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Bayesian Estimation of Graph Signals

Ariel Kroizer, Tirza Routtenberg

Abstract—We consider the problem of recovering random graph
signals from nonlinear measurements. For this setting, closed-form
Bayesian estimators are usually intractable and even numerical
evaluation may be difficult to compute for large networks. In this
paper, we propose a graph signal processing (GSP) framework
for random graph signal recovery that utilizes information on
the structure behind the data. First, we develop the GSP-linear
minimum mean-squared-error (GSP-LMMSE) estimator, which
minimizes the mean-squared-error (MSE) among estimators that
are represented as an output of a graph filter. The GSP-LMMSE
estimator is based on diagonal covariance matrices in the graph
frequency domain, and thus, has reduced complexity compared
with the LMMSE estimator. This property is especially important
when using the sample-mean estimators that are based on a training
dataset. We then state conditions under which the low-complexity
GSP-LMMSE estimator coincides with the optimal LMMSE es-
timator. Next, we develop an approximate parametrization of the
GSP-LMMSE estimator by graph filters. We present three imple-
mentations of the parametric GSP-LMMSE estimator for typical
graph filters. These parametric graph filters are more robust to
outliers and to network topology changes. In our simulations, we
evaluate the performance of the proposed GSP-LMMSE estimators
for the problem of state estimation in power systems, which can
be interpreted as a graph signal recovery task. We show that the
proposed sample-GSP estimators outperform the sample-LMMSE
estimator for a limited training dataset and that the parametric
GSP-LMMSE estimators are more robust to topology changes in
the form of adding/removing vertices/edges.

Index Terms—Graph signal processing (GSP), graph filters,
Bayesian estimation, linear minimum mean-squared-error
(LMMSE) estimator, sample-LMMSE estimator, GSP-LMMSE
estimator, graph signal recovery.

1. INTRODUCTION

RAPH signals arise in various applications such as the

study of brain signals [1] and sensor networks [2]. The
area of graph signal processing (GSP) has gained considerable
interest in the last decade. GSP theory extends concepts and
techniques from traditional digital signal processing (DSP) to
data indexed by generic graphs, including the graph Fourier
transform (GFT), graph filter design [3]-[5], and sampling
and recovery of graph signals [6]-[9]. Many modern network
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applications involve complex models and large datasets and are
characterized by nonlinear models [10], [11], for example, the
brain network connectivity [12], environment monitoring [13],
and power flow equations in power systems [14]-[16]. The
recovery of graph signals in such networks is often intractable,
especially for large networks. For example, the recovery of
voltages from power measurements is an NP-hard nonconvex
optimization problem [17], which is at the core of power system
analysis [18]. In this case, the graph represents an electrical
network, and the signals are the voltages. Thus, the develop-
ment of GSP methods for the estimation of graph signals has
significant practical importance, in addition to its contribution
to the enrichment of theoretical statistical GSP tools.

The recovery of random graph signals can be performed
by state-of-the-art Bayesian estimators, such as the minimum
mean-squared-error (MMSE) and the linear MMSE (LMMSE)
estimators. However, MMSE estimation is often computa-
tionally intractable and does not have a closed-form expres-
sion in nonlinear models. The LMMSE can be used when
the second-order statistics are completely specified. In some
cases (e.g. [19]-[21]), accurate characterization of the nonlinear
model is possible by using tools such as Bussgang’s theorem.
However, for the general case, the distributions (e.g. the covari-
ance matrices) of the desired graph signal and the observations
are difficult to determine. Moreover, in many practical appli-
cations, the graph signal has a broad correlation function so
that estimating this correlation from data with high accuracy
often necessitates a larger sample size than is available [22]
and requires stationarity of the signals. Low-complexity esti-
mation algorithms have been considered as an alternative. For
example, in [23], a low-rank approximation is applied to the
LMMSE estimator by using the singular value decomposition
(SVD) of the covariance matrices. The dual-diagonal LMMSE
(DD-LMMSE) channel estimation algorithm, which is based on
the diagonal of the covariance matrices, was proposed in [24].
However, these methods may lead to considerable performance
loss compared with LMMSE estimation.

Graph filters have been used for many signal processing tasks,
such as denoising [25], [26], classification [27], and anomaly
detection [14]. The design of graph filters to obtain a desired
graph frequency response for the general case has been studied
and analyzed in various works [5], [28]-[30]. Model-based
recovery of a graph signal from noisy measurements by graph
filters for linear models was treated in [5], [25], [31], [32]. To
derive classical graph filters, such as the Wiener filter, more
restrictive assumptions on the graph signal are required [32].
Nonlinear graph filters were considered in [13], but they require
higher-order statistics that are not completely specified in the
general case. Graph neural network approaches were considered
in [33], [34]; however, data-based methods necessitate extensive
training sets, and result in nonlinear estimators, while in this
paper, we focus on linear estimation with limited training data.
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Fitting graph-based models to given data was considered
in [35]-[37]. In [38], we proposed a two-stage method for
graph signal estimation from a known nonlinear observation
model, which is based on fitting a graph-based model and then
implementing least-squares recovery on the approximate model.
However, model-fitting approaches aim to minimize the mod-
eling error and in general have significantly lower performance
than estimators that minimize the estimation error directly. A
fundamental question remains regarding how to use knowledge
of the nonlinear physical model and on the graph topology to
obtain a low-complexity estimator for the general nonlinear case
that has optimal MSE performance.

In this paper, we consider the estimation of random graph
signals from a nonlinear observation model. First, we present the
sample-LMMSE estimator, in which the analytical expressions
of the LMMSE estimator are replaced by their estimated values;
this requires use of large training datasets. Next, we propose
the GSP-LMMSE estimator, which minimizes the MSE among
the subset of estimators that are represented as an output of a
graph filter. We discuss the advantages of the GSP-LMMSE
estimator in terms of complexity and show that 1) for mod-
els with diagonal covariance matrices in the graph frequency
domain, the GSP-LMMSE and LMMSE estimators coincide;
and 2) for linear models, the GSP-LMMSE estimator coin-
cides with the graphical Wiener filter [32]. We develop the
MSE-optimal parametrization of the GSP-LMMSE estimator by
shift-invariant graph filters that approximate the graph frequency
response of the GSP-LMMSE estimator. The parameterized
estimators can be applied to any topology, making them more
robust to network topology changes. We also implement three
types of the parameterized GSP-LMMSE estimator based on
well-known graph filters. Finally, we perform numerical simu-
lations for the problem of state estimation in power systems.
We show that in this case the sample-GSP estimators out-
perform the sample-LMMSE estimator for a limited training
dataset and coincide with the sample-LMMSE estimator oth-
erwise. Moreover, the proposed estimators are more robust to
changes in the network topology in the form of adding/removing
vertices/edges.

The rest of this paper is organized as follows. In Section II
we introduce the basics of GSP and three examples of graph
filters. In Section III, we formulate the estimation problem and
present the MMSE and the LMMSE estimators. In Section IV,
we develop the proposed GSP-LMMSE estimator and present
parameterizations of the GSP-LMMSE estimator in Section V.
Simulation are shown in Section V1. Finally, the paper concluded
in Section VII.

We denote vectors by boldface lowercase letters and matri-
ces by boldface uppercase letters. The operators (-)7, (-)71,
and ()T represent the transpose, inverse, and pseudo-inverse,
respectively. The notation o denotes the Hadamard product. For
a matrix A, rank(A) is its rank. For a vector a, diag(a) is a
diagonal matrix whose ¢th diagonal entry is a;; when applied to
a matrix, diag(A) is a vector collecting the diagonal elements
of A. The mth element of the vector a is written as a,, or
[a];,. The (m, q)th element of the matrix A is written as A,,, ,
or [A],, 4. The identity matrix of dimension N is written as
I and the vector Oy is a length N vector of all zeros. The
multivariate Gaussian distribution of y with mean vector, p,
and covariance matrix, X, is denoted by y ~ N (u, X). The
cross-covariance matrix of the vectors a and b is denoted by
Cab = E[(a — E[a])(b — E[b])"].
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II. BACKGROUND: GRAPH SIGNAL PROCESSING (GSP)

We begin by reviewing GSP and general graph filters in Sec-
tion II-A. Three commonly-used graph filters are then presented
in Sections II-B, II-C, II-D, and will be used later in the paper.

A. GSP Background

Consider an undirected, connected, weighted graph
G(V, £, W), where V and & are sets of vertices and edges,
respectively. The matrix W € RV*N is the non-negative

weighted adjacency matrix of the graph, where N 2 [V| is the
number of vertices in the graph. If there is an edge (i,j) € £
connecting vertices 4 and j, the entry W, ; represents the
weight of the edge; otherwise, W; ; = 0. A common way to
represent the graph topology is by the Laplacian matrix, which
is defined by

L 2 diag (W1) — W. (1)

The Laplacian matrix, L, is a real and positive semidefinite
matrix and its eigenvalue decomposition (EVD) is given by

L=VAV", )

where A is a diagonal matrix consisting of the eigenvalues of

L,0= X\ <X <...< My, Visamatrix whose nth column,

v, 1s the eigenvector of L that is associated with \,,, and VT =

V. We assume, without loss of generality, that G is a connected

graph, i.e., that Ao # 0 [39].
In this paper, a graph signal is an N-dimensional vector, a,
that assigns a scalar value to each vertex, i.e., each entry a,,

denotes the signal value at vertix n, forn = 1,..., N. The GFT
of the graph signal a is defined as [4]
a2 vTa. (3)

Similarly, the inverse GFT (IGFT) of a is given by Va. Finally,
a graph signal is a graph-bandlimited signal with cutoff graph
frequency IV, if it satisfies [3]

Gn=0,n=Ns+1,...,N. )

Graph filters are useful tools for various GSP tasks. Linear
and shift-invariant graph filters with respect to (w.r.t.) the graph
shift operator (GSO) play essential roles in GSP. These filters
generalize linear time-invariant filters used in DSP for time se-
ries, and enable performing tractable operations over graphs [3],
[4]. A graph filter is a function f(-) applied to a GSO, where here
we use the GSO given by L, that allows an eigendecomposition
as follows [3]:

FL) = VAV, )
where f(A) is a diagonal matrix. That is, f(),) is the graph
frequency response of the filter at graph frequency \,,, n =1,
..., N, and f(L) is diagonalized by the eigenvector matrix V
of L. We assume that the graph filter, f(-), is a well-defined
function on the spectrum {1, ..., Ay} of L.

Throughout this paper, we consider three commonly-used
parametrizations of the graph filter function, f(-), that are ap-
propriate for modeling low-pass graph filters. For clarity of
representation, we will write this specific function as h(-; a),
where o« contains the graph filter parameters. It should be
noted that under simple conditions, all filters in the form of
(5) can be represented as a finite polynomial of L [40]. Linear
graph filters can be implemented locally, e.g., with exchanges of
information among neighbors [40]. However, due to the nature
of the polynomial fitting problem, linear graph filters usually
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have limited accuracy when used for approximating a desired
graph frequency response (see, e.g. in [28]—[30]). This is further
discussed in Section IV, where the benefits of the presented
parametrization in this context are outlined.

B. Linear Pseudo-Inverse Graph Filter

In alinear graph filter, the filter is a polynomial of a GSO, such
as the Laplacian matrix [3], [4]. In addition, the Moore-Penrose
pseudo-inverse of the Laplacian matrix plays an essential role
in many graph-based applications [41], [42]. Inspired by the
linear graph filter, we define the linear pseudo-inverse graph
filter, f(L) = h'PL(LT; o), as

hLPI(LT; ) 2 holy + haLf+ -+ hK(LT)K, 6)

where K is the filter order and the filter coefficients vector is
o = [ho,... hi]" € REH, 7

with K < N due to the Cayley-Hamilton theorem. From (5)
and (6), we conclude that the frequency response of the linear
pseudo-inverse graph filter at graph frequency A\, can be ex-
pressed as

hLPI()\ P — {ho, n=1

8
SE ok, m=2,...n  ®

C. Autoregressive Moving Average (ARMA) Graph Filter

Similar to temporal ARMA filters [43], an ARMA graph
filter is characterized by a rational polynomial in the Laplacian
matrix [5]. In this case, f(L) = hARMA(L; o*RMA) | where the
ARMA graph filter is defined as

hARMA(L ARMA (IN 4 Z a, LT>

and the ARMA filter coefficient vector is

aARMA [aT CT}T

_1Q

> el (9)
q=0

(10)

where a = [1,a1,...,ag]" and ¢ = [cg,...,cqo]T. It is as-
sumed that Iy + Zle a,L" is a non-singular matrix. From
(5) and (9), the graph-ARMA filter frequency response at graph
frequency \,, can be expressed as

Zq 0 CaAn
1 + Zr:l aT n

n=1,..., N, where we assume that 1 + Zf‘:l a,A;, # 0.
The linear graph filter, which is a polynomial of the Laplacian
matrix, L:

hARMA ()\ ARMA) _

n; & ) Y

hlin(L;alin) é hOIN + hlL 4+ oo+ hKLK7

where K is the filter order and o™ = [hy,...,h K]T is the
filter coefficients vector, can be obtained as a special case of the
ARMA graph filter by settinga,, = 0,7 =1,...,Rand Q = K
in (9). However, the ARMA graph filter improves the accuracy of
the approximation of the desired graph frequency response and
requires fewer coefficients compared to linear graph filters [29].
In addition, unlike the linear pseudo-inverse graph filter, the
ARMA graph filter has distributed implementations, as shown
in [29], [44].

(12)
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D. Low-Rank Graph Filter

In many GSP applications, the graph signals are assumed to
be bandlimited in the graph spectrum domain [45]. In particular,
under the assumption of a low-frequency graph signal, we are
interested in filtering only the lowest graph frequencies and
equating the output graph signal at high graph frequencies to
zero. To this end, we use a low-rank graph filter.

A low-rank graph filter can be designed based on any graph
filter, f(+), by substituting the following low-rank matrix:

N
T T
= E )\nvnvnv
n=1

which contains the N, smallest eigenvalues of the Laplacian
matrix, L, and their associated eigenvectors, in f(-). That
is, we use the filter f(L) instead of f(L). Note that, rank
(L) =Ny —1 < N —1 and that L is not a Laplacian matrix.
For these filters, we use the convention that the zero power of
the matrix L is

13)

N
L’ = Zvnvf. (14)
n=1
Substituting (13) in (5), the frequency response of a low-rank
graph filter at the graph frequency A, is

[f(A)]n,n — {f(A'VL)7 n = 1""’Ns s

0, n=Ns+1,...,N.
The advantage of the low-rank graph filter is that it requires
less filter coefficients and computation of only the NV, smallest
eigenvalues and eigenvectors. As a result, the evaluation of the
filter coefficients has lower computational complexity.

In this paper, we use the low-rank ARMA (LR-ARMA) graph
filter,

f(L) = R*MA(L; o), (16)
where hARMA (. ) is defined in (9) and the reduced, low-rank

Laplacian matrix is defined in (13). The filter coefficients vector
in this case is given by

o = (@7, ()17, (17)
where a'® = [1,af®, ... d}f]" and ™ = [c§®, ... T,

From (5), (9), (11), and (15), the graph-LR-ARMA ﬁlter fre-
quency response at graph frequency A,, can be expressed as

ZQLR CLR \a

— 1+Z{2R LR/\T’ aNS (18)
0, n=N,+1,...,N,

hLR—ARMA()\n; aLR) n=1,...

where we assume that 1 4+ 327 aXRAT £0,Vn =1,..., N,.
However, it should be noted that distributed implementations
of the graph-LR-ARMA filter do not exist. Moreover, the LR-
ARMA filter may not be a suitable parametrization of a graph
frequency response that contains nonzero (small) values at high

graph frequencies.

III. MODEL AND PROBLEM FORMULATION

We now introduce the problem of estimating a random graph
signal by observing its noisy nonlinear function, which is de-
termined by the graph topology. In Section III-A, we present
the measurement model. In Section III-B, the LMMSE and the
sample-LMMSE estimators are derived.
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A. Model and Problem Formulation

Consider the problem of recovering a random input graph
signal, x € RY, based on the following nonlinear measurement
model:

19)

where the measurement function, g : RV x RY — R¥, and
the Laplacian matrix, L, which represents the influence of the
graph topology, are assumed to be known. The noise, w, has a
known probability density function (pdf), fy, with zero mean
and covariance matrix Cy . We assume that the pdf of x, fx,
is known, and that w and x are independent.

This model comprises a broad family of statistical estima-
tion problems over graphs. For example, a core problem of
power system analysis is the recovery of voltages from power
measurements [18], where both the voltages and the powers
can be considered as graph signals [14], [46], [47] and the
Laplacian matrix is the susceptance matrix. This problem is
NP-hard and nonconvex [17]; It will be discussed further in
Section VI. Similarly, for a water distribution system we are
interested in estimating the nodal demands from measurements
of the pressure heads and pipe flows using the nonlinear relation
between them [48]. Another example is the problem of estimat-
ing a graph signal based on noisy observations [49]. This setting
comprises a broad family of estimation problems, including
group synchronization on graphs, community detection, and
low-rank matrix estimation. Finally, this model can be extended
to other topology matrices, such as the adjacency matrix and the
Markov matrix [39].

We are interested in recovering the input graph signal, x, from
the observation vector y in (19), based on minimizing the MSE.
Thus, we seek an estimator of x, as follows:

KMMSE —  argmin E [(f{(y, L) - x)T(x(y,L) - x)] . (20)
%(y,L)eRN

y = g(L,X) +w,

In the general case where the statistics of x and y are known,
the MMSE estimator, XMMSE = E[x|y], solves (20). Computing
*MMSE requires an expression for the posterior pdf of x given y,
denoted by fy|y. For the considered model, the pdf of y satisfies

fy = fg(L,x) *fW7 (21)
where * denotes the convolution operator and fg(, x) is the pdf
of g(L, x). Since g(L, x) is a nonlinear function, the pdf of the
transformation of x given by g(L, x) does not have a closed-
form expression, and therefore, the pdf of y and the posterior pdf
of x giveny (i.e., fy and fy|,) donot have analytical closed-form
expressions. As a result, the MMSE estimator does not have a
closed-form solution. Moreover, the computational complexity
of the numerical evaluation of the MMSE estimator by mul-
tidimensional integration is very high, making the evaluation
impractical, especially, for large networks, i.e., large N.

B. LMMSE and Sample-LMMSE Estimators

A common sub-optimal approach is to choose to retain the
MMSE criterion, but constrain the subset of estimators. The
LMMSE estimator is the optimal solution to (20) over the subset
of estimators that are linear functions of the measurements, y,
and is given by [50]

%) = Blx] + Cy Cpg(y ~EB).  @22)

where it is assumed that Cy, is a non-singular matrix. The
LMMSE estimator can be used when the second-order statistics
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of x and y are known. However, in the considered case, the
LMMSE estimator is often intractable as well, as an expression
for the covariance is not generally known.

Since the pdf of x, the statistics of the noise, the Laplacian
matrix L, and the measurement function are all known, the
sample-LMMSE estimator can be evaluated based on a two-stage
procedure ([51], p. 728 in [52]). First, the mean and covariance
matrices from (22), E[y], Cxy, and Cy,y, are estimated by the
sample-means and sample-covariance matrices from a training
set.! Second, these estimators are plugged into the LMMSE
estimator in (22) to obtain the sample-LMMSE estimator ([51],
p- 728 in [52]).

In the first stage, P random samples of x, {Xp};?:l, are gen-
erated, with a pdf fx. This is the training dataset. The associated
output vectors under the generating model in (19) are denoted
by {y, }5:1. Then, assuming zero-mean noise in (19) and using
the function g(-, -), the sample-mean observation vector from
(19) is

(23)

<>
ol

1 P
= Zg(L,XP)-
p=1

Similarly, since x and w are assumed to be statistically inde-
pendent, the sample cross-covariance matrix of x and y, and the
sample covariance matrix of y are computed by

P
N 1
Cuy =5 (% —Ex))(y, = 9)" (24)
p=1
and
. 1L
Cyy = P Z(yl) = ¥)(yp — y)T + Cww, (25)
p=1

respectively, where Cy,, is assumed to be known. In the second
stage, the sample-LMMSE estimator is obtained by plugging the
sample-mean and sample covariance matrices from (23), (24),
and (25) into (22), which results in

)A{(sample—LMMSE) _ E[X] + nyC;)I, (y _ 5’) (26)
The sample-LMMSE estimator requires the computation of

the inverse sample covariance matrix of y, Cy,, from (25).
Therefore, a drawback of this method is that it requires an
extensive dataset for stable estimation of the inverse sample
covariance matrix. However, the dataset is usually limited in
practical applications since the function g(x,L) may change
over time due to changes in the topology. Moreover, numerical
evaluation of the LMMSE may discard information about the
relationship between the graph signal and its underlying graph
structure. Thus, it is less robust to changes in the graph topology,
and there is no straightforward methodology to update the
estimator to new topology, which may happen when vertices
or edges are added or removed from the network. Finally, the
sample-LMMSE estimator ignores the GSP properties and does
not exploit additional information on the graph signal, such as
smoothness or graph-bandlimitness, that can improve estimation
performance. On the other hand, existing GSP-based approaches
have been developed for simple linear models (see, e.g. [5], [25],
[32D).

In order to reduce the computational complexity of the
sample-LMMSE estimator, the sample-version of the diagonal-
LMMSE estimator can be used [24]. This estimator minimizes

Tn our model, E[x] is known, and thus, is not replaced by its sample mean.
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the MSE among linear estimators where the estimation matrix
that multiplies y is restricted to be diagonal. By plugging in
the sample mean and sample covariance values from (23)—(25)
in the diagonal-LMMSE estimator (see, e.g. (18) in [24]), the
sample-diagonal-LMMSE estimator is given by

)A((sample—D-LMMSE) —F [X]

+ diag(diag(Cxy)) (diag(diag(Cyy))) '(y — ¥). (27

The use of diagonal matrices in (27) results in lower compu-
tational complexity than that of the sample-LMMSE estimator.
However, the performance of (27) is significantly poorer than
the other methods presented in this paper (as shown in [24] and
was confirmed by our simulations). This motivates us to seek
improved solutions that also involve diagonal matrices and, at
the same time, use the given graph.

IV. THE GSP-LMMSE ESTIMATOR

In this section, we develop the GSP-LMMSE and the sample-
GSP-LMMSE estimators in Section IV-A and discuss their
properties in Section IV-B. Conditions under which the pro-
posed GSP-LMMSE estimator is also the LMMSE estimator
are developed in Section IV-C.

A. GSP-LMMSE and Sample-GSP-LMMSE Estimators

In this subsection we develop a graph-based linear estimator.
We consider estimators of the form

x=f(L)y+b=Vf(A)V'y +b, (28)

where b is a constant vector, V and A are the eigenvector-
eigenvalue matrices of the Laplacian matrix, L, as defined in
(2), and f(-) is the graph filter defined in (5). The GSP-LMMSE
estimator is an estimator which minimizes the MSE in (20) over
the subset of GSP estimators in the form of (28). By substituting
(28) in (20), the general GSP-LMMSE estimator is defined by

K(GSPLMMSE) _ v f(A YTy 4 b, (29)
where

{f(A),b}=

argmin
f(A)eDy ,beRY

E[[VF(A)VTy +b—x[]*] (30)

and Dy is the set of diagonal matrices of size N x N. Since V
is a unitary matrix, i.e., VV7T = 1, the minimization problem
(30) can be rewritten in the graph frequency domain as follows:
{f(A)B} = argmin E[[[f(A)7+b-x|?], @D

f(A)eDy ,beRN

where y, X, and b are the GFT of ¥, X, and b, respectively, as
defined in (3). B
We first consider the solution for b:

b = argminE [Hf(A)S' +b— 5'<||2} .
beRN

(32)

Since (32) is convex, the optimal solution is obtained by equating
the derivative w.r.t. b to zero, which results in

b = E[%] — f(A)E[§]. (33)
This implies

b=Vb=E[x] - V/(A)VTE[y]. (34)

2211

Algorithm 1: Sample-GSP-LMMSE Estimator.

Input:
e The function g(L, x).
e The Laplacian matrix L.
e The distribution of x, fx, and its mean, E[x].
e The distribution of w.
Algorithm Steps:
1) Generate P random samples of x, with a pdf fx.
2) Evaluate the sample vectors: y, &,;5,, and ]55,5, from
(23), (39), and (40), respectively.
Output: sample-GSP-LMMSE estimator
X (SOSPLMMSE) — F[x] + Vdiag(dsy)Dys VT (y — 9).

Substituting (33) into (31) we obtain that the graph frequency
response of the GSP-LMMSE estimator is given by

f(A)= argmin E[||f(A)(y—E[F])- (% — EX])[]*]. (35
f(A)EDN
The solution to (35) is given by
f(A) = diag(dsy) Dy, (36)
where
dxy £ diag(Cxy), Dyg = diag (diag(Cyy)) . (37)

We assume that Dyy is non-singular. The GSP-LMMSE esti-
mator is then given by

4 (GSP-LMMSE) _ ]E[x]—kaiag(d;cy)D;;,VT(y_ Ely]). (38)

The GSP-LMMSE estimator from (38) is based on the di-
agonal of the covariance matrices of X and y that are defined
in (37), which has advantages from a computational point of
view, compared with the LMMSE estimator in (22) that uses
the full covariance matrices of x and y. The GSP-LMMSE
estimator is in fact the diagonal-LMMSE estimator [24] in the
graph frequency domain. This estimator minimizes the MSE
among the linear estimators of x, where the estimation matrix
that multiplies y is restricted to be a diagonal matrix.

Similar to the sample-LMMSE estimator in Section I1I-B, we
can use the sample-mean version of the GSP-LMMSE estimator
when the statistics are not completely specified. The idea is to
use P random samples of x, X1, . . . , X, that are generated from
the model in (19) to compute the sample-mean vector from (23)
and the diagonal sample covariance matrices from (37) by

. 1 &
dey = 5 > (% ~E[&) o (VIg(L.x,) - V'y) (39
p=1

and

'E>
<«
=
I
—
(1~
<
~
®
=
%
>
\
<
~
<
e
+
@)

wv?/]i,ia

P
p

Il
-

(40)

respectively, where ]55,5, is a diagonal matrix, w is the GFT of
w, and y is defined in (23). By substituting (23), (39), and (40)
in (38), we obtain the sample-GSP-LMMSE estimator:

K(GSPIMMSE) — [x] + Vdiag(dzy)Dys V' (y — §), (41)

where we assume that ]55,9 is a non-singular matrix. This
approach is summarized in Algorithm 1.
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B. Advantages and Discussion

The GSP representation affords insight into the frequency
contents of nonlinear graph signals, such as smoothness and
graph-bandlimitness, which can be incorporated into the GSP es-
timators. In addition, a main advantage of the proposed sample-
GSP-LMMSE estimator is that it requires the estimation of only
two NN-length vectors that contain the diagonal of the covariance
and of the cross-covariance matrices, as described in (39) and
(40). This is in contrast with the sample-LMMSE estimator from

(22) that requires estimating two N x N matrices, ny and

Cyy from (24) and (25), respectively. This advantage improves
the sample-GSP-LMMSE estimator performance compared to
the sample-LMMSE estimator with limited datasets used for
the non-parametric estimation of the different sample-mean
values. Moreover, the estimation of the inverse sample diagonal
covariance matrix, ]f)yg, from (40), is more robust to limited
data (i.e., smaller P) than the estimation of the inverse sample
covariance matrix, ny from (25). Since ]55,5, is a diagonal
matrix, it is a non-singular matrix with probability 1 for any
P > 2 (under the assumption that x is a continuous random
variable), while the non-diagonal matrix, ny, requires P to be
much larger to be a non-singular matrix. As a result, in settings
where the sample size (P) is comparable to the observation
dimension (/V), the sample-LMMSE estimator exhibits severe
performance degradation [53], [54]. This is because the sample
covariance matrix is not well-conditioned in the small sample
size regime, and inverting it amplifies the estimation error [55].
In the asymptotic regime where the observation dimension, N,
is fixed and P — oo, the sample mean and sample covari-
ance matrices are consistent estimators. Thus, in the asymp-
totic case, the sample-LMMSE and the sample-GSP-LMMSE
estimators converge to the LMMSE and the GSP-LMMSE
estimators.

In terms of computational complexity, the sample-LMMSE
estimator from (26) requires: 1) forming the sample mean and
the sample covariance matrices ny and ny from (23), (24),
and (25), respectively, with full matrix multiplications and an
additional cost of O(PN?); 2) computing the inverse of the

N x N matrix Cyy, which has a complexity of O(N?); and
3) performing full matrix multiplications, with a computational
complexity of O(N?). The sample-GSP-LMMSE estimator
from (41) requires: 1) forming the sample mean in (23) and the
diagonal sample covariance matrices dgy and Dy from (39)
and (40), respectively, with a cost of O(PN), where the data
is generated in the graph frequency domain; 2) computing the
inverse of the diagonal matrix ]55,5,, which has a complexity of
O(N); and 3) performing multiplications of diagonal matrices
with a cost of O(N). The estimator in the vertex domain in
(41) requires matrix multiplication by V and V7 with a cost of
O(N?).

The use of the graph frequency domain in the GSP-LMMSE
estimator requires the computation of the EVD of the Laplacian
matrix, which is of order O(N 3), and can be computed offline.
If the EVD can be assumed to be known then this task may
be avoided. Recent works propose low-complexity methods to
reduce the complexity of this task (see, e.g. [56]). In addition,
the computational complexity of the GSP-LMMSE estimator
can be reduced even further by using the properties of the
Laplacian matrix, which tends to be sparse, and therefore, matrix
operations may require fewer computations.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

C. Linear Optimality Conditions

In this subsection, we address the question of under which
situations the proposed GSP-LMMSE estimator coincides with
the LMMSE estimator and with the graphical Wiener filter.

The following theorem states sufficient and necessary condi-
tions for the GSP-LMMSE and LMMSE estimators to coincide.

Theorem 1: The GSP-LMMSE estimator coincides with the
LMMSE estimator if

CxyCyy = diag(dsy) Dy, (42)

where y and x are the GFT of y and x, and where Cy5 and Dy
are non-singular matrices.

Proof: By comparing the r.h.s. of (22) and the r.h.s. of (38), it
can be verified that the GSP-LMMSE estimator coincides with
the LMMSE estimator if

CyxyCyy = Vdiag(dzy)Dyy V' (43)

By right and left multiplication of (43) by VT and V, respec-
tively, and using VIV = VVT = I, we obtain
VT Cyuy VVTC, V = diag(dsy)Dyy.- (44)
Using the GFT definition in (3), the condition in (44) can be
rewritten as (42). |
The intuition behind the result in Theorem 1 is that if (42)
is satisfied, then the LMMSE estimator is also the diagonal
LMMSE estimator in the graph frequency domain, i.e., the
GSP-LMMSE estimator. By using the definitions in (37), it
can be verified that a sufficient (but not necessary) condition
for (42) to hold is that Cxy and Cgyy are diagonal matrices. In
this case, Cxy = diag(dxy) and Cyy = Dyy. In the following
Theorems we present two special cases for which Cgy and Cyy
are diagonal matrices, and thus, (42) holds.
Theorem 2: The GSP-LMMSE estimator coincides with the
LMMSE estimator if the following conditions hold:
C.1) The nonlinear measurements function, g(L, x), is sep-
arable in the graph frequency domain (“orthogonal fre-
quencies”). That is, it satisfies

[g(L7 x)]n = [g(La invn)]’ru n= 1a ceey N, (45)

where Z,, is the nth element of x and g = VT g(L, x).
C.2) The elements of the input graph signal, x, are statisti-
cally independent in the graph frequency domain.
C.3) The noise vector, w, is uncorrelated in the graph fre-
quency domain, i.e., Cy is a diagonal matrix.
Proof: The proof is given in Appendix A. |
Theorem 3: The GSP-LMMSE estimator coincides with the
LMMSE estimator if Condition C.3 holds and in addition
C.4) The measurement function, g(L, x), is the output of a
linear graph filter as defined in (5), i.e.,
g(L,x) = Vf(A)V'x. (46)
C.5) The covariance matrix of the input graph signal, Cx, is
diagonalizable by the eigenvector matrix of the Lapla-
cian, V,i.e., Cxx is a diagonal matrix.
Proof: The proof is given in Appendix B. |
The special case in Theorem 3 fits the model behind the
development of the graphical Wiener filter [32]: First, Con-
ditions C.3 and C.4 imply the linear model assumed in de-
veloping the graphical Wiener filter in Section V-A in [32].
Second, under Condition C.5, the signal x — E[x] is a Graph
Wide-Sense Stationary (GWSS) signal (see Definition 3 and
Theorem 1 in [32]), which is the requirement for the graphical
Wiener filter. Therefore, under the conditions of Theorem 3 the
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GSP-LMMSE estimator coincides with the graphical Wiener
filter (Eq. (13) in [32]), which is also the LMMSE estimator
in this case. Therefore, the proposed GSP-LMMSE estimator
can be interpreted as the graphical Wiener filter, but without
assuming a linear model or GWSS signals.

Conditions C.2 and C.5 are common assumptions in the GSP
framework [57], [58]. However, it should be noted that even
if the elements of the input graph signal, x, are statistically
independent, they are not necessarily statistically independent
in the graph frequency domain, as required in Condition C.2, nor
even uncorrelated. In addition, Condition C.1 is satisfied if the
function g(L, x) is diagonalized by the eigenvector matrix V of
L. Condition C.4, in which the measurements are obtained as a
synthetic output of a graph linear filter as described in (46), is a
sufficient condition for Condition C.1. Finally, since Condition
C.1 is less restrictive then Condition C.4, Condition C.2 (inde-
pendency) is more restrictive than Condition C.5 (decorrelation).

V. GSP ESTIMATORS BY PARAMETRIC GRAPH FILTERS

In the previous section, we presented a general approach
to finding the optimal GSP-LMMSE estimator. However, the
GSP-LMMSE estimator is a function of the specific graph
structure with fixed dimensions, and thus: 1) it is not optimal
when the topology is changed; 2) it is not adaptive to changes
in the number of vertices, /N, since when vertices are added
or removed, the dimension of the Laplacian matrix and of the
graph signal are changed and the GSP-LMMSE in (38) is not
a valid estimator; and 3) there is no straightforward way to
incorporate other graph frequency constraints. Thus, the optimal
graph frequency response needs to be redeveloped for any small
change in the topology.

In this section, we formulate the problem of designing a
graph filter that is MSE-optimal with a specific parametric
representation. Then, we develop three implementations of this
design by using the three specific graph filters from Section II:
a linear pseudo-inverse graph filter (Section V-B), an ARMA
graph filter (Section V-C), and a low-rank ARMA graph filter
(Section V-D). This universal design of graph filters by fitting the
frequency response over a continuous range of graph frequencies
based on the graph frequency response is adaptive to topology
changes, e.g. in cases when the number of vertices and/or edges
is changed. In addition, the parametric representation provides a
straightforward way to integrate GSP properties. Finally, since
in practice the desired graph frequency response is often approx-
imated by its sample-mean version based on a training dataset,
parametrizations can reduce outlier errors and noise effects.

The choice between the different graph filters used in this
section can be done according to the trade-off between approx-
imation accuracy, convergence rate, and computational com-
plexity, as detailed in recent literature [5], [29]. In particular,
the parametrization by the linear pseudo-inverse graph filter
requires, in general, a higher filter order than the ARMA graph
filter, i.e., K > @, R, in order to obtain a good approximation,
which may lead to stability problems in large networks. How-
ever, finding the ARMA graph filter parameters is based on
a nonconvex optimization, while the parameters of the linear
pseudo-inverse graph filter have a closed-form solution. Us-
ing the ARMA filter is known to improve the approximation
accuracy and reduce the number of required filter coefficients
compared with those of the linear (“finite impulse response’)
filter [29]. The LR-ARMA GSP estimator uses only part of the
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EVD of L and requires a lower filter order compared with the
ARMA graph filter. However, its performance may be signifi-
cantly degraded compared to other filters for signals that are not
low-frequency graph signals.

A. General Design of the Graph Frequency Response

The graph frequency response of the sample-GSP-LMMSE
estimator from (36) is defined only at graph frequencies A,
n =1,..., N.In this subsection, our goal is to develop a graph-
based linear estimator of the form of (28) that minimizes (20),
but where f(A) is restricted to specific parametrizations as a
linear and shift-invariant graph filter. To this end, the MSE-
optimal parameter vector, «, for any graph-filter parametriza-
tions, h(A; a), is found by solving (35) after substituting the
specific parametrizations f(A) = h(A; a):

& = argmin E [[[n(A; 0) (¥ — E[]) — (x ~ EX])[]], @47)

acily

where (), is the relevant parameter space, which is defined by
the specific choice of graph filter. This parametric representation
of the graph filters interpolates the graph frequency response of
the GSP-LMMSE estimator to any graph frequency. Therefore,
when the topology is changed, e.g. by adding/removing vertices,
we can substitute the new eigenvalue matrix, A, in the graph filter
to obtain the approximation, without generating new training
data.

The following theorem states the relation between the fre-
quency response of the GSP-LMMSE estimator from (36) and
the optimal parameter vector of a specific parametrization.

Theorem4: The problem in (47) is equivalent to the following
problem:

1 ~
a = argrélinllDéy(diag(h(A; a)) —diag(f(A)))[[,  48)
acily

where f (A) and Dyy are given in (36) and (37), respectively.

Proof: The proof is given in Appendix C. |

From Theorem 4, the minimization of the MSE for a specific
linear and shift-invariant graph filter in (47) is equivalent to
the minimization of the WLS distance between the desired
graph frequency response of the GSP-LMMSE estimator and
the graph frequency responses of the chosen graph filter. Using
the solution of (48), the h-GSP-LMMSE estimator with a general
parameterized filter A(+) is given by

x(MOSP) = E[x] + Vh(A; &)V (y — 3). (49)
Similar to the implementation of the sample-LMMSE and
the sample-GSP-LMMSE estimators, using the sample-mean
version of f (A), obtained by substituting (39) and (40) in (36),
we obtain that the sample-mean version of the optimal graph
filter parameters from (48):
A1 ~ ~
Gmple — argmin |[Dg (diag(h(A; a))—D;;d;cy) 2. (50)
Then, by substituting h(A; &) = h(A; &™) in (49), the
sample-mean version of the h-GSP-LMMSE estimator with a
general parameterized filter, i(-), is given by

4 (sh-GSP) _ E[x] + Vh(A; dsample)vT(y —¥). 5D

The sample-h-GSP estimator for a general graph filter is sum-
marized in Algorithm 2.

In the following subsections, we present three different GSP
estimators for different choices of typical graph filters h(-; )
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Algorithm 2: Sample-h-GSP Estimator.
Input:
e The function g(L, x).
e The Laplacian matrix L.
e The distribution of x, fx, and its mean, E[x].
e The distribution of w.
e Parameterized filter h(-).
Algorithm Steps:
1) Generate P random samples of x, with a pdf fx.
2) Evaluate the sample vectors: ¥, (Ai;(y, and Dy from
(23), (39), and (40), respectively.
3) Compute the optimal graph filter coefficient vector,
&S by solving (50).
Qutput: sample-h-GSP estimator
£(0OSP) = E[x] + Vh(A; &™)V (y — ¥).

and we evaluate their associated optimal parameters. The differ-
ence between the estimators in Sections V-B- V-D is that they
are based on different parametrizations and implementations.
The minimization in (48) implies that one should choose a
graph-filter parametrization, h(A; ), that will be close to the
desired graph frequency response, f (A), from (36). Therefore,
the shape of the desired graph frequency response curve affects
the suitable choice of the graph filter parameterization, which
is application-dependent. The study of f (A) is expected to lead
to a better understanding of what kinds of filters are useful.
This study can be done, for example, based on theoretical
properties such as low-pass and high-pass graph filters [59]
and on a simulation study. For example, in the simulations in
Section VI, f (A) behaves as a low-pass graph filter, and thus,
we choose graph filters suitable for this case. The presented
framework can be easily extended to other graph filters for

different shapes of f(A).

B. Filter 1: Sample Linear Pseudo-Inverse GSP Estimator

For the linear pseudo-inverse graph filter from Section II-B,
the graph filter from (6) satisfies

diag(WP(AT; @) = Treal™, (52)

where a1 is the filter coefficients vector from (7) and T is a
N x (K + 1) matrix with elements

AU for2<i< N, j=1,...,K+1
Txlij =141, fori=j=1 (53)
0, otherwise.

Therefore, the optimal filter coefficients, a1 are obtained by

substituting (52) in (50) and removing a constant term, which
results in
&M = argmin anTI;]jyyf‘Ka — 2d£)~,f‘Ka.
acRE+1T
To avoid overfitting, we replace (54) by the following regu-
larized minimization:
&' = argmin an‘IT{f)yS,f‘Ka — 2a£nya
acRK+1

(54)

(55)

where 1 > 01is aregularization coefficient and M| py is a positive
semidefinite regularization matrix. By equating the gradient of

+ uaTMLpla,
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(55) w.r.t. « to zero, we obtain

. _ -1 _ .
&LPI = (F;{Dny‘K + MMLPI) F;(diy. (56)
In practice, in order to avoid the numerically unstable problem
of inverting the (K + 1) x (K + 1) matrix, one can solve the
convex optimization problem in (55) by using any existing
quadratic programming algorithm. The sample-h-GSP estimator
with the linear pseudo-inverse graph filter is implemented by
Algorithm 2, where Step 3 is obtained by evaluating the matrix
T from (53) and then computing &' either by (56) or by using
a quadratic programming algorithm to solve (55).

Since the regularization matrix, M pj, is a positive semidef-
inite matrix, the optimization problem in (55) is a convex opti-
mization problem and &' is its unique solution, for any x> 0
as long as the matrix f‘ﬂ]jyg,f‘ K 1s a positive definite matrix.
This condition holds if Dyy is a positive definite matrix and
rank(f‘K) = K + 1 (see e.g. Chapter 7 in [60]). It is assumed
in this paper that Dy from (37) is non-singular (and thus, posi-
tive definite). Thus, by taking enough off-line measurements,
X1,...,Xp, the sample covariance matrix ]55,5, is a positive
definite matrix as well. The following claim states a condition
for T' ¢ from (53) to be full (column) rank.

Claim I: 1f there are K + 1 distinct eigenvalues of the matrix
L such that \,, # A\, Vn # k, then, rank(T i) = K + 1.

Proof: See Appendix D. |

C. Filter 2: Sample ARMA GSP Estimator

For the ARMA graph filter from Section II-C, the graph filter
(9) satisfies

diag(hARMA(A; aARMA))
= (diag(®(N, R)a)) ' ®(N.Q)e,  (57)

where o*RMA is the filter coefficients vector from (10), (N, O)
isa N x (O + 1) Vandermonde matrix defined by

LA ... A9
B(N,0)= |1 (58)
Ly ... A§
The associated filter coefficients, a*fMA = [aT' cT]7, are ob-

tained by substituting (57) in (50) and removing a constant term,
which results in

(,¢) = argmin {c” ®” (N, Q) (diag(® (N, R)a)) *
acRE+1
ceR@+1

x Dyg (diag(®(N, R)a)) ' ®(N,Q)c
— 2d%; (diag(®(N, R)a)) ' ®(N,Q)c

+ pa’Maa + pc’ Mec} (59)

where ap = 1 and the last two terms are regularization terms that
have been added to avoid overfitting, in which p > 0 is a regu-

larization coefficient, and M, and M are positive semidefinite
regularization matrices. Equating the derivative of (59) w.r.t. ¢
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to zero, results in

éARMA(a) _ ((I)T(N’ Q)(diag(®(N, R)a)rl
x Dy (diag(®(N, R)a)) ™!
x ®(N,Q) + uM.) @7 (N, Q)

x (diag(®(N, R)a)) tdzg. (60)

By substituting (60) in the objective function from (59), we
obtain

x (N, Q)e RMA (q) — ,uaTMaa}, 61)

where ag = 1. The optimal c is given by substituting the solution
of (61) in (60), i.e., ¢ARMA = ¢(4ARMA) Finally, the sample-
GSP estimator with the ARMA graph filter is implemented by
Algorithm 2, where Step 3 is obtained by: I. evaluating the
matrices ® (N, R) and ®(N, Q) from (58); II. computing a by
solving (61) numerically; and III. Computing ¢ by substituting
the result of I in (60). In the simulations we used the Matlab
function ‘fminsearch’ to approximate (61).

Since the regularization matrix, M, is a positive semidef-
inite matrix, (59) is a convex optimization problem w.r.t.
c for any x>0 as long as ]f)yg, is positive definite and
rank((diag(®(N, R)a)) '®(N,Q)) = Q + 1. The following
claim states the condition for this matrix to be full rank.

Claim 2: If there are () + 1 distinct eigenvalues of
the matrix L and [®(N,R)al, #0, Vn=1,...,N, then,
rank((diag(®(N, R)a)) ' ®(N, Q) = Q + 1.

Proof: See Appendix D. |

Therefore, if ]595, is a positive definite matrix and the con-
dition in Claim 2 holds, then the objective function in (59)
is a convex optimization problem w.rt. ¢ and ¢*fMA(a) is
its unique solution. It should be noted that the ARMA graph
filter involves Vandermonde matrices; in order to obtain a
stable solution, R and () should be chosen to have small
values [29].

As explained after (12), the linear graph filter is a special
case of the ARMA graph filter. Thus, the optimal coefficients of
the linear graph filter are obtained by substituting a = ag = 1,
R=0,Q = K, and p = 0 in (60), which results in

&lin —_ éARMA(a — 1)

. 1 .
(@(N,K)TDW@(N,K)) (N, K) dzg, (62)

where ® (-, -) is the Vandermonde matrix defined in (58). While
all filter designs have an equivalent polynomial filter, the matrix
® (N, K) needs to be well-conditioned in order to obtain good
estimation by using the filter in (12) with the coefficients in (62).
This will only be the case for small graph sizes N and/or small
filter orders K [28]-[30], which leads to limited accuracy of the
linear graph filter.

2215

D. Filter 3: Sample Low-Rank ARMA GSP Estimator

For the LR-ARMA graph filter from Section II-D, the graph
filter from (16) satisfies
RLR-ARMA (3. o LR)

= [((diag(®(N,, R)a"®) 1 ®(N,, Q)c™®), 0% _x ",
(63)
where o'R [aLRT , CLRT]T is the filter coefficients vector from

(17), and ®(-, -) is the Vandermonde matrix defined in (58). Let
U=A{1,...,Ns}, Dgy, denotes the matrix that includes the
first N rows and columns of ]55,5, and (?1,—(5,“ denotes the vector
that includes the first Ny elements of &,;5,. Then, similarly to
(60)-(61), the coefficient vector, a'R, is obtained by minimizing
(50) with a regularization term after the substitution of (63),
where Dyy is a diagonal matrix and the last N — N entries of
(63) are zero, which results in

¢(a) = (@7(N,, Q) (diag(B(N,, R)a)) Dy,

% (diag(®(N, R)a)) '@ (N, Q) + pMax)

x ®T(Ny, Q) (diag(®(Ns, R)a)) ' dxg,. (64)

and
ALR ar
= e {d

(diag(®(Ns, R)a)) ™"

X ®(N,, Q) (a) — pa" Maa},  (65)

where ag = 1 and p > 0, M ir, Moir0 are regularization co-
efficient and positive semidefinite matrices. Then, the optimal
c is given by substituting the solution of (65) in (64), i.e.,
¢ = ¢(alR). Similar to Claim 2, the conditions for convexity
w.r.t. ¢ can be derived. Finally, the sample-GSP estimator with
the LR-ARMA graph filter is implemented by Algorithm 2,

wherein Step 2 evaluates the sample subvectors, y;/, dzy,,, and
155'5714 from (23), (39), and (40), respectively; and Step 3 is
obtained by evaluating the matrices ®(Ny, R) and ®(N;, Q)
from (58) and computing ¢“®(a) and a'® by solving (64) and
(65), respectively.

E. Advantages and Discussion

An important advantage of the sample linear pseudo-inverse
GSP estimator is that its parameters have a closed-form analytic
expression in (56). In contrast, the evaluation of the sample
ARMA and the LR-ARMA GSP estimators requires solving
nonconvex optimization problems (61) and (65), respectively.
On the other hand, since the graph frequency response of the
linear pseudo-inverse graph filter from (8) has a discontinuity at
A = 0, it may be unstable when A\ approaches 0 due to topology
changes. Since A5 describes the graph connectivity [39], this is
only a problem when the network becomes disconnected. The
relation between the spectrum of the Laplacian matrix of graphs
and the graph is extensively discussed in the literature (see,
e.g. in [61]). For example, suppose the desired graph frequency
response, f (A), from (36) and the graph-filter parametrization,
h(A; ), satisfy some smoothness assumptions. In this case,
it can be shown by using results from [33], [62]-[64] that the
difference between the optimal graph frequency response after
the change and the graph-filter parametrization, h(A; c), that is
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computed with the new A, is bounded when the topology change
is bounded.

In terms of computational complexity, the sample-h-GSP
from (51) computes the same expressions as the sample-GSP-
LMMSE estimator from (41), and thus, has the same com-
putational complexity as described in Section IV-B, with an
additional complexity that stems from: a) performing the matrix
multiplications of VA(A; &*™)VT, with a computational
complexity of O(N3); and b) the implementation of the specific
graph filter. In detail, implementing the sample linear pseudo-
inverse GSP estimator from Section V-B requires: 1) evaluating
the optimal filter coefficients &' from (56) by computing the
inverse of a K + 1 x K + 1 matrix, with complexity O(K?),
where K < N; and 2) computing the graph frequency response
from (52) with a matrix-vector multiplication of O(N K). Im-
plementing the sample ARMA and LR-ARMA GSP estimators
from Sections V-C and V-D, respectively, requires: 1) evalu-
ating the optimal filter coefficients by solving the nonconvex
optimization problem from (61) and (65), respectively, which
has a complexity that depends on the chosen optimization al-
gorithm; and 2) computing the graph frequency response from
(57) and (63), respectively, with a matrix-vector multiplication
and computing the inverse of the diagonal matrix, with a cost of
O(N(K + 1)). Finally, all GSP estimators require the EVD of
the Laplacian matrix for computing V. This typically requires a
O(N?) complexity cost, but several fast computation methods
for spectral decompositions [65], [66] can be used.

The main advantage of the sample-h-GSP estimators is
their low computational complexity needed for updating the
estimators when the topology changes. In this case, the updated
estimator is evaluated by using the graph filter coefficients,
&% that were evaluated based on the original topology,
with the Laplacian matrix of the new topology. As a result,
the updated sample-h-GSP estimator from (51) only requires
reevaluation of h(A; &™), where the graph filter coeffi-
cients, &**™'°_ are known, which has a maximum complexity
of O(N?). This is in contrast with the reevaluation needed for
the sample-LMMSE and the sample-GSP-LMMSE estimators.
In addition, the low complexity and distributed implementation
of the sample ARMA GSP estimator is described in [29], [44].

VI. SIMULATION

In this section we evaluate the performance of the pro-
posed GSP-LMMSE estimator from Section IV and the three
parametrizations from Sections V-B-V-D for solving the prob-
lem of power system state estimation (PSSE), which is essential
for various monitoring purposes [18]. The setting of the PSSE
problem is presented in Section VI-A. The different estimation
methods that are presented in this section are described in Sec-
tion VI-B. The results for stationary networks and for networks
with topology changes are presented in Sections VI-C and VI-D,
respectively.

A. Case Study: PSSE in Electrical Networks

A power system can be represented as an undirected weighted
graph, G(V, £), where the set of vertices, V, is the set of buses
(generators or loads) and the edge set, &, is the set of transmission
lines between these buses. The measurement vector of the active
powers at the buses, y, can be described by the model in (19),
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with nonlinear measurement function

N
A
[g(L,x)],, = Z [ |[Vm [(Gym co8(@n — Zm)
m=1

(66)

n=1,...,N.Here z, and |v,| are the voltage phase and am-
plitude at the nth bus, and G, ,, and B,, ,,, are the conductance
and susceptance of the transmission line between the buses n
and m [18], where (n,m) € £. In the graph modeling of the
electrical network, the Laplacian matrix, L, is constructed by
using B, p,, n,m =1,..., N (see Section II-C in [15]). We
assume that |v,,| = 1, which is a common assumption [18], and
Gn,m and B,, ,, are all known.

The goal of PSSE is to recover the state vector, x, from the
power measurements of g(L, x), which is known to be a NP-
hard problem [17]. The input graph signal, x, is shown to be
smooth [14], [47], i.e., its graph smoothness [3], [4], is small.
Therefore, we model the distribution of the input graph signal, x,
in the graph frequency domain [57], [58], as a smooth Gaussian
distribution, as follows:

X2: end "~ N(Ov BAg:lend,Z: end)’ (67)

where [ is a smoothness level. The smooth distribution of x
from (67) implies in particular that the first graph frequency of
x satisfies 1 = 0. Finally, we assume that the noise term, w,
from the model in (19) in this case is zero-mean Gaussian with
covariance matrix Cyw = 02Iy. It can be seen that for this
example, Conditions C.2, C.3, and C.5 from Theorems 2 and 3
are satisfied, but Conditions C.1 and C.4 are not satisfied. It can
also be shown that (43) is not satisfied. Therefore, the proposed
approach is neither the LMMSE estimator nor the graphical
Wiener filter [32] in this case. The values of the different physical
parameters in (66) are taken from the test case of a 118-bus
IEEE power system [67], where N = 118. The MSE of the
different estimators is calculated by performing 10,000 Monte
Carlo simulations.

+B,m sin(z, — zm)),

B. Methods

In the simulations we compare the performance of the follow-
ing estimators:

1) The sample-LMMSE estimator from (26).

2) The sample-LMMSE estimator from (26) with a large P
(P =5-10% > N), denoted as P,,-LMMSE. In this asymp-
totic regime, the sample-LMMSE estimator converges to the
LMMSE estimator. Since the MSE of the LMMSE estimator is
lower than the MSE of any linear estimator, it can be used as a
benchmark for a stationary network.

3) The sample-GSP-LMMSE estimator from Algorithm 1.

4) The sample linear pseudo-inverse GSP estimator from
Algorithm 2 with K = 6, where Step 3 is implemented as
explained after (56), and the regularization matrix is set to
Mip = diag(/\?v, R )\ZI\([ ) in order to restrict the length of the
filter and of the power of the pseudo-inverse of the Laplacian.

5) The sample ARMA GSP estimator, which is implemented
as explained after (61), with R, Q = 3, My = Iz, M. = 1.

6) The sample LR-ARMA GSP estimator, which is imple-
mented as explained after (65), with Rir, Qrr = 2, Max =
IR Mar = Ig,,,and the cutoff frequency N, = 0.3 N. Thus,
it uses only the 30% smallest eigenvalues and their associated
eigenvectors of the Laplacian matrix, L.
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Fig. 1. The MSE versus P for the different estimators, where o2 =0.05and
B =3

7) The LMMSE estimator evaluated for the linear approx-
imation of the model in (66). That is, the nonlinear function
from (60) is linearized by [18] g(L, x) ~ Lx. Then, E[y] = 0,
Cyy = BL + 0?1y, and Cyxy = SLIL, resulting in

R (@LMMSE) _ g1 1T,(BL + 021y) " ly. (63)

C. Example A: Stationary Network

In this subsection, we investigate the case where the topol-
ogy is constant and, thus, the statistical properties of y,x are
constant. In Fig. 1, we present the MSE of the methods from
Section VI-B for different values of P, i.e., different numbers of
training data points used to evaluate the sample-mean values. It
can be seen that the linearized-model based estimator from (68)
and the lower bound obtained by P,,-LMMSE are independent
of P, as expected. The sample-LMMSE estimator from (26) uses
the inverse of the sample covariance matrix ny, which requires
alarge number of training data points to achieve a stable estima-
tion. Thus, it can be seen that for P < 10 N, where N = 118,
the MSE of the sample-LMMSE estimator is higher than the
MSE of the proposed methods: the sample-GSP-LMMSE, the
sample linear pseudo-inverse GSP, and the sample ARMA GSP
estimators.
In this example, the sample linear pseudo-inverse GSP and
the sample ARMA GSP estimators coincide with the sample-
GSP-LMMSE estimator. Thus, the chosen parametrizations are
an accurate approximation of the desired graph frequency re-
sponse. In addition, for P > 10, these GSP estimators and the
sample-LMMSE estimator converge. It can be seen that the MSE
of the LMMSE estimator, represented by P,.-LMMSE, provides
a lower bound on the MSE of any linear estimator, where the
GSP-LMMSE, linear pseudo-inverse GSP, and ARMA GSP
estimators achieve this lower bound for a much smaller value of
P than the sample-LMMSE estimator. This result holds although
Condition C.1 from Theorem 2 is not satisfied and the proposed
GSP-LMMSE estimator differs from the LMMSE estimator.
Finally, the sample LR-ARMA GSP estimator has a lower MSE
than the sample-LMMSE estimator for P < 3 N and achieves
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Fig.2. The MSE versus 0—12 for the different estimators, where P = 500 and
B =3.

107

runtime [sec]

-s-LPI-GSP

-s-GSP-LMMSE
——s-LR-ARMA-GSP, cutoff =36 |
— — — s-ARMA-GSP R=4 Q=4

1073

10 16

target MSE

22

Fig. 3. The runtime for the different estimators versus the target MSE, where
0% =0.05and 8 = 3.

lower MSE than the LMMSE estimator evaluated for the linear
approximation from (68) for P > 0.1 N.

In Fig. 2, we present the MSE versus the noise variance,
o? for P =500 and 3 = 3. It can be seen that the MSE of
all estimators (except the aLMMSE from (68), which is based
on a linearization of the model) increases as the noise variance
increases. In this case, the sample-GSP-LMMSE, the sample
linear pseudo-inverse GSP, and the sample ARMA GSP esti-
mators outperform the sample-LMMSE estimator and approach
the lower bound obtained by P,,-LMMSE for all values of the
noise variance.

In order to demonstrate the complexity of the estimators
empirically, the average computation time was evaluated us-
ing Matlab on an Intel Core(TM) i7-7700 K CPU computer,
4.2 GHz. In Fig. 3, we present the runtime of the different
estimators versus the target MSE, where o2 =0.05and 68 =3It
can be seen that the runtime of all the estimators increases as the
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target MSE decreases. The runtimes of the sample ARMA GSP
and the sample LR-ARMA GSP estimators are the highest since
finding their optimal coefficients requires solving a nonconvex
optimization problem (see Sections V-C and V-D, respectively),
while the LR-ARMA has a lower runtime since it has fewer
coefficients. The proposed sample-GSP-LMMSE estimator has
the lowest runtime for any target MSE, and the proposed sample
linear pseudo-inverse GSP estimator is the second-best in terms
of runtime.

It should be noted that the topology is stationary in this
simulation. Thus, the EVD of the Laplacian matrix, L, is as-
sumed to be known and given in advance. When there is a
change in the network, the computational complexity of updat-
ing the sample-h-GSP estimators is much lower than those of the
other estimators and, thus, has a shorter runtime. This is since
the sample-h-GSP estimators use the graph filter coefficients,
&SP that were evaluated on the initial topology. In contrast,
the sample-LMMSE and the sample-GSP-LMMSE estimators
require a reevaluation for each new topology, as shown in the
following subsection.

D. Example B: Estimation Under Topology Changes

In this subsection, we discuss the case where the underlying
topology changes over time. For example, when a sensor fails
or changes its location, the sensor network’s topology changes.
Similarly, the power grid topology may be changed by failure,
opening and closing of switches on power lines, and the presence
of new loads and generators. When L changes, the measurement
function, g(L, x), from the model in (19) and the distribution
from (67), change. Our goal is to estimate x without generating
new dataset. The MSE of the different estimators is considered
under random changes in the topology with the constraints
that the graph will remain well-connected, i.e., assuming that
A2, which is related to the connectivity [39] did not reduce
significantly. The MSE shown is the average MSE over 100
random changes on the graph.

1) Estimation Under Edge Changes: In this case, the
changes in the topology are due to the addition or removal of
edges. Thus, the problem dimension did not change. In order
to evaluate all the estimators from Section VI-B we use the
mean of x, i.e., E[x], the eigenvalue and eigenvectors of the
Laplacian matrix with the historical sample values, such as

ny from (25), Dy from (40). It should be noted that in the
following, the sample-LMMSE estimator is based on the initial
topology, where the sample-GSP-LMMSE, the sample linear
pseudo-inverse GSP, and the sample ARMA GSP estimators
have been updated to the new topology, as described after (47).

Fig. 4(a) and 4(b) present the graph frequency response of the
different sample-GSP estimators, where P = 500, 02 =0.05
and § = 3 for the stationary network from Example A (Fig. 4(a))
and for the topology change from Example B, where M =7
new edges were added (Fig. 4(b)). It can be seen that in both
cases, all GSP filters achieve almost the same graph frequency
response as the sample-GSP-LMMSE estimator and, thus, they
can be considered as robust to topology changes. The graph
frequency response of the sample GSP-LMMSE at \; is 0,
which is approximated by the h-GSP filters as a small value.
However, it can be seen that the graph frequency response is a
nonzero (small) response (i.e. the output y is not a perfect graph
low-frequency signal) while the graph frequency response of
the LR-ARMA GSP estimator is absolutely zero for A > 36.
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Fig. 4. The graph frequency response of the different estimators, where P =

500, 02 = 0.05 and 3 = 3, for (a) a stationary network; and (b) a network with
the addition of M = 7 edges.

Therefore, the LR-ARMA GSP estimator does not perform
well in the simulations. For perfectly low-frequency signals
(not shown here due to space limitations), the LR-ARMA GSP
estimator achieves the same performance as the other h-GSP
estimators. In addition, it can be seen in Fig. 4(b) that the graph
frequency response of the sample-GSP-LMMSE estimator that
was evaluated based on the initial topology (red) is aless accurate
approximation of the optimal graph frequency response. Finally,

the desired graph frequency response, f (A), includes a sharp
transition since f(\;) = 0; thus, a linear graph filter as in (12)
is inappropriate for this case since it requires a high filter order
leading to a high implementation cost and limited accuracy [29].

Fig. 5(a) and 5(b) present the case where the sample-mean
values were calculated from the dataset which is evaluated on a
topology before M edges are added or removed. Since there is
no straightforward methodology to update the sample-LMMSE
estimator to the new topology, its performance in the sense of
the MSE is impaired for both cases: added and removed edges.
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Fig.5. The MSE of the updated GSP estimators, the sample-LMMSE estima-
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(a) the addition of M new edges; and (b) a removal of M edges. The error bars
show confidence intervals of 0.5 standard deviations.

12

Moreover, even when a small number of new edges is added,
the MSE of the sample-LMMSE significantly increases. It can
be seen that even for 2 new edges, the sample LR-ARMA GSP
estimator has a lower MSE than the sample-LMMSE estimator.
The sample linear pseudo-inverse GSP and the sample ARMA
GSP estimators have a lower MSE for any number of edges
added or removed. The sample-GSP-LMMSE estimator that
has been updated to the new topology, has the same MSE as
the sample linear pseudo-inverse GSP estimator and the sample
ARMA GSP estimator for a small number of edges added or
removed, and a slightly higher MSE for a large number of
edges added or removed. The aMMSE estimator performance
increases for edges removed and improves for the case where
new edges are added. It should be noted that in addition to their
advantage in terms of MSE, the computational complexity of
updating the sample-h-GSP estimators is lower than those of
the sample-LMMSE and the sample-GSP-LMMSE estimators.
This is since the sample-h-GSP estimators use the graph filter
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Fig. 6. The MSE of the updated GSP estimators, the sample-LMMSE estima-
tor, and the aLMMSE estimator, where P = 500, o2 = 0.05, and 8 = 3, for
(a) an addition of M new vertices; and (b) a removal of M. The error bars show
confidence intervals of +0.5 standard deviations.

coefficients, &**™' that were evaluated on the initial topology,

while the sample-LMMSE and the sample-GSP-LMMSE esti-
mators require to reevaluate the estimators from scratch for the
new topology.

2) Estimation Under Vertices Changes: When M vertices
are removed or added, the problem dimension changes. That
is, x,y € RV*M  Since the sample-LMMSE and the sample-
GSP-LMMSE estimators are RY — R” estimators, they cannot
be implemented in the new problem. Therefore, we use the
following methods: 1) for M new vertices, the sample-LMMSE
and the sample-GSP-LMMSE estimators estimate the signal at
the new vertices by zero and do not use measurements from those
vertices; 2) for M removed vertices, the sample-LMMSE and
the sample-GSP-LMMSE estimators are updated by removing
the appropriate rows and columns. That is, the sample-LMMSE
estimator from (26) is given by

RGIMMSE) _ iy 4 [Coy Cyyls (¥s = ¥s).

(69)
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and the sample-GSP-LMMSE estimator from (41) is given by
X(SGSP—LMMSE) _ E[X] + [Vf(A)VT]S(YS . 5’8)7 (70)

S

where we use the historical eigenvalue and eigenvectors of
the Laplacian matrix and the historical sample values of the
covariance matrices, evaluated using the historical dataset. In
(69) and (70) we use the notation that A s is the submatrix of A
whose rows and columns are indicated by the set S, where S is
the set of the remaining vertices. In addition, any sample-h-GSP
estimator from (51), can be updated to the new topology for both
cases: vertices added or removed, as follows:

X(updale—sh—GSP) _ E[X] + Vh(A, dsample)vT (y _ }ﬁ,)’ (71)
where we use the true value of E[x], the eigenvalue and eigenvec-

tors of the Laplacian matrix with the filter coefficient, & ASamPle
that were evaluated using the historical dataset and y € RN =M
that is defined by

- 0 if n is added

Yin = ~ . . 9 :1,...,]\[7 72

vl {[y]n, if n is unchanged " (72)

where y is evaluated for the old topology by (23).

Fig. 6(a) and 6(b) present the case where the historical sample
values were calculated from the dataset evaluated on a topology
before the addition or removal of the M vertices, respectively.
Since there is no straightforward methodology to update the
sample-LMMSE and the sample-GSP-LMMSE estimators to
the new topology, their MSE is impaired for added and removed
vertices. Moreover, even when a small number of new vertices
is added, the MSE of the sample-LMMSE and the sample-GSP-
LMMSE estimators significantly increases. The other estima-
tors’ performance for the cases of added or removed vertices is
similar to the result in the cases of added or removed edges in
Fig. 5(a) and 5(b). In Fig. 6(a) and 6(b), the confidence intervals
of +0.5 standard deviations are significant due to the variability
in the topology of the different experiments. Thus, increasing the
number of experiments does not reduce this confidence interval.

VII. CONCLUSION

In this paper, we discuss a GSP-based Bayesian approach for
the recovery of random graph signals from nonlinear measure-
ments. We develop the GSP-LMMSE estimator, which mini-
mizes the MSE among the subset of estimators that are repre-
sented as an output of a graph filter. We evaluate the conditions
for the GSP-LMMSE estimator to coincide with the LMMSE
estimator and with the graphical Wiener filter. If the distributions
of the graph signal and the observations are intractable, the
sample-mean versions of the different estimators can be used.
The diagonal structure of the sample-GSP-LMMSE estimator
in the graph frequency domain bypasses the requirement for
an extensive dataset to obtain stable estimation of the sample-
LMMSE estimator. However, the GSP-LMMSE estimator is
a function of the specific graph structure with fixed dimen-
sions, and thus it is not necessarily optimal when the topology
changes and is not adaptive to changes in the number of vertices.
Therefore, we develop the sample-h-GSP estimators that are
the MSE-optimal parametrization of the sample-GSP-LMMSE
estimator by graph filters. The sample-h-GSP estimators can be
updated when the topology changes without generating a new
dataset, even in the case of changes in the number of vertices.

In the simulations, we show that the proposed sample-GSP es-
timators achieve lower MSE than the sample-LMMSE estimator
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for a limited training dataset, and they coincide with the sample-
LMMSE estimator for sufficiently large datasets. In addition, itis
shown that the three specific parametric implementations of the
GSP-LMMSE: the linear pseudo-inverse GSP estimator, ARMA
GSP estimator, and the low-rank ARMA GSP estimator, are
robust to changes in the topology without the need for generating
new training data. The sample linear pseudo-inverse GSP and
the sample ARMA GSP estimators achieve the lowest MSE in
these cases, where the ARMA GSP estimator requires less filter
coefficients. Thus, the proposed approach is a practical method
to recover nonlinear graph signals in networks.

There are several directions left for future work. One direction
is to study the use of graph neural networks and other nonlinear
approaches [33], [34]. In addition, the development of Bayesian
bounds on the MSE of general (not necessarily linear) estimators
of graph signals, in a similar manner to the non-Bayesian graph
Cram ¢ r-Rao bound from [46], should be investigated. Finally,
it is interesting to consider distributed implementation of the
proposed estimators that include the computation of the optimal
coefficient vector and the diagonal sample covariance matrices.

APPENDIX A
PROOF OF THEOREM 2

In this Appendix, we show that under the conditions of
Theorem 2 the equality in (42) holds.

Since x and w are statistically independent under the consid-
ered model, the covariance matrix of y is given by

Cyy = Czz + Cywrs (73)
where g = VT'g(L, x). Similarly,
Czy = Cxg. (74)

Since from Condition C.1 the measurement function, g(L, x),

satisfies (45), we obtain that the off-diagonal elements of the

matrix Cgg from (73) satisty
[Cggln = E[([8(L,x)], — E[g(L, x

x (&L, x)]x — Elg(L,x)]x)]

E[([&(L, Z,vy)ln — E[g(L, x)]5)

x (8L, Zpvie)lk — Elg(L, x)]x)] =0, (75)

for any n # k, where the last equality follows from Condition

C.2. Substituting (75) in (73) and using Condition C.3, which

implies that Cy is a diagonal matrix, the matrix Cyy is also a
diagonal matrix, which satisfies

Cyy = diag (diag(Cyy)) = Dyy. (76)
Similarly, using Condition C.1, the off-diagonal elements of the
cross-covariance matrix, Cxg from (74) satisfy

s X)]n)

[Csgln.i = E[([X]n — E[X]n) ([8(L, x)]r — E[g(L, x)]x)]
= E[(Xln — EXln) (8L, Zevi)lk — E[g(L, x)]5)]
=0, )

for any n # k, where the last equality follows from Condition
C.2. By substituting (77) in (74), we have

Ciy = dlag(C;{g,) = dlag(d,}y) (78)
Therefore, (76) and (78) imply that Cxy and Cyy are diagonal
matrices, and that (42) holds.
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APPENDIX B
PROOF OF THEOREM 3

In this Appendix, we show that under the assumption of The-
orem 3 the equality in (42) holds. By using (46) from Condition
C.4, we obtain that g(L, x) = f(A)V”'x and thus,

Cgz = E[(f(A)(x ~ E[R)))(f(A)(x ~ E[%)))7]

= f(A)Cxsxf(A), (79)
where we use the symmetry of f(A). By substituting (79) in
(73) from Appendix A and using Condition C.3 and Condition
C.5, which implies that Cyw and Cxx are diagonal matrices,
we obtain that Cyy is a diagonal matrix, which satisfies

Cyy = diag (diag(Cyy)) = Dyy. (80)

Similarly, the cross-covariance matrix, Czg from (74) satisfies

Cxg = E[(x— E[x])(f(A)(x—~E[]))"] = Czxf(A), (8D

where we use the fact that f(A) is a symmetric matrix. By

substituting (81) in (74) from Appendix A, the cross-covariance
matrix of x and y is a diagonal matrix, and satisfies

Cfif’ = diag(d,—(y), (82)
where dxy is defined in (37). Therefore, (80) and (82) imply that
Cxy and Cyy are diagonal matrices, and that (42) holds.

APPENDIX C
DERIVATION OF (48)

In this Appendix we show that solving (47) is equivalent to
(48). By adding and subtracting f(A)(y — E[y]) from the r.h.s.
of (47), one obtains

a = argmin E[||h(A; o) (y — E[y]) — (x — E[x])

acg
— f(A)F - E[]) + f(A)F - EFDIF)
= aigerglnEHI(( (Ase@) = f(A)(F —E[F])I)
+2E[(f(A) (¥ — E[y]) - (% - E[]))"
x ((h(A; @) = f(A)(F — E[F])], (83)

where the last equality is obtained by removing constant terms
w.r.t. ae. In addition, by substituting f(A) from (36) in the last
term of (83) it can be verified that

E[(f(A)(F - E[F]) — (k- E[x))"
x ((M(A; @) = f(A)(F — E[F)))]
= (diag(f(A)))" Dyg (diag(h(A; o)) — diag(f(A)))
— df; (diag(h(A; @) — diag(f(A))) =0, (84)

where dzy and Dy are defined in (37). By substituting (84) in
(83), one obtains

& = argminE[[|(h(A; @) — f(A))(¥ — E[3])[|’]

acNy
= E[||diag(y — E[y])diag(h(A; a) — f(A))]|*]
— diag(f(A)))" Dyy

x (diag(h(A; @) — diag(f(A))),

= (diag(h(A; &)
(85)
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where the second equality follows since h(A; ) and (f(A)
are diagonal matrices. Then, since Dyy is a diagonal matrix, and
thus, a symmetric matrix and it is assumed that it is also a non-
singular (and therefore, positive definite) matrix, we obtain (48)

by substituting Dyy = Df,yD;y and diag(diag(dzy)Dyy) =
Dy;,d;(y in (85).
APPENDIX D
PROOF OF CLAIM 1 AND CLAIM 2
We prove Claim 1 by showing that rank(T') = K + 1 under

the condition in Claim 1, where T i is defined in (53) and K +
1 < N. First, it can be seen that

T =diag(1, A\ %, .. O A)Br(A, -5 An), (86)
where
1 0 ... 0 0
AL
AN 2 2 2
Brx(A, ..., ) = | )
AN AR Ay 1

We assume that the graph is connected, i.e. 0 < \,, n =
., N. Thus, diag(1, )\IK, R AZVK) is a non-singular ma-
trix. The multiplication of Bx (A1, ..., Ax) by an N x N non-
singular matrix, in (86) implies that (see 0.4.6 in [60])
rank(T ) = rank(Bg (A1, ..., An)). (87)
By reordering the columns of Bx (A1,...,Ay) and using the
properties of the Vandermonde matrix ®(N — 1, K) from (58)
(see 0.9.11 [60]), we obtain that if there are K + 1 distinct
eigenvalues, then rank(By (A1,...,A\n)) = K + 1. By using
(87), this statement im_plies that if there are K + 1 distinct
eigenvalues, then rank(T'x) = K + 1.
Second, we prove Claim 2 by showing that
rank((diag(®(N, R)a)) '®(N,Q)) = Q + 1 (88)
under the condition in Claim 2, where ®(N, R) and ®(N, Q)
are defined in (58), and Q@+ 1< N. We assume that
[®(N,R)a], #0,Vn =1,..., N and thus, (diag(®(N, R)a))
is a non-singular matrix. The multiplication of ® (N, Q) by

an N x N non-singular matrix, (diag(®(N, R)a))~!, in (88)
implies that (see 0.4.6 in [60])
rank((diag(® (N, R)a)) '®(N, Q)) = rank(®(N, Q)). (89)

Using the properties (see 0.9.11 [60]) of the Vandermonde
matrix, ®(N,Q), we obtain that if there are () + 1 distinct
eigenvalues, then rank(® (N, Q)) = @ + 1. By using (89), this
statement implies that if there are @ + 1 distinct eigenvalues,
then rank((diag(®(N, R)a)) '®(N,Q)) = Q + 1.
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