the leader of the dual-node v′j = φF (Fj) knows the value x(v′j). In level i ≥ 1,
each level-i face-fragment is formed by merging one level-(i− 1) face-fragment with some of
its level-(i− 1) fragment children. The leader of each of these dual-children knows the OR
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of its own face-fragment. Using the BFS trees Bi−1,j of each face-fragment Fi−1,j and the
random-delay approach, in Õ(D) rounds all nodes in their fragment knows the OR value.
This particularly includes the leader of the dual-edge between the fragment to its parent.
This leader belongs to both of the fragments. (Note the fragment children might have the
same leader node and in this case it suffices that this node will send the OR of all these
fragment children on the BFS tree of the parent fragment.) All the values get OR-ed on the
BFS tree of the parent fragment, and the leader node of the parent fragment adds also its
own value (i.e., the OR of its face). After O(logn) such steps, the leader of each (L − 1)
face-fragment knows the OR of its subtree in T ′. At that point, we can ignore the dual-edges
connecting the (L − 1) face-fragments, and recurse. Overall, we have O(log2 n) recursion
levels: O(logn) recursion levels of the top-down recursion, each level is solved by doing
O(logn)-levels of the bottom-up recursion. In each such recursion level, we spend Õ(D)
rounds of communication within face-fragments and between neighboring face-fragments.
Hence, overall solving the Subset-OR task takes Õ(D) rounds.

B.2 Algorithm for Computing the Separator Path in Biconnected
Subgraph C

In this section, we present Algorithm ComputePathSep. The analysis appears in Appendix B.3.
We first present a concise description of the algorithm, in the following algorithmic box.
Then, we discuss the details of each of the steps.

Algorithm ComputePathSep

Input: A n-node biconnected induced subgraph C of a planar graph G with diameter D,
approximation parameter ε ∈ (0, 1/2).
Output: A separator path P in C, so that each component of C \ P has size at most
2(1 + ε)n/3.

Step (S1): Computing the Dual Tree T ′

Compute an MST T in C. Non T -edges of C correspond to the edges of dual-tree T ′.

Step (S2): Orienting the Dual Tree T ′ Towards a Root

This step is done via a recursive face-fragment merging process.

Step (S3): Computing the Weights of the Dual Nodes in T ′

For each i ∈ {1, . . . , log1+ε n}, we have Nε = Oε(logn) experiments, as follows:

. Sample each of the nodes of C with probability 1/(1 + ε)i.

. Use Subet-OR to inform each dual-node if there is a marked node in its subtree.

Using these experiments, dual-nodes deduce a (1 + ε) approximation of their weight.
Detect a balanced dual-node, i.e., a dual-node with weight in [n/(3(1+ ε)), 2(1+ ε)n/3].
If there is no balanced dual-node, detect a critical dual-node, that is, a dual-node with
weight at least 2(1 + ε)n/3 but each of its children has weight less than n/(3(1 + ε)).

Step (S4): Marking the Separator Path

For balanced dual node: mark the tree path connecting the boundary of its superface.
For critical dual-node: mark a tree path by simulating Lipton-Tarjan on its superface.

Step (S1-S2): The algorithm begins by computing a spanning tree T in C using the MST
algorithm of [18]. This defines a dual tree T ′ by taking the dual edges corresponding to the
non T -edges, as described in Section 2. We then use the dual-tree orientation procedure and
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orient all dual edges of T ′ towards the dual-node root of maximum ID.

Step (S3): Computing the Weight of Each Dual Node: For a dual-node v′, we
consider its superface obtained by merging all faces in its subtree T ′(v′). The weight of
v′ is defined to be the number of nodes inside or on the boundary of this superface. The
main challenge in computing these weights is to avoid double counting, which can possibly
happen because of each node appearing in many faces of a subtree T ′(v′). Our approach
uses a simple and by-now standard linear sketching type of idea, see [5,15,18]. In particular,
we next describe a procedure that lets each leader `(v′) obtain an (1 + ε)-approximation of
its weight.

The procedure consists ofKε = O(log1+ε n) phases, each phase consists of Nε = Oε(logn)
experiments. Set q1 = e−(1+ε), q2 = e−1/(1+ε), q3 = (q2 − q1)/(q2 + q1) and Nε = 3e3 · c ·
logn/(q3)2.

In the ith phase for i ∈ {Kε, . . . , 1}, we do the following for Nε experiments. Each node
v in C marks itself with probability pi = 1/(1+ ε)i and 0 otherwise. That is, we let zi(v) = 1
with probability pi and 0 otherwise. Using Corollary 6, the leader of each dual-node `(v′) can
compute the initial value x(v′) = ∨v∈φ−1

F
(v′)zi(v). This is simply the OR of all zi(v) values

of the nodes v belonging to the face φ−1
F (v′). We then apply the Subset-OR procedure on

the xi values. This allows the leader of each dual-node v′ count the number of experiments
Ni(v′), among the Nε many experiments of phase i, in which the Subset-OR of its subtree
T ′(v′) is zero (or non-zero). In each of the Nε experiments, the zi values are resampled using
fresh and independent randomness, with probability pi.

For a given dual-node v′, let i∗ ∈ {Kε, . . . , 1} be the first phase number for which
Ni∗(v′) < (1 + p3) · p1 · Nε. Then, the estimate weight of v′ is (1 + ε)i∗ . In Lemma 8 we
prove that this indeed provides a (1 + ε)-approximation of the weight of the subtree of v′,
with high probability.

At the end of Step (S3), the leader of each dual node knows (an approximation of) the
weight of its superface and also the weights of its children in the dual-tree. A dual-node
whose approximated weight is in [n/(3(1 + ε)), 2(1 + ε)n/3] is called a balanced dual-node.
A dual-node whose approximated weight is larger than 2(1 + ε)n/3 but the approximated
weight of each its children is smaller than n/(3(1+ε)) is called a critical dual node. Note that
since we compute only (1 + ε)-approximation for the weight of the superface of each dual-
node, our path-separator might break the graph into components of size at most 2(1+ε)n/3,
instead of 2n/3, for some small constant ε, e.g., ε = 0.01. This is sufficient for our purposes
as we still get a constant factor reduction in the component’s size, thus the recursion has
depth of O(logn).

Step (S4): Marking the Nodes on a Separator Path: First, we check whether there is
a balanced dual node or not. For that, we let all balanced nodes upcast the identity of their
face on the shortcut of C, in Õ(D) rounds. In case there is at least one balanced dual-node,
we select one such node v′b. Note that this balanced dual-node v′b cannot be the root of
T ′. This is because the boundary of the superface of the dual-root is the boundary of the
infinite face and hence it contains all nodes inside it. Let `(e′) be the leader of the dual-edge
that connects the face φF (v′b) to its parent in T ′. In addition, let e = φ−1

E (e′) = {u, v} be
the edge in C corresponding to e′. We then mark the u − v path in T using the procedure
described in Appendix C.2.

Alternatively, suppose that there is no balanced node. In that case, there must be exactly
one critical dual node, let us denote it v′c. Again, all nodes in C can know the face identifier
of the critical dual-node in Õ(D) rounds. If the critical node has no children in the dual-tree,
then letting e = {x, y} be the non T -edge corresponding to the dual edge that connects v′c
to its parent in T ′, we mark the T -path between x and y as our separator.
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From now on, we assume that v′c has at least one child in T ′. Let e = (u, v) be a non
T -edge on the face φ−1

F (v′c), where v appears before u when traversing the boundary of
this face in a clock-wise manner. We now use the procedure explained in Appendix C.3 to
label the nodes xi,1, . . . , xi,k on the face φ−1

F (v′c) in increasing numbers from u to v (the
nodes u and v are not in xi,1, . . . , xi,k). For every xi,j for j ≥ 2, consider the fundamental
cycle obtained by adding the edge {u, xi,j} to T and define the weight Wj by the number
of nodes inside or on the boundary of that cycle. Our goal is compute the first node xi,j
in the ordering, for which the weight Wj becomes in the desired range of [n/3, 2n/3]. The
path-separator in a such case is simply the T -path between u and xi,j .

We now want the leader node of the dual-node v′c to compute this node xi,j . Instead
of computing the exact weights Wj , we will compute approximated weights Ŵj . For every
j ≥ 2, define ŵ(xi,j) as follows: set ŵ(xi,j) = 1 if ei,j = {xi,j−1, xj} is a T -edge. Otherwise,
let ŵ(xi,j) be the approximated weight of the dual-child v′i,j connected to v′c via the dual-
edge φE(ei,j) minus one.4 The approximated weight Ŵj =

∑j
`=1 ŵ(xi,`) is the sum of the

ŵ values. Let p be the smallest index satisfying that Ŵp ∈ [n/(3(1 + ε)), 2(1 + ε)n/3]. We
will use the node xi,p to define our separator path.

Next, we explain how the leader `(v′c) can compute this value p, i.e., realizing that Ŵp

is the index for which the sum of approximated weights is in the right range. The index p
is computed in a binary-search like fashion. At any given iteration, we are given an index
` ∈ {1, . . . , k} and we want to compute Ŵ`. First, using Corollary 6, the leader `(v′c) can
compute the number of T -edges on the face path [xi,1, . . . , xi,`]. By Step (S3), each dual-
node knows its approximated weighted sum. We then let only the dual children in the
range [xi,1, . . . , xi,`] to send this sum to their dual-node parent v′c. More specifically, only
the dual-children v′i,j connected to v′c via the dual edge φE(ei,j), where ei,j = {xi,j−1, xj},
for j ∈ {2, . . . , `}, upcast their approximated weight on the BFS tree constructed in the
low-congestion shortcut subgraph of the nodes of the face of v′c. Note that the leaders of the
dual-edges connecting the children to v′c know their local ordering on the boundary of φF (v′c)
and hence they can know if they are active in the given iteration of this binary-search, or
not. This allows the leader node to compute Ŵ` in Õ(D) rounds. Within O(logn) such
binary-search iterations, the leader `(v′c) can find the first breaking point p for which Ŵp is
in the desired range. We then use the procedure described in Appendix C.2 to mark path
connecting xi,p and u in T . This is the output separator path.

B.3 Analysis of the Separator Path Algorithm
B.3.1 Analysis of Step (S3)
We argue that in Step (S3), the leader of each dual-node learns an approximation for the
weight of its face. Consider a dual-node v′ and let k be the weight of its subtree in the dual-
tree, i.e., the number of primal nodes inside or on the boundary of its superface. Consider
the ith phase were each node marks itself with probability 1/ri for ri = (1 + ε)i. We show
the following auxiliary claims.
I Claim 7. (1) If ri < k/(1 + ε), then Ni(v′) < (1 + p3)p1 ·Nε with high probability.
(2) If ri > (1 + ε)k, then Ni(v′) > (1 + p3)p1 ·Nε with high probability.

Proof. We start with claim (1) In a given step of phase i, the probability that no node
among the k is marked is at most (1 − (1 + ε)/k)k ≤ e−(1+ε) = q1. Hence, the expected

4This minus one is important to avoid double counting due to nodes appearing on the edges ei,j .
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number of trials in which no node is marked is at least Nε · q1. Item (1) follows by using the
Chernoff bound.

We now consider claim (2). In a given step of phase i, the probability that no node
among the k is marked is at least (1− 1/((1 + ε)k))k ≥ q2 · (1− 1/((1 + ε)k)) ≥ q2/2. Hence,
in expectation, there are at least Nε · q2/2 steps in which no node is marked in the superface
of v′. The claim again follows by applying the Chernoff bound. J

Now, we use this auxiliary claim to prove the approximation guarantee, as follows.

I Lemma 8. An (1 + ε′)-approximation of the weight of the superface of T ′(v′) can be
computed in Õ(D) rounds for ε′ =

√
1 + ε− 1.

Proof. Recall that the estimate for the weight of v′ is given by the first index i∗ for which
the number of steps in which no node is marked on its superface is at most Ni∗(v′) <
(1 + p3)p1 · Nε. Thus, Ni∗+1(v′) > (1 + p3)p1 · Nε. By Claim 7(1), ri∗ < k/(1 + ε) and by
Claim 7(2), ri∗+1 < (1 + ε)k. We get that ri∗ is an (1 + ε)2 = (1 + ε′) approximation for k.
The lemma follows. J

B.3.2 Analysis of Step (S4)
We proceed by showing that the path computed in Step (S4) is indeed a separator path. The
analysis for the two cases with a separator based on a balanced-node and with a separator
based on a critical dual-node are presented in Lemma 9 and Lemma 10, respectively.

By Lemma 8, each dual node computes in Step (S3) a (1 + ε)-approximation of its
weight. Hence, if there is a dual node with weight in [n/3, 2n/3], there exists a dual-node
with approximated weight in [n/(3(1 + ε)), 2n(1 + ε)/3]. We call this node a balanced dual
node. We now show that the boundary of this dual-node’s superface is a fundamental cycle,
that is, with the exception of one edge, all edges on the boundary cycle of its superface are
T -edges.

I Lemma 9. Assume that there is a balanced dual-node v′ in T ′. Then, the boundary of the
superface obtained by merging all faces in T ′(v′) consists of only one non T -edge.

Proof. We prove the claim by induction on the the depth of the dual-node in T ′. For the
base case consider a leaf dual-node `′ in T ′. This dual-node is connected to T ′ via one
dual-edge to its parent in T ′, hence all remaining edges on the boundary of its face φF (`′)
are BFS edges.

Assume that the claim holds to subtrees up to depth d, and consider a dual-node v′ whose
subtree T ′(v′) is of depth d + 1. Let v′1, . . . , v′k be the children of v′ in T ′. By induction
assumption, the boundary of the superface obtained by merging the faces in T ′(v′i) consists
of only one non-BFS edge. Hence, this is exactly the edge e such that the dual edge φE(e)
connects v′i to its parent v′ in T ′ (recall that the balanced dual-node cannot be the root
of T ′). When creating the merged face of T ′(v′) these non-BFS edges of the children v′i
become internal and do not appear on the boundary of the merged superface. All the edges
of the parent face v′ that are not in common with its children are BFS edges except for the
edge that corresponds to the dual-edge which connects v′ to its parent in T ′ (unless v′ is
the root). The claim follows. J

Since the boundary of the superface of the balanced dual-node is a cycle separator, by
Lemma 9, it follows that the dual-edge that connects v′b to its parent in the dual-tree defines
a fundamental cycle separator in T . As our algorithm marks the tree path of the edge
corresponding to this dual-edge, the correctness follows.
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We now turn to the complimentary case that there is no balanced dual-node with ap-
proximated weight in [n/(3(1 + ε)), 2(1 + ε)n/3]. In such a case, there is a unique critical
dual-node whose approximated weight is larger than 2(1 + ε)n/3 and the weight of each of
its children is smaller than n/(3(1+ε)), this is exactly our definition for a critical dual-node.
We show:

I Lemma 10. The path computed for a critical dual-node v′c is a separator for C.

Proof. First, consider the case where v′c has no children in the dual tree T ′. In such a case,
the boundary of v′c is a separating cycle. Since v′c has one parent and not children, there is
only one non T -edge on this cycle. Thus, taking the tree path between the only non T -edge
on this boundary is a separating path.

From now on, consider the case where v′c has at least one child in the dual tree T ′.
Consider the non T -edge {u, v} on the boundary of v′c that we use as a reference. Recall
that v is appearing right before u in a clockwise traversal on the boundary of v′c. See Figure 5
for an illustration. Recall that xi1 , . . . , xik are the nodes on the boundary of v′c ordered in
clockwise ordering from u to v. For j ≥ 2, let the weight (resp., approximated weight) of xi,j
be w(xi,j) = 1 (resp., ŵ(xi,j) = 1) if ei,j = (xi,j−1, xj) is a T -edge. Otherwise, let w(xi,j)
(resp., ŵ(xi,j)) be the weight (resp., approximated weight computed in Step (S3)) of the
dual-child v′i,j connected to v′c via the dual-edge φE(ei,j) minus one.

Let Wj =
∑j
`=1 w(xi,`) and Ŵj =

∑j
`=1 ŵ(xi`) and let p be the first index satisfying

that Ŵp ∈ [n/(3(1 + ε)), 2(1 + ε)n/3]. The separator given by the algorithm is then the
T -path between u and xi,p.

𝑢 𝑣𝑢 𝑣

𝑥𝑖,𝑝
𝑣𝑐
′

𝑥𝑖,𝑝−1

𝑥𝑖,𝑝

Figure 5 Illustration of the critical node and the selection of the path separator (shown as nodes with
thick boundary). Solid edges are T -edges and dashed edges are non T -edges. The curved edges are the
dual edges of T ′. Left: the original C graph. The node xi,p is the first node in the ordering for which
Ŵp ∈ [n/(3(1 + ε)), 2(1 + ε)n/3]. Right: the transformed triangulated graph. The tick triangulated edge
{u, xi,p} defines a fundamental separator cycle in T . The path separator is the the T -path between u
and xi,p.

Now consider a triangulated version of C where the node u is used to triangulate the face
of v′c by adding the edges êj = {u, xij} for every j.

We will claim that the path separator that we compute is defined by a fundamental cycle
in the triangulated graph, in a similar way to the one computed by Lipton and Tarjan for the
triangulated version of C. By triangulating the graph C, the maximum degree of the dual tree
of the triangulated graph is 3 and hence it has a triangulated edge that breaks the C into parts
of weights in [n/3, 2n/3]. Since there is exactly one critical dual-node, this triangulated edge
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must be one of the u-edges, say, êj = {u, xij} for j ∈ {1, . . . , k} that we added to triangulate
the face of dual-node v′c. Thus, Wj ∈ [n/3, 2n/3] and Ŵj ∈ [n/(3(1 + ε)), 2n(1 + ε)/3].
Since p is the first index satisfying that Ŵp ∈ [n/(3(1 + ε)), 2n(1 + ε)/3], we get that the
triangulated edge êp defines the fundamental separator cycle in the tree T . Yielding that
the tree path connecting the triangulated point u and the endpoint xip is a path separator.
See Figure 5 for an illustration. J

C Auxiliary Procedures

C.1 Identifying Cut Nodes and the DFS Skeleton of Biconnected
Components

Here, we explain an Õ(D)-round procedure that we use for identifying the cut nodes and
bi-connected components. In particular, let us consider an induced connected subgraph C
of the base graph G, and furthermore, suppose we are given a node r ∈ C who shall be the
DFS root of the DFS of C. See Figure 6 for an illustration. We have two goals:
(1) We would like to identify cut nodes of C, i.e., nodes v ∈ C whose removal disconnects the

graph C, leaving a disconnected subgraph C \ {v}. This also identifies the bi-connected
components C′1, C′2, . . . , C′N of C, that are the maximal subgraphs of C that are bi-
connected, meaning that removing any single node leaves them connected.

(2) We would like that for each bi-connected component C′i of C, we identify the DFS root
ri of C′i. For the bi-connected component C′i that includes r, this is node r itself. For any
other biconnected component C′j , this root rj is the first cut node on the shortest path
to the overall root r of C.

Identifying Cut Nodes: To identify the cut-nodes, we use the transformation from G
to the virtual graph Ĝ, which we explained in Section 4.2.1. Using explained Lemma 4,
in Õ(D) rounds, we get a component identification of Ĝ \ ES . Recall that ES denotes the
star edges between each real node v and its copy nodes v1, v2, . . . , vy. Once we have this
connected component identification, a node v ∈ C is a cut node of C if and only if at least
two of its copy nodes vi and vj for j 6= i receive the same component identifier. See Figure 8,
which depicts an example of a cut node and the faces it is involved in. If that happens, it
means that these two copy nodes vi and vj are in the same connected component in Ĝ\ES .
This implies that v is a cut node of C. That is because of the following: consider the cycle
defined by traversing from v to vi, then taking the Ĝ\ES path from vi to vj , and then going
from vj back to v. Notice that inside and outside of this cycle are non-empty and each of
them includes some nodes of C, as otherwise we would have vi = vj . This cycle separates a
non-empty part of the graph C from the rest of it. Hence, removing v would disconnect C,
which means node v is a cut node.
Identifying DFS roots of Biconnected Components: First, we use the identification
of cut nodes as done above to determine the bi-connected components C′1, C′2, . . . , C′N of
C. For each cut node node v, consider two copies of it vi and vj who receive the same
connected component identifier. This indicates that in the clockwise traversal around v, the
C-edges incident on v between vi and vj would become disconnected from the other C-edges
incident on v, if we remove v. Hence, these two different categories of C-edges belong to
different biconnected components. See Figure 8 for an example, where three biconnected
components around a cut node are depicted. By considering all of its copies who receive
the same component identifiers, and examining them in a clockwise order, each cut node
node v can determine which of its edges belong to the same biconnected component. Once
this is done, the cut node v splits itself into many independent versions, one for each of the
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biconnected component, with no connection between the versions. This effectively separates
different biconnected components from each other. Then, we use the connected component
identification procedure of [18] to assign identifiers to the biconnected components. This
allows each node v to learn the identifiers of each of the biconnected components that
includes v.

Once we have identified the biconnected components C′1, C′2, . . . , C′N of C, we can identify
the respective DFS roots. In doing so, we consider each biconnected component C′i as
an initial fragment, and we employ the recursive fragment-merging process explained in
Appendix B.1. In a manner virtually the same as what we did for task (D1) in Appendix B.1,
we can identify the root of each fragment, with regard to the overall root r. This means
each biconnected C′i component learns its own DFS root ri.

C.2 Marking a Tree Path
Given a tree T , which potentially has large diameter, and two nodes u and v we describe
how to mark the u − v path in T within O(D) rounds. For simplicity we root the tree T
at u (the node of higher ID, w.l.o.g.). We consider the recursive tree fragments merging
where each parent merges subset of its children in T . In our case, we do the merging only
till we get to the first level i∗ where u and v are in the same fragment. This can be done
by letting u and v upcast their ID to the leader of their fragment using the low-congestion
shortcuts. Note at this last level i∗, there is an edge {w, z} connecting the fragment of v
with the parent fragment that contains the root u. We mark the edge {w, z} and recurse
– by computing the u − w path in the (i∗ − 1)th fragment of u and the z − v path in the
(i∗ − 1)th fragment of v, going one level lower in the recursion. Hence, after O(logn) steps,
we marked all nodes of the path.

C.3 Clockwise Labeling of Nodes on the Boundary of a Face
Consider a face Fi and a given node u. We now describe how to label the nodes of the face
in clockwise ordering with respect to u.

First, we use the root orientation procedure of [18] to orient the boundary edges of the
face away from u. By Corollary 6, the root u can compute the number of nodes on the
boundary in Õ(D) rounds.

We then employ the fragment merging procedure of [18] on the oriented face boundary
minus the edge u, v. In this procedure, every parent fragment merges subset of its child
fragments. Since the boundary of the face is a path (cycle without the {u, v} edge), we are
merging subpaths. Consider the one before last level of recursive merging, L − 1, where
we have two fragments: one containing u and one containing v. At the point, u and v can
compute the size of their fragments Nu, Nv using low-congestion shortcuts and the root u
can learn also the number of nodes in the fragment of v. At the point, we will assign that
first Nu slots to the nodes in its fragment and the last Nv slots to the nodes in v’s fragment.
We can then remove the last merged edge and recurse in each of the two fragments. For an
illustration, see Figure 9.

D Sublinear Time DFS Algorithm for General Graphs

We show that the method of the parallel algorithm of Aggarwal and Anderson [1] and
Goldberg, Plotkin and Vaidya [22] can be adapted to produce a sublinear-time distributed
algorithm in the CONGEST model. This is for graphs with diameter D = o(n); of course no
sublinear algorithm exists for graphs with D = Θ(n).
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I Lemma 11. For every n-node graph G with diameter D, a DFS can be constructed in
Õ(
√
Dn+ n3/4) rounds.

Proof. Inspired by Aggarwal and Anderson [1], our DFS algorithm for general graphs con-
sists of two phases. In the first phase, we compute a collection of Õ(p) paths which are
separators for the remaining graph (i.e., removing all nodes on these Õ(p) paths breaks the
graph into components of size in [n/3, 2n/3]). In the second phase, we attach these paths
to the DFS tree, exactly as we do for the planar graphs, only this time we have Õ(p) many
paths instead of one . Using the algorithm of Goldbreg, Plotkin and Vaidya [22], we will
show that the first phase can be implemented by doing Õ(n/p) applications of a maximal
matching algorithm. Recall that maximal matching can be solved in general graphs distrib-
utedly within O(log4 n) rounds, even deterministically [26]. The second phase of attaching
the paths to the initial DFS segment, consists of Õ(p) applications of the MST algorithm (or
just connected components identification algorithm) which takes Õ(D +

√
n) rounds using

the algorithm of [14]. Hence, overall for a parameter p, the time complexity of the DFS
algorithm is Õ(n/p + p(D +

√
n)) = O(n3/4 +

√
D · n) by taking p = O(n1/4) if D ≤

√
n,

and set p = O(
√
n/D) otherwise.

We now describe the first phase in more details, as the second phase is exactly the same
as our algorithm for planar graphs. The main procedure of the first phase of is a modified
version of the Reduce routine of Aggarwal and Anderson [1]. We first explain the high level
idea of this routine as given by [1] and then explain the modifications which come by the
algorithm of Goldbreg, Plotkin and Vaidya [22]. The routine Reduce receives as input a
collection Q of k node disjoint paths which are separators. The output of the procedure is
smaller set Q′ of node disjoint paths which is also a separator (i.e, the largest component of
V −Q′ has size at most n/2) but in addition contains |Q′| ≤ |Q|/c paths for some constant
c > 1. Initially, Q contains of all nodes in the graph and by doing O(logn) applications of
this Reduce routine, one is left with a constant number of paths which are separators for
the remaining graphs. Our implementation will be a bit more involved as we integrate the
algorithm of [22]. Specifically, in our implementation of the Reduce procedure, in addition
to the output set Q′, we will also have some O(p) node-disjoint paths. As we apply the
Reduce procedure for O(logn) many times, we will have at the end O(p logn) node-disjoint
paths which will be added to the DFS segment one by one.

The routine Reduce reduces the number of separator paths of Q while persevering the
separation property, in the following manner. The paths of Q are divided into two sets: a
set of |Q|/4 paths L and the remaining set of paths S (corresponding to long and short).
The algorithm then computes a maximum cardinality set of disjoint paths P = {P1, . . . , Pα}
between L and S where there is a preference for these paths to start at the lowest possible
point on the paths of L. This preference is important in order to maintain the separation
property of these paths and to guarantee a progress in the reduction process. Aggarwal
and Anderson [1] implement that step by considering a weighted version of the maximum
cardinality set of node disjoint paths. They showed that this problem can be reduced to
finding the minimum weight perfect matching in some related graph G′′.

We note that there is no efficient distributed algorithm for perfect matching. Thus, we
turn to an idea of [22], originally used for devising a sublinear-time deterministic parallel
DFS algorithm. Their idea is to replace the prefect matching component of [1] with a more
relaxed version of maximal matching algorithm. They noted that it is sufficient to consider
a generalization of the Maximal Node-Disjoint Paths problem. This generalization outputs
some extra node disjoint paths which will be added to the DFS segment one after the other.
Specifically, the input for the generalized maximal node disjoint problem of [22] is a collection
of sinks T and a set of Pin node disjoint paths connecting sources to intermediate nodes.
The goal is to compute a set Pout of paths going from sources to sinks, such that for any
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node that is on a path in Pin but not on a path in Pout, every path from this node to a sink
intersects a path in Pout. We call the paths of Pout, completed paths. The algorithm might
also output a collection of at most p active paths Pactive that start with the source nodes
(but failed reach the nodes of T within the time given). These paths would be added to the
initial DFS segment, one after the other. [22] chose the final number of active paths to be
p =
√
n and showed how to solve this generalization and end with O(

√
n) active paths, by

applying O(
√
n) iterations of the maximal matching algorithm.

The high level idea of their algorithm is as follows. At the beginning of each iteration,
there is a current collection of active paths starting at the source nodes. The goal of a single
iteration is to extend these active paths by one hop (towards the sinks). The nodes belonging
to the active paths are called active. The remaining nodes in the graph are either idle or
dead, where initially all nodes not on the input active paths Pin are idle. The algorithm
attempts to extend active paths by one hop, by computing a maximal matching between
the end points of these paths and the remaining set of idle nodes in the graph. The paths
whose endpoints are matched get extended by one hop. The remaining paths are chopped
(or clipped) by their last node which then marked as dead. This continues for

√
n iterations,

at the end of which it is shown that there are at most O(
√
n) paths (see Lemma 3.2). One

can see that in order to have at most p remaining active paths at the end of this phase,
we need O(n/p) iterations of the maximal matching algorithm. This is because in each
iteration, each path is either extended by 1 or marks one node as dead. That is, each path
“consumes" one node and since the consumed node-sets by the active paths are disjoint, we
get that after n/p iterations, we have at most p paths.

Turning back to our DFS setting of Aggarwal and Anderson and its main routine Reduce,
recall that there we have a collection of paths L and S and it is desired to find node disjoint
paths between S and L that depart from the paths L as late as possible. This fits the
generalized version of [22] in the following manner: contract the paths of S to be a single
sink node5 and let the paths of L be the initial paths Pin. The algorithm will then attempt
to extend the paths of Pin from their endpoints and if only when it is not possible those
paths will be clipped. We will apply this modified Reduce routine (i.e., where we compute
maximal matchings instead of minimum weight perfect matching) by setting p as described
at the beginning of the proof. This is repeated for O(logn) times as in the algorithm of
Aggarwal and Anderson. In each application of the Reduce routine, we solve the generalized
version of maximal node disjoint problem, at the end of which we will have some completed
paths connecting S to L but also a left over of p node-disjoint paths which are added to the
DFS one after the other. This completes the DFS algorithm for general graphs. J

We now turn to the congested-clique model. In this model, the communication graph is
a clique and every pair of nodes can exchange O(logn) bits, in each rounds. In this model,
each path can be added to the DFS in O(log∗ n) rounds, using the MST algorithm of [21].
Plugging it in the above, we get:

I Corollary 12. There is an Õ(
√
n) algorithm for computing a DFS in the congested clique

model.

E Figures

5We do not really need to contract them but we can label all nodes on a path in S by the same label
since it is sufficient to hit any node in the path of S.
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Figure 6 An induced connected subgraph C of G, depicted with its DFS root r, as well as its
biconnected components and the corresponding cut-nodes v1 to v6.

Figure 7 The fragmentation of the dual-tree from Fig. 2. Shown are the first three levels of merging.
As each dual-node corresponds to a face in G, the merged fragment of the dual-tree is formed by a merging
of faces.

Figure 8 The graph on the left depicts the biconnected components, around a cut node. The middle
graph depicts the result after the transition to the virtual graph Ĝ, which separates faces. Here, the
star-edges ES are depicted as purple dotted lines. Notice that for the cut node v at the center, after the
transition to the virtual graph Ĝ on the right, three copies of v are in the same connected component.
Each two consecutive ones of these copies, in the clockwise traversal of the copies around v, indicate one
biconnected component. In particular, the graph on the right depicts the portion of Ĝ corresponding to
one of the bi-connected components.
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Figure 9 Clockwise Labeling of Nodes on the Boundary of the Face.
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