
1

Analog Compressed Sensing for Sparse Frequency
Shift Keying Modulation Schemes

Kathleen Yang, Student member, IEEE, Diana C. González, Yonina C. Eldar, Fellow, IEEE, Muriel
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Abstract—There is a growing interest in signaling schemes that
operate in the wideband regime due to the crowded frequency
spectrum. However, a downside of the wideband regime is that
obtaining channel state information is costly, and the capacity
of previously used modulation schemes such as code division
multiple access and orthogonal frequency division multiplexing
begins to diverge from the capacity bound without channel state
information. Impulsive frequency shift keying and wideband time
frequency coding have been shown to perform well in the wide-
band regime without channel state information, thus avoiding
the costs and challenges associated with obtaining channel state
information. However, the maximum likelihood receiver is a bank
of frequency-selective filters, which is very costly to implement
due to the large number of filters. In this work, we aim to simplify
the receiver by using an analog compressed sensing receiver with
chipping sequences as correlating signals to detect the sparse
signals. Our results show that using a compressed sensing receiver
allows for the simplification of the analog receiver with the
trade off of a slight degradation in recovery performance. For
a fixed frequency separation, symbol time, and peak SNR, the
performance loss remains the same for a fixed ratio of number
of correlating signals to the number of frequencies.

Index Terms—wideband, compressed sensing, impulsive signals

I. INTRODUCTION

THERE is increasing research on the performance of
signaling schemes in the wideband regime, with larger

bandwidths at higher frequencies, in order to achieve higher
data rates and to avoid the crowded frequency spectrum below
3 GHz [2]. The noise and fading associated with the wideband
regime introduces new challenges to previously used signaling
schemes such as orthogonal frequency division multiplexing
(OFDM), which was used in 4G and LTE networks, and code
division multiple access (CDMA), which was used in 3G net-
works. Both of these signaling schemes require channel state
information (CSI) in order to achieve reliable and high data
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rates. However, the bandwidth, fading, and noise associated
with the wideband regime makes it challenging and costly to
obtain CSI in this regime [3].

The capacities of OFDM and CDMA without CSI begin
to fail and diverge from the capacity bound in the wideband
regime. The capacity of CDMA is inversely proportional to the
bandwidth in the wideband regime due to a fourth moment
constraint [4] and insufficient fourthegy per unit energy to
achieve reliable bits [5]. The capacity of OFDM with phase
shift keying (PSK) was shown to decrease once the bandwidth
of the system exceeds the critical bandwidth at which OFDM’s
capacity reaches a maximum [6].

Therefore, there is great interest in exploring signaling
schemes that can perform well in the wideband regime with-
out CSI, especially for 6G and beyond communications [3].
Kennedy showed that signals concentrated in both time and
frequency perform well in highly doubly dispersive chan-
nels, which are associated with the wideband regime [7].
In particular, impulsive frequency shift keying (I-FSK) and
wideband time frequency coding (WTFC) have been shown
to perform well in this regime without CSI [8]–[11]. I-FSK
incorporates FSK with a duty cycle, which results in a signal
that is impulsive in both time and frequency. The amplitude
of the I-FSK signal is multiplied by the inverse of the duty
cycle, and the signal itself is transmitted once per cycle
[8]. As the bandwidth of the system approaches infinity, and
the duty cycle approaches zero, I-FSK achieves the capacity
of multipath fading channels [8]. In finite bandwidths and
non-zero duty cycles. I-FSK can achieve rates close to the
energy-limited capacity bound of multipath fading channels
[9]. WTFC builds on top of I-FSK and incorporates pulse
position modulation (PPM) with I-FSK, thus allowing for
information to be encoded in the time period that the signal is
transmitted. Under the same channel conditions, symbol time,
and duty cycle, WTFC’s capacity is greater than I-FSK’s with
the trade off of having a greater symbol error rate [10].

In general, I-FSK and WTFC perform well in the wideband
regime without CSI, but a drawback of these schemes is that
the maximum likelihood receiver is a bank of frequency-
selective filters, which are otherwise known as matched filters
for FSK signals [12]. A bank of frequency-selective filters is
costly and difficult to implement due to the large number of
filters required, which increases linearly with the bandwidth
of the system. In addition, the power consumption and power
dissipation associated with this analog receiver often renders
them impractical to implement [13], [14]. The power consump-
tion of the bank of frequency-selective filters is proportional
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to the noise level and the bandwidth, which can grow to be
very large in the wideband regime [15]. Instead of using a
bank of frequency-selective filters, digital signal processing
can be used to detect I-FSK and WTFC signals, as done in
[11] for I-FSK signals. Analog-to-digital converters (ADCs)
are needed for digital processing, but high rate ADCs are
expensive and may have high power consumption depending
on the desired bit resolution, which increases the cost of digital
signal processing [16]–[18].

Instead of using a bank of frequency-selective filters or
digital signal processing to recover I-FSK and WTFC signals,
we follow prior work on analog compressed sensing receivers
[19]–[29] and suggest using a reduced-rate receiver based on
correlating signals. In particular, we use pseudo-noise corre-
lating signals/chipping sequences, which can be implemented
with cascaded shift registers [30], [31]. The sparsity of I-
FSK and WTFC signals, where the number of transmitted
frequencies is much less than the number of available fre-
quencies, enables the usage of sub-Nyquist receivers with a
set of correlating signals smaller in size than the set of basis
signals [19], [20]. This approach can reduce the amount of
hardware required in the receiver, which makes the receiver
more practical compared to a bank of frequency-selective
filters and digital signal processing. Recovery algorithms, such
as orthogonal matching pursuit (OMP) and thresholding, are
then used to recover the noisy and faded signals [20], [32],
[33].

The performance of the recovery algorithms using corre-
lating signals to recover analog signals such as FSK signals
have previously been investigated, though primarily in additive
white Gaussian noise (AWGN) channels or in scenarios where
the receiver knows the CSI. The reduced dimension multi-
user detection receiver used a bank of correlating receivers,
which are generated from a linear combination of the users’
signals, to detect active users signals that passed through an
AWGN channel with CSI known at the receiver [21]. The
parallel segmented compressed sensing structure contained a
bank of filters where overlapping portions of the noisy signal
were sampled in parallel and reconstructed using the OMP
algorithm [22]. The random demodulator used a chipping
sequence, which are signals that are composed of rectangular
pulses of length less than or equal to the Nyquist rate, to
recover noisy and noiseless analog signals in band-limited sys-
tems by sampling the output multiple times with an ADC [23]–
[27]. The multichannel random demodulator, which contains a
bank of chipping sequences, was used to recover noisy OFDM
signals, which reduced the ADC requirements but increased
the overall amount of hardware [28]. The modulated wideband
converter also used multiple periodic chipping sequences to
reconstruct noisy multiband analog signals [29].

In this work, we investigate the performance of a com-
pressed sensing receiver with chipping sequences as the corre-
lating signals and an integrator as a low-pass filter to recover I-
FSK and WTFC signals. We recover FSK-based analog signals
that have undergone Rayleigh fading and AWGN, without CSI
at the receiver. In contrast, previous works have primarily
focused on the cases with only AWGN or AWGN with CSI.
We compare the performance of a chipping sequence-based

compressed sensing receiver to a bank of frequency-selective
filters when using OMP to recover I-FSK and thresholding
to recover WTFC signals with AWGN and multipath fad-
ing. We demonstrate that the compressed sensing receiver
performs comparably to the frequency-selective filters with
an equivalent number of correlating signals, and explore the
trade off between the number of correlating signals and the
probability of a symbol error. We demonstrate that under
certain conditions such as a fixed frequency separation, symbol
time, and peak SNR, the ratio of the recovery using the
compressed sensing receiver to that of the bank of frequency-
selective receivers remains constant, which may allow for
extrapolation to larger bandwidth systems to evaluate the
trade offs when using a compressed sensing receiver versus
a frequency-selective receiver in order to save computation
time.

This paper is organized as follows. In Section II, we discuss
the I-FSK and WTFC signal model inputs and the Rayleigh
fading channel outputs. In Section III, we consider receivers
with a bank of frequency-selective filters and receivers with
a bank of chipping sequences and derive the outputs of these
receivers with I-FSK and WTFC signals. We then compare
the performance of the bank of frequency-selective filters
versus the performance of the compressed sensing receiver
with a bank of chipping sequences when recovering I-FSK
and WTFC signals, and discuss the hardware complexity and
costs for both receivers in Section IV. We end with concluding
remarks in Section V.

Throughout this paper we use the following notations: The
complex conjugate of an analog signal is denoted with an
over-bar. The absolute value is written as | · |. Matrices and
vectors are represented by bold capital and lower case letters
or symbols respectively, e.g. A and a. The conjugate transpose
of a matrix or vector is denoted by ∗, e.g. A∗. The expectation
of a random variable is written as E[·].

II. SIGNAL MODEL

I-FSK is a signaling scheme that combines FSK with a duty
cycle, where both the transmitter and receiver have knowledge
of which time period the signal is transmitted in [8]. Multiple
frequencies can be transmitted using I-FSK. WTFC combines
FSK with a duty cycle, and incorporates PPM into I-FSK. The
time period in which the signal is transmitted is unknown to
the receiver [10]. Using WTFC, only a single frequency is
transmitted.

Fig. 1 shows a visualization of the transmission of I-
FSK and WTFC signals using a grid layout with the y-axis
representing frequencies, and the x-axis representing time.
Both signaling schemes have similar setups, where there are M
frequencies denoted as fi with i ∈ [1,M ], a duty cycle θ with
signal transmission occurring 1/θ of the time, and a symbol
time of Ts. The separation between adjacent frequencies is
denoted as ∆f = fi+1 − fi. Taking into account the channel
delay spread, Td, the frequency separation is calculated as
∆f = 1/(Ts−Td) in order to maintain orthogonality between
frequency tones [9].

The bandwidth B of the systems can be calculated from the
frequency separation and the number of possible frequency
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(a) Grid illustrating the transmission of two I-FSK symbols with Q =
2 frequencies randomly chosen from M possible frequencies and
duty cycle of θ. Shaded regions denote transmitted frequencies. I-
FSK signals are restricted to a known time period.

(b) Grid illustrating the transmission of two WTFC symbols with 1
frequency randomly chosen from M possible frequencies and duty
cycle of θ. Shaded regions denote transmitted frequencies. WTFC
signals are not restricted to a known time period.

Fig. 1: Visualization of the transmission of I-FSK and WTFC signals.

tones M via B = M/(Ts − Td). After demodulation to
baseband and assuming a bandwidth of [−B/2, B/2], the
frequencies are

fi = −B
2

+
2i− 1

2(Ts − Td)
=

2i−M − 1

2(Ts − Td)
. (1)

where i ∈ [1,M ].

1) I-FSK Signal Model: Fig. 1a illustrates the transmission
of I-FSK signals comprised of two frequency tones with a
duty cycle of θ. The transmission of the I-FSK signal is
fixed to the first column of the grid, and each transmission
occurs 1/θ of the time. Define Q to be the number of
frequencies transmitted simultaneously. This gives a set of
possible symbols S with size |S| =

(
M
Q

)
as each frequency is

chosen without replacement.
The transmission of an I-FSK signal over a cycle time of

[0, Ts/θ) is [9]

x(t) =

{∑
l∈Sm

√
P
Qθ exp(j2πflt), 0 ≤ t ≤ Ts

0, otherwise.
(2)

where Sm is the symbol that is being transmitted (Sm ∈ S), fl
are the frequencies being transmitted, the set {l} contains the
frequency indices associated with symbol Sm, θ is the duty
cycle, and P is the average transmit power. The power of the
transmitted signal is P/θ, and the average transmit power over
the cycle time is P .

Consider the transmission of the I-FSK signal over a mul-
tipath fading channel. We assume that the channel has block-
fading with a coherence time of Tc and a constant delay spread
Td. We also assume that the channel is underspread, Td � Tc,

which results in the channel output [9]

y(t) =

{∑
k∈Sm

αk

√
P
Qθ exp(j2πfkt) + z(t), 0 ≤ t ≤ Ts

z(t), otherwise.

(3)

Here, αk are identical and independent zero-mean complex
Gaussian random variables with E[|α|2] = 1, and z(t) is
complex AWGN with power spectral density N0/2 [12].

2) WTFC Signal Model: Fig. 1b illustrates the transmission
of two WTFC signals with a duty cycle of θ. It can be seen
that the time duration in which a WTFC signal is transmitted
is not fixed, unlike the transmission of an I-FSK signal.

From Fig. 1b, the WTFC signal is transmitted for a duration
of Ts − Td seconds, while in Fig. 1a, the I-FSK signal is
transmitted for Ts seconds. The delay spread, Td, is used as a
guard time and prevents two signals in adjacent time periods
from overlapping at the receiver. In scenarios in which the
delay spread is unknown, a different value can be used as a
guard time. Here, we fix the delay spread to be the guard time.

The transmission of a WTFC signal over a cycle time of
[0, Ts/θ) is [10]

xl,k(t) =

{
Aexp(j2πflt), kTs ≤ t ≤ (k + 1)Ts − Td
0, otherwise.

(4)

where the amplitude of the signal is

A =

√
PTs

θ(Ts − Td)
. (5)

Here, A is the amplitude of the transmitted signal, fl is the
frequency of the tone being transmitted, k is the index for
the time period in which the tone is transmitted with k ∈
[0, 1/θ − 1], and P is the average transmit power.
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(a) Matched filter receiver for I-FSK signals. (b) Matched filter receiver for WTFC signals.

Fig. 2: Matched filter receivers for I-FSK and WTFC signals.

Assuming the same multipath fading channel described in
the previous section, the channel output is expressed as [10]

y(t) =

{
αAexp(j2πflt) + z(t), kTs ≤ t ≤ (k + 1)Ts

z(t), otherwise.
(6)

where α is a zero-mean complex Gaussian random variable
with E[|α|2] = 1 [12], and z(t) is complex AWGN with power
spectral density N0/2.

III. RECEIVERS

A. Bank of Frequency-selective Filters

Frequency-selective filters are matched filters for FSK-based
signals and are used for noncoherent detection. Frequency-
selective filters perform an inner product between the received
signal and the complex conjugate of the basis functions, as
shown in Fig. 2 [12]. For I-FSK, the frequency-selective filters
are sampled once per duty cycle, which is shown in Fig. 2a,
while for WTFC, the frequency-selective filters are sampled
1/θ times per duty cycle for each time period, which is shown
in Fig. 2b.

In the following subsections, we will see that the sensing
equations of I-FSK and WTFC signals are almost identical.
The primary difference is that WTFC’s sensing equation
incorporates an additional time index.

1) I-FSK Outputs: The output of the i-th frequency-
selective filter is

ri =

∫ Ts

Td

( ∑
k∈Sm

αk

√
P

Qθ
exp(j2πfkt) + z(t)

)
×

exp(−j2πfit)dt

=

{
zi, for i /∈ Sm
αi(Ts − Td)

√
P
Qθ + zi, for i ∈ Sm

(7)

where zi is a complex Gaussian random variable with zero
mean and variance N0(Ts − Td).

The outputs of the frequency-selective filters, an M × 1
vector r with entries ri, can be expressed in terms of a linear
equation with a sensing matrix, input vector, and noise vector.

Define x to be an M × 1 vector with xk = αk

√
P
Qθ for

k ∈ Sm, and xk′ = 0 for k′ /∈ Sm, and z to be a M × 1
vector with entries zi. Then,

r = (Ts − Td)x + z. (8)

The noise outputs zi are independent due to the frequencies
being orthogonal. Thus, the covariance matrix of the noise
vector z is Cov(z) = N0(Ts − Td)I.

2) WTFC Outputs: WTFC signals can be transmitted in any
time period. This results in an additional time index in compar-
ison to I-FSK. Given that frequency fk was transmitted in the
m-th time period where i, k ∈ [1,M ] and n,m ∈ [0, 1/θ− 1],
the output of the i-th frequency selective filter at the n-th time
period is

ri,n =

∫ (n+1)Ts

nTs+Td

y(t) exp (−j2πfit) dt.

=

{
zi,n, (i, n) 6= (k,m)

α(Ts − Td)
√

PTs

θ(Ts−Td)
+ zi,n, (i, n) = (k,m)

(9)

where zi,n is a complex Gaussian random variable with zero
mean and variance N0(Ts − Td).

Similar to the I-FSK outputs case, we can express the
WTFC matched filter outputs in terms of a linear equation
with a sensing matrix, input vector, and noise vector. In
comparison to I-FSK, a time index is added to the vectors
as the transmission of a WTFC signal is not fixed to a time
period. Define x[n] to be a M × 1 vector with elements xi,n
where xi,n = α

√
PTs

θ(Ts−Td)
for (i, n) = (k,m), otherwise

xi,n = 0; z[n] to be a M × 1 vector with entries zi,n; and
r[n] to be a M × 1 vector where the entries are the outputs
of the bank of frequency-selective filters at the n-th sample.
Then, the sensing equation can be written as,

r[n] = (Ts − Td)x[n] + z[n]. (10)

The noise outputs in the vector z[n] are independent due to
the frequencies being orthogonal. Thus, the covariance matrix
of the noise vector z[n] is Cov(z[n]) = N0(Ts − Td)I.
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As shown in Fig. 2b, the r[n] can be joined together to form
a matrix R =

[
r[0] r[1] ... r[1/θ − 1]

]
, which is used in

the OMP algorithm to recover the original signal.

B. Compressed Sensing Receiver with Correlating Signals

The sparsity of the I-FSK signals where Q � M allows
for the usage of a compressed sensing receiver that reduces
the number of filters required to recover I-FSK signals. Fig.
3 shows a compressed sensing receiver with p correlating
signals, where p ≤M , for both I-FSK and WTFC.

Here, we use chipping sequences as the correlating sig-
nals. Chipping sequences are signals composed of rectangular
pulses with length less than or equal to the Nyquist rate [24],
[29]. Fig. 3 shows an example of a chipping sequence where
the bandwidth is B above the receivers for I-FSK and WTFC.
The chipping sequences are defined as

si(t) =

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
, (11)

where si(t) is the i-th chipping sequence with i ∈ [1, p], vil
are the amplitudes of the pulses and are chosen randomly with
equal probability from [−1, 1], and rect(t) is a rectangular
pulse with amplitude 1 over the time duration t = [0, 1/B].
Each chipping sequence consists of M rectangular pulses, and
is non-zero over t = [Td, Ts]. In this work, once si(t) have
been randomly generated, the same si(t) are used to recover
the signals throughout the simulations.

1) I-FSK Outputs: With the correlating signals si(t) de-
fined in (11), the integration of the product between the re-
ceived signal and the complex conjugate of the i-th correlating
signal is

yi =

∫ Ts

Td

( ∑
k∈Sm

αk

√
P

Qθ
exp(j2πfkt) + w(t)

)
×

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt

=

∫ Ts

Td

∑
k∈Sm

αk

√
P

Qθ
exp(j2πfkt)× (12)

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt+

∫ Ts

Td

w(t)si(t)dt.

The first term of (12) is∫ Ts

Td

∑
k∈Sm

αk

√
P

Qθ
exp(j2πfkt)×

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt

=
∑
k∈Sm

αk

√
P

Qθ

j

2πfk
exp (j2πfkTd)× (13)

(
1− exp

(
j2πfk

1

B

)) M∑
l=1

vil exp

(
j2πfk

l − 1

B

)
.

See App. A for the detailed derivation of this first term.
Define V to be a p×M matrix containing the correlating

signal coefficients with Vil = vil, D to be a diagonal M×M
matrix with Dkk = j

2πfk
exp(j2πfkTd)

(
1− exp

(
j2πfk

1
B

))
,

ω to be a p×1 vector with entries ωi =
∫ Ts

Td
w(t)si(t)dt, and

F to be a M ×M matrix with entries of

Flk = exp

(
j2πfk

l − 1

B

)
= exp

(
j2π

(2k −M − 1)(l − 1)

2M

)
, (14)

where l, k ∈ [1,M ]. It can be seen that F is a discrete Fourier
transform matrix and therefore, FF∗ = F∗F = MI. If we
choose V as a random Bernoulli matrix, then, E[VV∗] =
MIp×p and E[V∗V] = pIM×M .

Define x to be an M × 1 vector with xk = αk

√
P
Qθ for

k ∈ Sm, and xk′ = 0 for k′ /∈ Sm, and w to be a M × 1
vector with entries wi. Then, the outputs of the compressed
sensing receiver can be written as

y = VFDx + ω. (15)

where the noise covariance is Cov(ω) = N0

B VV∗ [21], [34].
Refer to App. A for the derivation.

2) WTFC Outputs: The WTFC compressed sensing re-
ceiver outputs have an additional time index to account for
the transmission of WTFC signals in any time period. As
I-FSK and WTFC signals are both FSK-based signals, we
can extrapolate from the I-FSK compressed sensing receiver
outputs to find the WTFC compressed sensing outputs with an
additional time index. Recall that in WTFC, a single frequency
is transmitted, which results in a single α and fk term.

Given that frequency fk was transmitted in the m-th time
period for i, k ∈ [1,M ] and n,m ∈ [0, 1/θ− 1], the output of
the i-th correlating signal at the n-th time period is

yi,n =

∫ Ts

Td

y(t)×
M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt

=


∫ Ts

Td
αA exp(j2πfkt)

∑M
l=1 vil rect

(
t− Td − l−1

B

)
dt

+
∫ Ts

Td
w(t)si(t)dt, for (i, n) = (k,m)∫ Ts

Td
w(t)si(t)dt, otherwise

(16)

where A =
√

PTs

θ(Ts−Td)
. The non-noise portion of (16) for the

case n = m and i = k is∫ Ts

Td

αA exp(j2πfkt)

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt

= αA
j

2πfk
exp (j2πfkTd)

(
1− exp

(
j2πfk

1

B

))
×

M∑
l=1

vil exp

(
j2πfk

l − 1

B

)
. (17)

We use the same notations and definitions for the matrices
in the sensing equation as in the I-FSK case, as the deriva-
tions are identical with the exception of an extra time index
and different signal amplitude in WTFC. Define V to be a
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(a) Compressed sensing receiver for I-FSK signals. (b) Compressed sensing receiver for WTFC signals.

Fig. 3: Compressed sensing receivers for I-FSK and WTFC signals.

p × M matrix containing the correlating signal coefficients
with Vil = vil, D to be a diagonal M × M matrix with
Dkk = j

2πfk
exp(j2πfkTd)

(
1− exp

(
j2πfk

1
B

))
, ω to be a

p×1 vector with entries ωi =
∫ Ts

Td
w(t)si(t)dt, and F to be a

M ×M matrix with entries Flk = exp
(
j2π (2k−M−1)(l−1)

2M

)
.

Similar to the case of the bank of frequency-selective filters,
we add an additional time index to the transmit, noise, and
receive vectors. We use the same definitions as in the case
of the bank of frequency-selective filters for WTFC. Define
x[n] to be a M × 1 vector with elements xi,n where xi,n =

α
√

PTs

θ(Ts−Td)
if (i, n) = (k,m), otherwise xi,n = 0; ω[n] to

be a p × 1 vector with entries ωi,n; and y[n] to be a p × 1
vector with the entries being the outputs of the compressed
sensing receiver at the n-th sample. Then, the outputs of the
compressed sensing receiver can then be written as

y[n] = VFDx[n] + ω[n], (18)

where the noise covariance is Cov(ω) = N0

B VV∗ [21], [34].
From Fig. 3b, it can be seen that the y[n] are joined together

to form a matrix Y =
[
y[0] y[1] ... y[1/θ − 1]

]
, which

is used in the OMP algorithm to recover the original signal.

C. Orthogonal Matching Pursuit

A recovery algorithm needs to be used in conjunction
with the derived equations to recover the original transmitted
frequencies for I-FSK and WTFC. We use the OMP algorithm,
which is a greedy basis pursuit algorithm for recovering a
sparse vector x from the equation y = Ax + w where A is
a given sensing matrix, y is the given output vector, and w
is unknown noise, and thresholding, where we multiply two
matrices together and find the largest entry in the resulting
matrix [20], [32]. OMP is used to recover I-FSK signals due
to needing to recover multiple frequencies, while thresholding
is used to recover WTFC signals due to needing to recover
a single frequency. It should be noted that thresholding is

identical to a single step OMP algorithm. Below, we describe
the OMP algorithm for I-FSK and thresholding for WTFC.

1) OMP for I-FSK: For I-FSK, we use the OMP algorithm
described below.

• Step 1: Initialize the signal estimator x̂ = 0, the residual
r = y, matrix Λ = ∅, and indexer i = 1.

• Step 2: Find the column of A that maximizes |A∗i r|, and
append to matrix Λ.

• Step 3: Update the residual r = (I − P)y where P =
Λ(Λ∗Λ)−1Λ∗.

• Step 4: Update index i = i+ 1, and stop when i > Q.

The indices associated with the columns of A that maximize
|A∗i r| through the Q iterations correspond to the detected
frequencies. As an example, for I-FSK with two transmitted
frequencies, the OMP algorithm detects that the 2nd and M th
frequencies were the transmitted frequencies if the 2nd and
the M th columns of A maximize |A∗i r|. For the compressed
sensing receiver, the sensing matrix is A = VF and the vector
being recovered is Dx.

2) Thresholding for WTFC: In the previous WTFC sec-
tions, output matrices R and Y were formed by combining the
1/θ vector outputs of the bank of frequency-selective filters
(r[n]) and compressed sensing receiver (y[n]), respectively.
We can also combine the x[n] to form the input matrix
X =

[
x[0] x[1] ... x[1/θ − 1]

]
. Note that X is a sparse

matrix that contains a single non-zero entry. We use these
matrices in the equation Y = AX + W where A is the
given sensing matrix, Y is the given output matrix, X is the
unknown input matrix, and W is the unknown noise matrix.
We use thresholding to determine the non-zero entry of X.

• Step 1: Find the largest entry in |A∗Y|.
• Step 2: The row index of the largest entry corresponds

to the transmitted frequency, and the column index cor-
responds to the transmission time period.

For the compressed sensing receiver, the sensing matrix is
A = VF, and the matrix being recovered is DX. As D is
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(a) Recovery of an I-FSK signal with a single tone (Q = 1) at peak
SNRs of 7 and 17 dB.

(b) Recovery of an I-FSK signal with two tones (Q = 2) at peak
SNRs of 7 and 17 dB.

Fig. 4: Comparison between the performance of the compressed sensing receiver versus the bank of frequency-selective filters
when recovering I-FSK signals with 1 or 2 tones.

a diagonal matrix, a single entry of DX is non-zero, which
corresponds to the non-zero entry in X.

IV. RESULTS AND DISCUSSION

A. Impulsive Frequency Shift Keying

In the simulations for the I-FSK signaling scheme, we
consider the following parameters: bandwidth B = 20MHz,
noise spectral density N0 = 1 W/Hz, average transmit power
P = 104 W, symbol time Ts = 25µs, delay spread Td = 20µs,
and Doppler spread Bd = 150Hz. This results in M =
100 possible frequency tones with a frequency separation of
∆f = 200kHz. The peak SNR was calculated in decibels using
10 log10(P/(N0Bθ)), where the fading of the channel was not
taken into consideration due to its random effects.

Due to the randomness of the V matrix, some matrices
may perform better than others. In order to choose a sensing
matrix that performs well, 105 random Bernoulli matrices were
generated. The coherence associated with the matrix VF was
calculated, and the random Bernoulli matrix that resulted in
the smallest coherence was chosen as the matrix V.

Figs. 4a and 4b show a comparison between the perfor-
mance of a compressed sensing receiver with various numbers
of correlating signals versus a bank of frequency-selective
filters at peak SNRs of 7 and 17 dB. Fig. 4a illustrates the
performance of the compressed sensing receiver and the bank
of frequency-selective filters when recovering 1 frequency
from 100 possible frequencies, and Fig. 4b illustrates the
performance of the receivers when recovering 2 frequencies
from 100 possible frequencies. It can be seen that increasing
the number of chipping sequences for the compressed sensing
receiver reduces the probability of error. The performance of
the compressed sensing receiver approaches that of the bank of
frequency-selective filters as the number of chipping sequences
approaches the number of frequency-selective filters. For peak

SNRs of 7 and 17 dB and the recovery of 1 or 2 tones, the
performance of the bank of frequency-selective filters is ∼1.4-
1.5 times better or ∼1.6 dB better than the compressed sensing
receiver when the number of chipping sequences is equivalent
to the number of frequency-selective filters (p = M).

The difference in the performance of the compressed sens-
ing receiver and the bank of frequency-selective filters can
be attributed to the matrix D in the compressed sensing
receiver equation. Recall that the entries of D are Dkk =
j

2πfk
exp(j2πfkTd)

(
1− exp

(
j2πfk

1
B

))
. The magnitude of

the entries of D are inversely proportional to the frequency
fk and proportional to |1− exp

(
j2πfk

1
B

)
|. It is evident that

the magnitude of the entries of D vary, which impacts the
recovery of the compressed sensing receiver in contrast to
the bank of frequency-selective filters. If we compare D to
(Ts − Td) using the ratio M |D|/(Ts − Td), the kth entry
of M |D|/(Ts − Td) approaches 1 as k approaches M/2.
There are values of M |D|/(Ts − TD) that are less than 1,
which indicates that some entries of D detrimentally impact
the recovery of the signal. Therefore, the frequency-selective
filters outperform the compressed sensing receiver when the
number of correlating signals is equivalent with the number
of frequency-selective filters.

Fig. 5 shows a comparison between the recovery of multiple
frequency tones using a compressed sensing receiver with 50
correlating signals and a bank of 100 frequency-selective filters
at varying peak SNRs. The transmitted I-FSK signals con-
tained 1, 2, or 5 frequency tones. The results in this figure can
be used to investigate how reducing the number of correlating
signals impacts the performance of the compressed sensing
receiver. As the number of frequencies to recover increases,
the probability of error for both the compressed sensing
receiver and bank of frequency-selective filters increases. The
probability of error decreases as the peak SNR increases. At
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Fig. 5: Comparison between the recovery of I-FSK signals
with multiple tones with p = M/2 correlating signals for the
compressed sensing receiver versus a bank of M frequency
selective filters.

lower peak SNRs, the performance of the bank of frequency-
selective filters is not markedly better than the compressed
sensing receiver due to both of their probability of errors being
close to 1 for the recovery of 2 and 5 frequencies. However, as
the peak SNR increases, the ratio of the probability of error for
the bank of frequency-selective filters to that of the compressed
sensing receiver begins to approach a fixed range. The ratio
between the recovery of the bank of frequency-selective filters
and compressed sensing receiver is consistently between 3.0-
3.2 times at a peak SNR of 17 dB for the recovery of 1, 2,
and 5 frequency tones. Thus, there is approximately a 5 dB
loss at larger peak SNRs when using 50 correlating signals to
recovery 100 frequencies.

B. Wideband Time Frequency Coding Results

In the simulations for the WTFC signaling scheme, we
explore how changing the bandwidth and the peak SNR
impacts the probability of a symbol error and the recovery of
the transmitted signal. We fixed the following parameters in
the simulations: delay spread Td = 0.3µs, Doppler bandwidth
Bd = 360Hz, and duty cycle θ = 1/1000. The same method
of choosing the V matrix for the recovery of WTFC signals
as in the I-FSK case was used. We generate 105 random
Bernoulli matrices, and choose the random Bernoulli matrix
that minimizes the coherence as the fixed matrix V.

Fig. 6 shows a comparison between the performance of
a compressed sensing receiver versus a bank of frequency-
selective filters when recovering WTFC signals at peak SNRs
of −5, 0, and 5 dB. The analysis of this figure, in particular,
focuses on examining the performance of WTFC and its
receivers in the wideband regime, where the bandwidth of the
system is 400 MHz, and the average SNRs are −35,−30,
and −25 dB. As the number of correlating signals used in
the compressed sensing receiver increases, its performance

Fig. 6: Comparison between the recovery of a WTFC signal
using a compressed sensing receiver and a bank of frequency-
selective filters at peak SNRs of −5, 0, and 5dB. The following
parameters were used: bandwidth B = 400MHz, number of
frequencies M = 100, and symbol time Ts = 0.55µs.

improves. When the number of correlating signals is equivalent
with the number of frequency-selective filters (p = M = 100),
the performance of the frequency-selective filters is ∼1.4-1.45
times better or ∼1.6 dB better than the performance of the
compressed sensing receiver. This performance matches the
performance of the compressed sensing receiver when it was
used to recover I-FSK signals. The similarity between the
performances is due to the sensing equations used for I-FSK
and WTFC being identical, except for the recovery of a sparse
transmit matrix instead of a sparse vector for WTFC (18). As
the sensing equations for I-FSK and WTFC are near-identical,
the difference in performance when the number of correlating
signals in the compressed sensing receiver and the number of
filters in the bank of frequency-selective filters are equivalent
(p = M) can also be explained by the D matrix. The impact
of the D matrix was discussed in the previous sub-section.

Fig. 7 compares the performance of a compressed sensing
receiver versus a bank of frequency-selective filters when re-
covering WTFC signals with different numbers of possible fre-
quencies M = 100, 200, 500. Fig. 7a presents the probabilities
of error associated with both receivers, while Fig. 7b presents
the ratio of the probabilities of error of the compressed sensing
receiver with varying numbers of correlating signals to that
of the bank of frequency-selective filters. Due to the varying
number of possible frequencies used when generating Fig. 7a
and 7b, the x-axis is the ratio of the number of correlating
signals used to the number of total frequency-selective filters.
For example, at the ratio of 0.5, when M = 100, 50 correlating
signals were used; when M = 200, 100 correlating signals
were used; and when M = 500, 250 correlating signals were
used. This allows for the results of the compressed sensing
receiver and the bank of frequency-selective filters to be easily
compared when viewed on the same plot.
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(a) The probability of a symbol error associated with the matched
filters and compressed sensing receiver when recovering WTFC
signals.

(b) The ratio of the probability of symbol error of a compressed
sensing receiver to that of a bank of frequency-selective filters when
recovering WTFC signals.

Fig. 7: Comparison between the performance of the compressed sensing receiver and the bank of frequency-selective filters
when recovering a WTFC signal with varying number of possible frequencies. The following parameters were used: symbol
time Ts = 5.3µs, bandwidths of B = 20, 40, 100MHz respectively, and peak SNR 4 dB. This gives a separation between
adjacent frequencies of ∆f = 200kHz.

According to Fig. 7a, the probability of a symbol error
decreases as the bandwidth and the number of possible fre-
quencies to choose from increases. This is due to the figures
being generated with a fixed peak SNR of 4 dB and average
SNR of -26 dB. With the SNRs being fixed and the increasing
bandwidth of the system, the total amount of energy of the
signal also increases, which reduces the probability of an
error. Similar to what has been shown previously, as the
number of correlating signals increases, the performance of
the compressed sensing receiver improves.

It is interesting to note that in Fig. 7a, as the number of
possible frequencies and the bandwidth increases, the ratio
of the probability of error associated with the compressed
sensing receiver to that of the bank of frequency-selective
filter seems to remain constant at given ratios of the number of
correlating signals to matched filters. Such a trend is confirmed
in Fig. 7b. In Fig. 7b, we use the same x-axis as in Fig. 7a,
and the y-axis is the ratio between the compressed sensing
receiver probability of error to the bank of frequency-selective
filters probability of error. We observe that ratios between the
recovery of the WTFC signal using the compressed sensing
receiver to that of the frequency-selective filters are close in
value for all of the simulated M values of 100, 200, and 500.
This result indicates that given a fixed peak SNR, symbol time,
and frequency separation, the performance of the compressed
sensing receiver compared to that of the bank of frequency-
selective filters remains the same, regardless of the bandwidth
of the system. We may be able to be exploit this property
when exploring the performance of a compressed sensing
receiver at higher bandwidths - due to the longer simulation
times required for a larger bandwidth and larger number of

frequencies, it may be beneficial to extrapolate from a ratio
curve generated from a smaller bandwidth to estimate the error
probability. Note that the conditions for sparsity need to be
satisfied in order to ensure the validity of using a compressed
sensing receiver.

C. Hardware complexity and costs

It can be seen throughout these results that there is a
performance difference between using a bank of frequency-
selective filters and using a compressed sensing receiver that
utilizes chipping sequences. When the number of filters and
chipping sequences are equivalent, the bank of frequency-
selective filters outperforms the compressed sensing receiver.
As the number of chipping sequences is decreased, the gap
between the performances of the two receivers increases.

Despite this performance gap, there is a benefit in the
hardware realm to using the chipping sequences instead of the
frequency-selective filters. The compressed sensing receiver
uses random binary chipping sequences, which are otherwise
known as pseudo-random noise signals. These sequences are
generated by using multiple feedback shift registers [35].
The chipping sequences are all the same frequency, and the
feedback shift registers can use the same oscillator output as
the clock signal input. Thus, only a single oscillator is required
for the compressed sensing receiver.

In comparison, the bank of frequency-selective filters is
more complex and expensive. There are M possible frequen-
cies that can be transmitted, and each frequency-selective
filter requires an oscillator to generate the associated sine
wave. While it is possible to reduce the number of required
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oscillators by using frequency divider or frequency multiplier
circuits to change the output frequency by an integer factor,
there is no guarantee that the resulting frequencies will match
with the desired frequencies. The frequency multiplier and
divider circuits would replace some oscillators, but they still
introduce additional hardware. In addition, frequency multi-
pliers increase the phase noise [36], which would negatively
impact the recovery of the FSK signals [37].

Thus, while there is a performance gap between the bank of
frequency-selective filters and the compressed sensing receiver
with chipping sequences, the hardware required for imple-
menting these receivers suggests that the compressed sensing
receiver would be more practical, especially as the number of
possible frequencies grows large.

V. CONCLUSION

In this work, we demonstrated the feasibility of using
a compressed sensing receiver with chipping sequences as
correlating signals to recover I-FSK with multiple frequencies,
and WTFC signals with a single frequency. We used a bank
of frequency-selective filters as a base-line for comparison.
We derived the sensing equations associated with the bank of
frequency-selective filters and the compressed sensing receiver
for I-FSK and WTFC, and showed that the sensing equations
are identical except for an additional time index for WTFC.
We then used the OMP algorithm to recover I-FSK signals
and thresholding to recover WTFC signals.

We analyzed the performance of the compressed sensing
receiver under various conditions such as changing the peak
SNR, number of frequencies to recover, and number of pos-
sible frequencies to recover a single frequency from. As the
number of correlating signals used to recover the transmitted
signal increases, the performance of the compressed sensing
receiver improves. When the number of correlating signals is
equivalent to the number of frequency-selective filters (p =
M), the bank of frequency-selective filters outperforms the
compressed sensing receiver by ∼1.6 dB in all the simulations
due to a diagonal matrix in the sensing matrix that attenuates
the signal that is being recovered. Reducing the number of
correlating signals in the compressed sensing receiver by half
when recovering 100 frequencies results in a ∼5 dB loss.
Given a peak SNR and frequency separation, the ratio of the
performance of the compressed sensing receiver to that of the
bank of frequency-selective filters remains constant even as
the bandwidth of the system is changed for WTFC signals.
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APPENDIX A
DERIVATION OF THE NON-NOISE COMPONENT USED IN THE

COMPRESSED SENSING RECEIVER

Here we derive the first term of the integral for the outputs
of the compressed sensing receiver, which was used in (14)
and (17):∫ Ts

Td

∑
k∈Sm

αk

√
P

Qθ
× (19)

exp(j2πfkt)

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt

=
∑
k∈Sm

αk

√
P

Qθ
× (20)

∫ Ts

Td

exp(j2πfkt)

M∑
l=1

vil rect
(
t− Td −

l − 1

B

)
dt

=
∑
k∈Sm

αk

√
P

Qθ
× (21)

M∑
l=1

∫ Ts

Td

exp(j2πfkt)vil rect
(
t− Td −

l − 1

B

)
dt

=
∑
k∈Sm

αk

√
P

Qθ

M∑
l=1

M∑
g=1

× (22)

∫ Td+
g
B

Td+
g−1
B

exp(j2πfkt)vil rect
(
t− Td −

l − 1

B

)
dt

=
∑
k∈Sm

αk

√
P

Qθ

M∑
l=1

∫ Td+
l
B

Td+
l−1
B

exp(j2πfkt)vil dt (23)

=
∑
k∈Sm

αk

√
P

Qθ

M∑
l=1

vil
1

j2πfk
exp(j2πfkt)|

Td+
l
B

Td+
l−1
B

(24)

=
∑
k∈Sm

αk

√
P

Qθ

M∑
l=1

vil
1

j2πfk
× (25)

exp

(
j2πfk

(
Td +

l − 1

B

))(
exp

(
j2πfk

1

B

)
− 1

)
=
∑
k∈Sm

αk

√
P

Qθ

j

2πfk
exp (j2πfkTd)× (26)

M∑
l=1

vil exp

(
j2πfk

l − 1

B

)(
1− exp

(
j2πfk

1

B

))

=
∑
k∈Sm

αk

√
P

Qθ

j

2πfk
exp (j2πfkTd)× (27)

(
1− exp

(
j2πfk

1

B

)) M∑
l=1

vil exp

(
j2πfk

l − 1

B

)
.

From (22) to (23), we use rect
(
t− Td − l−1

B

)
being a rectan-

gular pulse of length 1/B to simplify the summation of the
integrals. With this derivation, a linear equation can be written
to generate the outputs of the compressed sensing receiver.

APPENDIX B
COMPRESSED SENSING NOISE COVARIANCE MATRIX

To derive the covariance matrix of the noise outputs of the
compressed sensing receiver, we use a similar process as in
[34]. We derive the (i, j)th element of the covariance matrix:

Cij = E[ωiωj ] (28)

= E

[∫ Ts

Td

∫ Ts

Td

si(t)sj(u)w(t)w(u)dtdu

]
(29)
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=

∫ Ts

Td

∫ Ts

Td

si(t)sj(u)E [w(t)w(u)] dtdu (30)

=

∫ Ts

Td

∫ Ts

Td

si(t)sj(u)N0δ(t− u)dtdu (31)

= N0

∫ Ts

Td

si(t)sj(t)dt (32)

= N0

∫ Ts

Td

L∑
l=1

vil rect
(
t− Td −

l − 1

B

)
× (33)

L∑
l=1

vjl rect
(
t− Td −

l − 1

B

)
dt

= N0

∫ Ts

Td

L∑
l=1

vilvjl rect
(
t− Td −

l − 1

B

)
dt (34)

= N0

L∑
l=1

∫ Td+l/B

Td+(l−1)/B
vilvjldt (35)

=
N0

B

L∑
l=1

vilvjl. (36)

We see that the covariance matrix of the noise vector for the
compressed sensing receiver is Cov(ω) = N0

B VVT .
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[1] K. Yang, D. C. González, Y. C. Eldar, and M. Médard, “A sequence-
based compressed sensing receiver for impulsive frequency shift keying,”
in 2022 International Workshop on Signal Processing Advances in
Wireless Communications, 2022.

[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, May 2013.

[3] S. J. Nawaz, S. K. Sharma, B. Mansoor, M. N. Patwary, and N. M.
Khan, “Non-coherent and backscatter communications: Enabling ultra-
massive connectivity in 6g wireless networks,” IEEE Access, vol. 9, pp.
38 144–38 186, 2021.

[4] M. Médard and R. Gallager, “Bandwidth scaling for fading multipath
channels,” IEEE Trans. Inf. Theory, vol. 48, no. 4, pp. 840–852, Apr.
2002.

[5] V. G. Subramanian and B. Hajek, “Broad-band fading channels: signal
burstiness and capacity,” IEEE Trans. Inf. Theory, vol. 48, no. 4, pp.
809–827, Apr. 2002.

[6] D. Schafhuber, H. Bölcskei, and G. Matz, “System capacity of wideband
OFDM communications over fading channels without channel knowl-
edge,” in Proc. IEEE International Symposium on Information Theory
(ISIT), Chicago, IL, USA, Jun. 2004, pp. 389–389.

[7] R. S. Kennedy, Fading Dispersive Communication Channels, 7th ed.
York,USA: Wiley-Interscience, 1969.

[8] I. E. Telatar and D. N. C. Tse, “Capacity and mutual information of
wideband multipath fading channels,” IEEE Trans. Inf. Theory, vol. 46,
no. 4, pp. 1384–1400, Jul. 2000.

[9] C. Luo, M. Médard, and L. Zheng, “On approaching wideband capacity
using multitone FSK,” IEEE J. Sel. Areas in Commun., vol. 23, no. 9,
pp. 1830–1838, Sep. 2005.

[10] K. Yang, R. G. L. D’Oliveira, S. Salamatian, and M. Médard, “Wideband
time frequency coding,” in IEEE Personal, Indoor and Mobile Radio
Communications, 2020, pp. 1–6.

[11] K. Yang, J. Gluck, D. Perkins, R. Ridgway, and M. Médard, “Over-
the-air testing of impulsive frequency shift keying modulation,” in IEEE
Military Communications Conference, 2021, pp. 1–6.

[12] J. G. Proakis and M. Salehi, Communication Systems Engineering,
2nd ed. USA: Prentice-Hall, Inc., 1994.

[13] M. Hahm, E. Friedman, and E. Titlebaum, “A comparison of analog
and digital circuit implementations of low power matched filters for use
in portable wireless communication terminals,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 44,
no. 6, pp. 498–506, 1997.

[14] E. Vittoz, “Low-power design: ways to approach the limits,” in Proceed-
ings of IEEE International Solid-State Circuits Conference - ISSCC ’94,
1994, pp. 14–18.

[15] C. Svennson and J. Wikner, “Power consumption of analog circuits: a
tutorial,” Analog Integrated Circuits and Signal Processing, vol. 65, p.
171–184, 2010.

[16] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Transactions on Signal Processing, vol. 59,
no. 9, pp. 4053–4085, 2011.

[17] T. Sundstrom, B. Murmann, and C. Svensson, “Power dissipation bounds
for high-speed nyquist analog-to-digital converters,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 509–518,
2009.

[18] S. Rapuano, P. Daponte, E. Balestrieri, L. De Vito, S. Tilden, S. Max,
and J. Blair, “Adc parameters and characteristics,” IEEE Instrumentation
Measurement Magazine, vol. 8, no. 5, pp. 44–54, 2005.

[19] Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant
spaces,” IEEE Trans. on Signal Process., vol. 57, no. 8, pp. 2986–2997,
Aug. 2009.

[20] Y. C. Eldar, Sampling Theory Beyond Band limited Systems, 1st ed.
Cambridge, United Kingdom: Cambridge University Press, 2015.

[21] Y. Xie, Y. C. Eldar, and A. Goldsmith, “Reduced-dimension multiuser
detection,” IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3858–3874, Jun.
2013.

[22] Z. Yu, S. Hoyos, and B. M. Sadler, “Mixed-signal parallel compressed
sensing and reception for cognitive radio,” in 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008, pp.
3861–3864.

[23] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb,
Y. Massoud, and B. R., “Analog-to-information conversion via random
demodulation,” in Proc. IEEE Workshop on Design, Applications, In-
tegration and Software, Richardson, TX, USA, 29–30 Oct. 2006, pp.
71–74.

[24] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G.
Baraniuk, “Beyond nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520 – 544, Jan.
2010.

[25] Y. Massoud, S. Smaili, and V. Singal, “Efficient realization of random
demodulator-based analog to information converters,” in 2011 IEEE
Biomedical Circuits and Systems Conference (BioCAS), 2011, pp. 133–
136.

[26] M. Mangia, R. Rovatti, and G. Setti, “Analog-to-information conversion
of sparse and non-white signals: Statistical design of sensing wave-
forms,” in 2011 IEEE International Symposium of Circuits and Systems
(ISCAS), 2011, pp. 2129–2132.

[27] A. Harms, W. U. Bajwa, and R. Calderbank, “A constrained random
demodulator for sub-nyquist sampling,” IEEE Transactions on Signal
Processing, vol. 61, no. 3, pp. 707–723, 2013.

[28] N. Li and H. Qian, “The performance of multichannel random demod-
ulator for multiband signals,” in Proc. IEEE International Conference
on Signal Processing, Communications and Computing (ICSPCC), Kun-
Ming, China, 5–8 Aug. 2013, pp. 1–5.

[29] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” IEEE J. Sel. Topics Signal
Process., vol. 4, no. 2, pp. 375–391, Apr. 2010.

[30] B. Sklar, Digital Communications: Fundamentals and Applications.
USA: Prentice-Hall, Inc., 1988.

[31] J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook,
1st ed. USA: Artech House, Inc., 1998.

[32] T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal
recovery with noise,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4680–
4688, Jul. 2011.

[33] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure and
Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[34] Y. Xie, “Statistical signal detection with multi-sensor and sparsity,”
Ph.D. dissertation, Stanford University, 2012.

[35] E. D. Lipson, K. W. Foster, and M. P. Walsh, “A versatile pseudo-
random noise generator,” IEEE Transactions on Instrumentation and
Measurement, vol. IM-25, no. 2, pp. 112–116, 1976.

[36] R. Baugh, “Low noise frequency- multiplication,” in 26th Annual
Symposium on Frequency Control, 1972, pp. 50–54.

[37] S. Hussain and S. Barton, “Noncoherent detection of fsk signals in the
presence of oscillator phase noise in an awgn channel,” in 1991 Sixth
International Conference on Mobile and Personal Communications,
1993, pp. 95–98.



12

[38] K. Yang, “Design of sparse signaling schemes in fading wideband
channels,” 2021. [Online]. Available: https://dspace.mit.edu/handle/
1721.1/139469

https://dspace.mit.edu/handle/1721.1/139469
https://dspace.mit.edu/handle/1721.1/139469

	I Introduction
	II Signal Model
	II-1 I-FSK Signal Model
	II-2 WTFC Signal Model


	III Receivers
	III-A Bank of Frequency-selective Filters
	III-A1 I-FSK Outputs
	III-A2 WTFC Outputs

	III-B Compressed Sensing Receiver with Correlating Signals
	III-B1 I-FSK Outputs
	III-B2 WTFC Outputs

	III-C Orthogonal Matching Pursuit
	III-C1 OMP for I-FSK
	III-C2 Thresholding for WTFC


	IV Results and Discussion
	IV-A Impulsive Frequency Shift Keying
	IV-B Wideband Time Frequency Coding Results
	IV-C Hardware complexity and costs

	V Conclusion
	Appendix A: Derivation of the non-noise component used in the compressed sensing receiver
	Appendix B: Compressed Sensing Noise Covariance Matrix
	References

