
2136 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Community Inference From Partially Observed
Graph Signals: Algorithms and Analysis
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Abstract—This paper considers community inference methods
for finding communities on a graph. We treat the setting where
the edges are not fully observed. Instead, inference is based on par-
tially observed filtered graph signals where observations from some
nodes are missing. Under this setup, we treat two related tasks: A)
blind inference which recovers the inherited communities on the
sub-graph; B) semi-blind inference which recovers communities
on the full graph with additional partial topology information.
For task A, we suggest a spectral method which analyzes the
principal components of the data covariance matrix. We prove
that it succeeds in finding the ‘true’ communities if the graph
filter is low-pass and the nodes are uniformly sampled. For task B,
we propose a method using spectral interpolation with a Nyström
extension. The latter approach is proven to succeed in finding the
‘true’ communities for modular graphs and low-pass graph filters.
Numerical experiments on synthetic and real data corroborate our
results.

Index Terms—Community detection, graph signal processing,
low pass graph filter, Nyström extension.

I. INTRODUCTION

AN OVERARCHING goal of data science is to infer infor-
mation about complex systems from data. When dealing

with network data where signals are observed on nodes (cf. graph
signals), the underlying system can be described by a latent
graph [2] such as the social graph of individuals embedded in
opinion data, or the stock market graph of businesses embedded
in daily return records. Among others, a problem of practical
interest is to infer or detect communities of nodes from these
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graphs. Communities are subsets of nodes with dense connec-
tions. Learning them provides a macroscopic representation of
the graph topology [3]. The community information is useful, for
example, in designing marketing strategies to maximize sales of
a product in social networks [4], or to classify nodes with similar
functionalities in biological networks [5].

A popular heuristic for community inference is to apply off-
the-shelf unsupervised learning methods, which usually involve
a dimensionality reduction step such as principal component
analysis (PCA) on the data correlation matrix, followed by
a standard clustering algorithm such as K-means [6]. These
methods are simple to implement and are shown to provide
meaningful results on benchmark datasets [7]. To understand
these techniques, a common assumption is that the data correla-
tion matrix (or its nonlinear transformation such as in the t-SNE
method [8]) acts as a surrogate to the graph adjacency matrix;
the PCA and K-means steps produce an approximate minimum
cut solution of the surrogate graph.

However, it is difficult, if not impossible, to ensure that the
data correlation matrix is a faithful representation of the true
graph without defining a proper data model, as the latter depends
on the data generation process in relation to the graph. Another
challenge is with partially observed network data, as there may
be hidden nodes whose signals are missing in the data. For
instance, in opinion data from social networks, some individuals
may not participate in the social networking platform monitored,
yet they can influence their peers on a different platform. As an-
other example, in stock data from financial networks the unlisted
companies may affect the performance of the listed companies.
It is challenging to tackle community inference under this setting
since the impact of the hidden nodes depends on the graph topol-
ogy and the process which generates the data. Relevant questions
are whether a community inference technique will deliver reli-
able outcomes in the presence of hidden nodes, and whether there
is a principled way to design algorithms to infer communities.

This work addresses the above challenges by considering a
graph signal processing (GSP) approach to derive community
inference methods. Our idea is to develop a GSP model [9], [10]
to treat the network data with hidden nodes as a collection of
spatially sampled and low-pass filtered graph signals supported
on the observed nodes. As demonstrated in [9], [10], GSP
models provide a unified framework to analyze various network
processes such as diffusion and network games. For community
inference, we treat the ‘true’ graph topology as a latent parameter
and our task entails inferring the communities therein.
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With the GSP model in mind, a natural idea is to infer commu-
nities of the latent graph in two steps: first we estimate the graph
topology from network data, and then we perform community
detection on the estimated graph. The first step is also known as
graph learning which has been extensively studied in the GSP
literature [11], [12]. To list a few approaches, [13], [14] exploited
smoothness in estimating the graph Laplacian matrix, [15] used
the spectral template to estimate the graph shift operator, [16]
considered a structural equation model to accommodate non-
linear dynamics, [17] considers causal modeling, and [18],
[19] focused on inferring both the graph and the nonlinear
dynamics generating the data. To estimate graphs with special
structures like overlapping communities, the recent works [20],
[21] considered learning with structural constraints. Likewise,
graph learning with hidden nodes has been treated in [22]–[24]
which studied optimization models for recovering the graph
topology. Some recent works [20], [25] suggested graph learning
with partial connectivity information incorporated as constraints
in the optimization model, and [26]–[28] have studied graph
learning with missing data via data imputation or kernel method.
Besides treating different observation models, the above works
on graph learning typically require a generation model with
full-rank/white excitation to the graph filter in order to ensure
the estimate is reliable. This limits their applications since a
full-rank excitation to a large graph requires the excitation to
be controlled by as many latent parameters as the number of
nodes. For the second step, once the graph is estimated, standard
community detection methods such as spectral clustering can be
applied [29]. While each of the two steps are demonstrated to
work, it is not clear how well the combined procedure performs.

The current paper is closely related to recent works on blind
community inference which aim at inferring communities di-
rectly from graph signals without explicitly estimating the graph
structure. Examples such as [30] analyzed the spectral properties
of low-pass graph signals for community inference, [31] con-
sidered dynamical observations, [32] studied exact community
inference based on the stochastic block model, [33] proposed
a Bayesian estimation method; and [34] focused on gossip
dynamics; also see [35], [36] which estimate node centrality.
However, none of the above works consider hidden nodes in the
observed graph signals.

In this paper, we fill the gap in the literature by studying
community inference methods with partially observed, or equiv-
alently, spatially sampled graph signals generated from exciting
a low pass graph filter by a possibly low rank input. We contribute
to the methodology and analysis for two tasks.
� (Task A) Using only partially observed graph signals, we

perform blind community inference for finding commu-
nities within the observed network inherited from the
complete graph. To this end, we study the application of
a spectral method on the covariance matrix of the ob-
served graph signals analogous to the one in [30]. Despite
that a similar spectral method is applied, our analysis in
Section III is new as it explicitly analyzes the effects on
community inference performance due to the sampling
pattern of the observed nodes and the low pass property
of graph filters.

Fig. 1. Overview of the community inference tasks considered in this paper.

� (Task B) When additional information about the connectiv-
ity from hidden nodes to observable nodes is available, we
consider a semi-blind method which finds the communities
of the complete graph. Instead of interpolating the graph
signals themselves, we suggest a novel application of the
Nyström extension on the approximate eigenvectors. Our
analysis in Section IV shows that the performance im-
proves when more nodes are observed. In the special case
when the graph signals are fully observed, the proposed
method coincides with that of [30].

Our Task A is motivated by the practical scenario when a
graph has a large number of nodes, which makes it impossible
to observe the states on all of them. For example, we can only
monitor the opinions of a subset of agents in a social network.
Task B is motivated when crude estimates of the connectivity
information between the observed nodes and the hidden nodes
is available. For example, a firm may have access to the contacts
of its employees that are external to the firm, but does not have
further information about them; we may have partial information
about the business ties between institutions on a stock market,
but do not know the business (e.g., stock price) performance of
all institutions.

An overview of the considered tasks is illustrated in Fig. 1.
Compared to the conference version [1] whose results are mainly
empirical, we provide performance analysis and include new
numerical experiments. In the sequel, Section II introduces the
graph and signal models. Section III discusses a strategy for
tackling the blind community inference problem (Task A); while
Section IV treats the semi-blind inference problem (Task B).
Section V presents numerical experiments on synthetic and real
data.

Throughout the paper, we use the following notation. Bold-
face (capital) letters are used to denote vectors (matrices),
Diag(λ) is a diagonal matrix whose diagonal elements are taken
from the vector λ in order. For a vector x, ‖x‖ is its Euclidean
norm. For a matrix Z ∈ R

p×m, we denote zrow
i ∈ R

m as its ith
row vector, while ‖Z‖F, ‖Z‖2 are the Frobenius and spectral
norm, respectively.

II. SIGNAL AND GRAPH MODEL

This section introduces the models of graphs, communities,
and graph signal processing. We then pose the community
inference problem with hidden nodes.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on May 19,2022 at 11:10:12 UTC from IEEE Xplore.  Restrictions apply. 



2138 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

A. Graph and Communities

Consider an N -node undirected, connected graph described
by G = (V,E,A), where V = {1, . . ., N} is the node set, E ⊆
V × V is the edge set and A ∈ R

N×N
+ is a weighted adjacency

matrix which is non-negative, symmetric and satisfies Aij =
0 if and only if (i, j) /∈ E. Let K ∈ {1, . . ., N} be given and
C1, . . ., CK be a non-overlapping, non-trivial partition of V , i.e.,
with Ci �= ∅. We consider the normalized cut measure:

NCut(C1, . . ., CK) =

K∑
k=1

∑
i∈Ck

∑
j/∈Ck

Aij∑
�∈Ck
∑

m∈V A�m
. (1)

Consider a partition C1, . . ., CK . If the induced subgraphG[Ck] is
densely connected, for all k, and the number of edges between
Ck, Ck′ is small, then NCut(C1, . . ., CK) ≈ 0 and the partition
corresponds to communities of the graph. In the latter case, we
say that the graph is K-modular [3].

The community detection problem amounts to finding a
non-trivial partition that minimizes the normalized cut (1).
Let D := Diag(A1) and the normalized adjacency matrix be
Anorm := D− 1

2AD− 1
2 . The normalized Laplacian is Lsym :=

I −Anorm with eigen decomposition Lsym = V ΛV 	, where
Λ = Diag(λ1, . . ., λN ), 0 = λ1 < · · · < λN ≤ 2 and1 V is or-
thonormal. It is well known [37] that the NCut measure is linked
to the eigenvectors of the normalized Laplacian Lsym. Indeed,
it can be shown that

min
C1,...,CK⊆V

NCut(C1, . . ., CK)

⇐⇒ min
X∈RN×K

Tr(X	D
1
2LsymD

1
2X)

s.t.X	DX = I, Xij ∈
{
0,W−1/2

j

}
, (2)

where Wj :=
∑

�∈Cj D��. Problem (2) is a combinatorial prob-
lem which is NP-hard in general. To obtain an approximate solu-
tion, we relax the combinatorial constraint Xij ∈ {0,W−1/2

j }.
The relaxed optimal solution is then V K , the left-most K
column vectors ofV . Subsequently the communities can be esti-
mated by applying aK-means subroutine on these eigenvectors,
as described next.

For a given matrix Z ∈ R
p×m, we define kmeans(Z,K) as

the K-means subroutine which returns a non-overlapping K-
partition of [p] = {1, . . ., p} satisfying

kmeans(Z,K) ∈ argmin
C1,...,CK⊆[p]

F (C1, . . ., CK ;Z), (3)

where F (·;Z) is the K-means objective function:

F (C1, . . ., CK ;Z) :=

K∑
k=1

∑
i∈Ck

∥∥∥zrow
i − 1

|Ck|
∑
j∈Ck

zrow
j

∥∥∥2. (4)

In particular, the output of the spectral clustering method (with-
out row normalization) [37] can be written as kmeans(V K ,K),

1We follow a descending order for the eigenvalues such that the left-most col-
umn vector of V corresponds to the smallest eigenvalue λ1 = 0. For simplicity,
we also assume that eigenvalues have multiplicity one.

which approximates the NCut minimization (2). The method
requires perfect knowledge of Lsym.

In this paper, we define the ‘true’ communities on the graph
according to this spectral clustering method, as follows:

(C�
1 , . . ., C�

K) := kmeans(V K ,K). (5)

To justify our choice of ‘true’ community, consider the setting
in which the graph is generated from the planted partition
stochastic block model (SBM) with K = 2 communities given
by C true

1 , C true
2 . The edge set of SBM is parameterized by

a = P((i, j) ∈ E, i, j ∈ C true
1 ori, j ∈ C true

2 ),

b = P((i, j) ∈ E, i ∈ C true
1 , j ∈ C true

2 ), (6)

and A is the binary adjacency matrix. When a 
 b, the nodes in
C true
1 or C true

2 induce a densely connected subgraph. In particular,
if a, b satisfy the spectral resolution criterion [29], [38], then
(C�

1 , C�
2 ) = (C true

1 , C true
2 ) or (C�

1 , C�
2 ) = (C true

2 , C true
1 ) (with label

ambiguity), i.e., applying the spectral clustering method on
V 2 gives the ground truth communities of G. We note that
there are alternative definitions of ‘true’ communities, e.g., via
eigenvectors of the unnormalized Laplacian matrix.

B. Graph Signals

We next discuss the signal model for the data that our com-
munity inference tasks depend on. We consider network data as
the output graph signals of an unknown process on the graph G.
For � ∈ {1, . . .,m}, the �th graph signal, y(�) ∈ R

N , is a filtered
graph signal described as:

y(�) = H(S)x(�) + e(�), (7)

where x(�) ∈ R
N is a random and unknown excitation signal,

and e(�) ∈ R
N is modeling noise. The random variables are

independent and zero-mean with covariances E[x(�)(x(�))	] =
Cx, E[e(�)(e(�))	] = Ce. The matrix S ∈ R

N×N is a graph
shift operator (GSO) satisfying Sij = 0 if and only if (i, j) /∈ E
[9]. The linear graph filter

H(S) =

T∑
t=0

htS
t ∈ R

N×N (8)

is a T th order polynomial of the GSO with coefficients {ht}Tt=0,
where T ∈ Z+ ∪ {∞}. For convenience, we define the generat-
ing function as h(λ) :=

∑T
t=0 htλ

t.
We consider a general model where the input covariance

can be non-white and of low rank such that R = rank(Cx) ≤
N . Without loss of generality, we concentrate on the model
Cx = BB	 where the columns of B ∈ R

N×R, R ≤ N , de-
scribe the subspace that the excitation signals x(�) lies in.
For example, when the excitation graph signals at the set
of R nodes {i1, . . ., iR} are statistically independent, B =
[ei1 · · · eiR ] where eij is the ij th canonical basis vector. The
graph filter H(S) is spectrally related to Lsym and assumed to
be low-pass [30], [39], [40]:

Assumption 1: We assume that the operator H(S) can be
written as:

H(S) = V ΣU	, (9)
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where Σ ∈ R
N×N is a diagonal matrix of singular values

ordered with respect to V , whose left-to-right column vectors
are the eigenvectors of the normalized Laplacian Lsym with
increasing eigenvalues, and U ∈ R

N×N is a square matrix.
Lastly, the diagonal elements of Σ satisfy

ηK :=
|max{Σ(K+1),(K+1), . . .,ΣN,N}|

|min{Σ1,1, . . .,ΣK,K}| < 1. (10)

Note that if H(S) is a polynomial graph filter
∑P−1

t=0 htS
t,

thenU = V and (10) is equivalent to the definition of a (ηK ,K)-
low pass graph filter in [40].

As we will see, the proposed community inference algorithms
return an accurate estimate of the communities in (5) when
the parameter ηK is small. Examples of compatible GSO-graph
filter pairs satisfying Assumption 1 are common in applications,
see [40]. Two examples are given below:

Case 1. Normalized Laplacian Matrix . Suppose that
the GSO is the normalized Laplacian matrix S = Lsym. It is
straightforward to verify that H(Lsym) = V h(Λ)V 	, where
h(·) is applied in an element-wise fashion. In this case, the graph
filter satisfies (9), (10) when the polynomial h(λ) is a decreasing
function for λ ∈ [0, 2].

Examples of graph filters satisfying Assumption 1 include the
heat diffusion kernel whereH(Lsym) = e−σLsym for someσ > 0
or its discretized version with H(Lsym) = (I − σLsym)

P with
P ∈ Z+, 0 < σ < 1; see [41].

Case 2. Markov Matrix . Let the GSO be the Markov
matrix S = Amarkov = D−1A, which is not symmetric. Us-
ing [42, Proposition 1], we observe thatAmarkov = D− 1

2V (I −
Λ)V 	D

1
2 . Using the fact that (D− 1

2V )−1 = V 	D
1
2 ,

D
1
2H(Amarkov) = V h(I −Λ)V 	D

1
2 . (11)

Therefore, the pre-multiplied graph filter D
1
2H(Amarkov) also

satisfies the requirements (9), (10) when the shifted polynomial
h(1− λ) is decreasing with respect to λ ∈ [0, 2]. Note that the
rows of Amarkov sum to one and the matrix is non-negative.
As such, applying Amarkov on a graph signal is equivalent to
performing neighborhood mixing, where the shifted graph signal
contains the weighted average of the values on neighboring
nodes. The local averaging property is common for modeling
linear opinion dynamics on social networks, where each node
is taken as an individual and a graph shift models one step of
opinion exchange.

Examples of graph filters satisfying Assumption 1 in-
clude H(Amarkov) = AP

markov for some P ∈ Z+, which model
T rounds of gossiping averages; and the IIR graph filter
H(Amarkov) = (I − αAmarkov)

−1,α ∈ (0, 1)which models the
steady state of an opinion dynamics [43].

C. Hidden Nodes and Community Inference Problems

We consider situations where the signals on a subset of nodes
are not observed during the data collection process (7). To
describe the setup, consider an observation model with hidden
nodes as depicted in Fig. 2. We partition V into Vobs, Vhid such
that Vobs is the set of n observable nodes, and Vhid is the set of

Fig. 2. Notations used for the hidden node setting. Only the graph signal values
on the yellow shaded nodesVobs are observed and used for community inference
in Task 1; the sub-matrix Ah,o is used in Task 2, in addition to the graph signals
observed on Vobs. For the above graph, the colored nodes are the nodes we seek
to cluster in Task 1.

hidden nodes with Vhid = V \ Vobs. We set Vobs = {1, . . ., n},
Vhid = {n+ 1, . . ., N} such that the adjacency and Laplacian
matrices can be described respectively as:

Anorm =

(
Anorm

o,o Anorm
o,h

Anorm
h,o Anorm

h,h

)
,Lsym =

(
Lo,o Lo,h

Lh,o Lh,h

)
. (12)

Here,Anorm
o,o (resp.Anorm

h,h ) represents the edges among the nodes
in Vobs (resp. Vhid) andAnorm

h,o represents the edges between Vobs

andVhid. The observed signal corresponds to a spatially sampled
version of y(�) with entries in Vobs, i.e.,

y
(�)
obs =

(
In×n0n×(N−n)

)
y(�). (13)

For convenience, let us denote Eobs := (In×n0n×(N−n)). We
note that the prior work [27] considered graph learning with
a slightly different model with missing data where V

(�)
obs varies

from sample to sample.
Community inference aims to infer the ‘true’ community

C�
1 , . . ., C�

K defined in (5) based on the spatially sampled graph

signals {y(�)
obs}m�=1. Consider the following two tasks:

� Task A: Blind Community Inference — As we do not know
if the nodes inVhid exist or not, we propose to only partition
the nodes in Vobs. In this task, based on {y(�)

obs}m�=1, we aim
to find the communities given by

Vobs ∩ C�
k , k = 1, . . .,K. (14)

This corresponds to the communities of Vobs inherited
from the complete graph. Obtaining (14) contributes to
providing a macroscopic view of the complete graph.

� Task B: Semi-blind Community Inference — We consider
the setting when, in addition, the sub-graph between Vobs

and Vhid, represented by the adjacency sub-matrix Anorm
h,o ,

is known. In this case, we have to combine two types of
information: the graph signals onVobs, and the connectivity
information between Vhid, Vobs. Naturally, our aim is to
recover the ‘true’ communities C�

1 , . . ., C�
K . Notice that

Anorm
h,h is not required in this task.

In Task B, Anorm
h,o contains the partial graph topology whose

exact form may be difficult to obtain. In practice, an estimate of
the graph topology may be used for this task. For example, side
information can be provided by an external source who estimates
the sub-graph’s topology.
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III. BLIND COMMUNITY INFERENCE

In this section, we focus on Task A whose aim is to retrieve
the partition, Vobs ∩ C�

k , k ∈ {1, . . .,K}, from the partially ob-

served graph signals {y(�)
obs}m�=1.

A. Blind Inference Method

We recall from (5) that C�
1 , . . ., C�

K is defined through the K-
means subroutine kmeans(V K ,K). Ideally, Task A which aims
at finding (14) is solved if V K is available. However, the latter
would be impossible since we only have the partially observed
graph signals.

As a remedy, we examine what spectral information can be
extracted from the observed partial graph signals by studying the
covariance of y(�)

obs. Using (7), (9), (13), the covariance matrix
can be evaluated as:

Cobs = E[y
(�)
obs(y

(�)
obs)

	] = V oΣU	BB	UΣV 	
o +Ce,

(15)
where V o := EobsV and we noted that Cx = BB	. Also,
we denote Cobs := Cobs −Ce as the noiseless part of the
covariance matrix. Under Assumption 1 that the graph filter
is low-pass with ηK � 1 [cf. (10)], the diagonal matrix Σ is
dominated by its top-K principal submatrix. This observation
supports following approximation for the first term in (15):2

ΣU	BB	UΣ ≈
(
CK 0
0 0

)
, (16)

where CK ∈ R
K×K is some positive semidefinite (PSD) ma-

trix. Using the block matrix structure in (16), one obtains

Cobs ≈ V o,KCKV 	
o,K, (17)

such that V o,K is the leftmost K column vectors of V o if ηK �
1. The above shows that the largest K eigenvectors of Cobs

roughly span the same subspace as that of V o,KV
	
o,K.

Now, suppose that we have an estimate of V o,K, e.g., by As-
sumption 1, and we aim at inferring the communities Vobs ∩ C�

k

[cf. (14)] by clustering the rows ofV o,K usingK-means. Despite
the close relationship between V o,K and V K , it remains unclear
whether the procedure kmeans(V o,K,K) recovers (14) as the
latter is not a minimizer of any K-means like objective function
in the form (4), unless further assumptions are made on Vobs.
We next investigate the geometry of the rows of V o,K to derive
a set of conditions for tackling Task A.

First, observe that in order to treat Task A, it would be neces-
sary for each community to have at least one representation
in Vobs, i.e., |Vobs ∩ C�

k | ≥ 1, k = 1, . . .,K. Otherwise, it is
impossible to find all theK communities from Vobs. In fact, Vobs

should contain a sizable representation from each community
C�
k . This observation is supported by Fig. 3 which shows the

scatter plots of the rows ofV K generated from two SBM graphs
and we highlighted the uniform samples taken from them. For

2For the approximation to hold, we require a mild condition on B such
that mini=1,...,K ‖B	ui‖ � maxj=K+1,...,N ‖B	uj‖ and ui is the ith
column of U . For the special case when U = V , this condition states that the
energy of BB	 in the low frequency component is at least comparable to those
in the high frequency components.

Fig. 3. Scatter plots of the rows of the top-3 eigenvectors {vrow
i }Ni=1 of

normalized Laplacian matrix when G is generated from an SBM with N = 150
nodes and K = 3 clusters and: (Left) a = 8 logN/N , b = logN/N . (Right)
a = 8 logn/n, b = 4 logn/n, where a (resp. b) is the intra (resp. inter)-cluster
connectivity. The highlighted points correspond to n = 50 sampled rows of
vrow
i .

modular graphs, e.g., SBMs with a 
 b as seen in the left plot in
Fig. 3 [cf. (6)], clustering the sampled points leads to the desired
partition (14) since the points are well separated. On the other
hand, for non-modular graphs, e.g., with a ≈ b for SBMs as seen
in the right plot in Fig. 3, clustering the sampled points may not
lead to (14).

Fig. 3 indicates that the desired partition (14) may be found
by applying kmeans(V o,K,K) when the graph is K-modular
[c.f. when NCut(C�

1 , . . ., C�
K) ≈ 0] and a sufficient number of

nodes are sampled from each community. We capture these
effects quantitatively by comparing the clusters of rows in
V o,K grouped by Vobs ∩ C�

1 , . . ., Vobs ∩ C�
K to those induced by

kmeans(V o,K,K). Define

v�
k :=

1

|C�
k |
∑

j∈C�
k
vrow
j (18)

as the kth ‘original’ centroid vector computed from the desired
partition. Our analysis depends explicitly on the following con-
stants pertaining to V o,K, Vobs:

Definition 1: Let (C�
obs,1, . . ., C�

obs,K) = kmeans(V o,K,K)

and3

δce := maxk∈[K]

∥∥v�
k − v�

obs,k

∥∥, (19a)

R1 := maxk∈[K] maxi∈C�
obs,k

‖vrow
i − v�

obs,k‖, (19b)

R2 := maxk∈[K] maxi∈C�
k∩Vobs ‖vrow

i − v�
k‖, (19c)

where we defined the sampled centroid vectors v�
obs,k :=

1
|C�

obs,k|
∑

j∈C�
obs,k

vrow
j for each k.

The constant δce measures the drift in the sampled centroid
vectors, and R1, R2 are the radius of the clusters in the K-
dimensional space. These constants depend on the size, the
modularity of the graph4, and the sampling pattern of nodes.
To gain more intuition for these variables, consider an SBM
graph with equal sized communities [cf. (6)] and the same
number of nodes are sampled from each community. If vi is
taken as an eigenvector of a population version of Lsym, we
have δce = 0; see [38, Definition 2] and [32, Proposition 3].
Now, applying [38, Theorem 2.1] shows that the eigenvectors of

3To simplify notations, we assume that the partition (C�obs,1, . . ., C�obs,K) has
been permuted to match with (C�1 , . . ., C�K) to give the smallest δce.

4That is, when the normalized cut defined in (2) is small.
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Algorithm 1: Blind Community Inference.
1: Input: set of partially observed graph signals

{y(�)
obs}m�=1, number of desirable clusters K.

2: Compute the sampled covariance:

Ĉ
m

obs = (1/m)
∑m

�=1 y
(�)
obs(y

(�)
obs)

	.

3: Find the largest K eigenvectors of Ĉ
m

obs, Q̂K ∈ R
n×K .

4: Set (Ĉobs,1, . . ., Ĉobs,K) = kmeans(Q̂K ,K).
5: Output: estimated partition Ĉobs,1, . . ., Ĉobs,K

Lsym and its population version coincide as N → ∞, implying
that δce → 0. On the other hand, when the nodes are sampled
unevenly, intuitively, we observe from Fig. 3 that these constants
can be large.

By clustering the rows of V o,K through kmeans(V o,K,K),
we can tackle Task A if δce, R1, R2 � 1. To see this, we define
the surrogate K-means objective function:

F̃o(Cobs,1, . . ., Cobs,K) :=

K∑
k=1

∑
i∈Cobs,k

∥∥vrow
i − v�

k

∥∥2 (20)

such that Cobs,1, . . ., Cobs,K is any partition of Vobs and v�
k was

defined in (18). Note that unlikeF (·;V o,K) [cf. (4)], the centroid
vector for each community is fixed at v�

k.
Instead of (4), we use F̃o(·) to compare the partition found by

kmeans(V o,K,K) to the desired one, Vobs ∩ C�
k , k = 1, . . .,K.

If the two partitions share a similar function value, then the
partitions formed shall be close to each other. The following
lemma confirms that kmeans(V o,K,K) outputs a favorable so-
lution when δce, R1, R2 � 1:

Lemma 1: Let (C�
obs,1, . . ., C�

obs,K) = kmeans(V o,K,K).
Then,

|F̃o(Vobs ∩ C�
1 , . . ., Vobs ∩ C�

K)− F̃o(C�
obs,1, . . ., C�

obs,K)|
≤ 2N (R1 +R2 + δce) δce. (21)

The proof can be found in Appendix A.
Combining the observations in (17) and Lemma 1 motivates a

spectral method to treat Task A, as summarized in Algorithm 1.
The proposed method employsK-means on the rows of Q̂K and
is akin to the unsupervised learning heuristic via combining PCA
and K-means, e.g., [6]. The main difference is that Algorithm
1 is not a heuristic as the latter is derived from the low pass
property of the GSP model. We will show in the next section
that the algorithm is able to detect the true communities. For the
computation complexity, note that forming the sampled covari-
ance matrix requires O(n2m) floating point operations (flops),
and the top-K eigenvectors are found in O(n2K) flops. The
K-means clustering step is performed in flopsO(2(K/ε)O(1)

Kn)
using [44], producing a (1 + ε) optimal solution to K-means,

i.e., it finds a partition C1
, . . ., CK

with F (C1
, . . ., CK

; Q̂K) ≤
(1 + ε)minC1,...,CK F (C1, . . ., CK ; Q̂K) [44]. The overall com-
plexity is thus O(n2(K +m)) flops.

B. Performance Analysis

This section analyzes the performance of Algorithm 1 con-
ditioned on the inputs {y(�)

obs}m�=1 generated by (13). Define the
economy QR decomposition of V o,K as:

V o, K = QKRK , (22)

such that QK ∈ R
n×K is an orthogonal matrix which spans the

range space ofV o,K andRK is a upper triangular matrix. Define
the following constant to be used in our analysis:

ρgap := λn−K−1(Cobs)− λn−K(Cobs)− ‖Ĉm

obs −Cobs‖2,
(23)

where Ĉ
m

obs is the sampled covariance matrix (cf. Algorithm
1), and λi(X) denotes the ith smallest eigenvalue of a square,
symmetric matrix X . We consider the following assumption:

Assumption 2: We assume that the operator H(S) satisfies
1) rank(U	

KCx) = K,UK is theK leftmost-columns ofU ,
defined in Assumption 1.

2) the constant ρgap, defined in (23), is strictly positive.
Condition 1) requires the excitation signal’s covariance to be

at least rankK and that it does not lie in the null space ofU	
K . For

2), we observe that typically ρgap > 0 as the number of samples
m grows and the noise is small, i.e., ‖Ce‖2 � 1.

Our first analytical result is a bound on the difference between
the range spaces of Q̂K and QK :

Proposition 1: Suppose Assumption 1, 2 hold. Then

‖Q̂KQ̂
	
K −QKQ	

K‖F ≤
√

2K

×
(√

2γ(2‖U	
KB‖2 + ‖U	

N−KB‖2)
λK(B	UKV 	

o,KV o,KU	
KB)

ηK+
‖Ĉm

obs −Cobs‖2
ρgap

)
,

(24)

where we have defined γ =
max{Σ1,1,...,ΣK,K}
min{Σ1,1,...,ΣK,K} , and Q̂K is com-

puted in line 3 of Algorithm 1.
The proof is relegated to Appendix B. The above proposi-

tion gives a quantitative account for the discussions in (15),
(16). In particular, the eigenvectors Q̂K approximate QK =
EobsV KR−1

K , which spans the same subspace as the one
spanned by the row-sampled version ofV K . The approximation
quality improves as the lowpass ratio ηK decreases and the
number of samples m increases. Next, we benchmark the output
Ĉobs,1, . . ., Ĉobs,K of Algorithm 1 via the K-means objective
function F (C1, . . ., CK ;V o,K) [cf. (4)].

Theorem 1: Assuming that theK-means in line 4 of Algorithm
1 outputs an (1 + ε) optimal solution. Then√

F (Ĉobs,1, . . ., Ĉobs,K;V o,K)−
√

(1 + ε)F �
o

≤ ‖RK‖2(2 + ε)‖QKQ	
K − Q̂KQ̂

	
K‖F. (25)

where F �
o = minF (Cobs,1, . . ., Cobs,K;V o,K), i.e., the optimal

objective value attained by kmeans(V o,K,K).
The proof is provided in Appendix C. Notice that ‖QKQ	

K −
Q̂KQ̂

	
K‖F may be upper bounded by (24).

Combining Proposition 1, Theorem 1 provides a bound on the
difference between the output by Algorithm 1 and the surrogate
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solution kmeans(V o,K,K). This bound depends on two factors
as seen in the right hand side of (24): the first factor is bounded
as O(ηK) which improves if the graph filter is sufficiently
low-pass; it is known that the second factor is bounded with
probability at least 1− δ (with respect to the randomness in the
generation of {y(�)

obs}m�=1) [45, Ch. 4] as

‖Ĉm

obs −Cobs‖2 = O(
√
log(1/δ)/m+ ‖Ce‖2). (26)

This bound decreases with the number of observed graph signals
m and depends on noise variance ‖Ce‖2. To summarize, with
probability at least 1− δ, it holds that√

F (Ĉobs,1, . . ., Ĉobs,K;V o,K)−
√

(1 + ε)F �
o

= O
(
ηK + ρ−1

gap

(√
log(1/δ)/m+ ‖Ce‖2

))
. (27)

The big-O notation suppresses the factors ‖U	
KB‖2,

‖U	
N−KB‖2, λN−K−1(B

	UKV 	
o,KV o,KU	

KB) which de-
scribe the effects of the correlation between UK and the exci-
tation covariance. In the case of UK = V K , i.e., the GSO is
symmetric, the excitation graph signals at each community have
to be independent for these factors to be small. For example,
this would happen if there is an independent influencer at each
community. Naturally, if the excitation signals only span the
orthogonal subspace UN−K , these factors can be large.

Our results show that Algorithm 1 provides an approximate
solution to kmeans(V o,K,K) when m 
 1, ηK � 1. The de-
rived bounds are comparable to [30], particularly they match
each other (up to a constant factor that depends on ‖RK‖2,
‖U	

KB‖2) if all nodes are observed. To tackle Task A, we further
recall from Lemma 1 that kmeans(V o,K,K) approximates the
desired solution if δce, R1, R2 � 1. Interestingly, the analysis
reveals that the performance of Algorithm 1 is insensitive to
the number of observed nodes, but instead it depends on the
low-pass coefficient ηK and the sampling pattern of nodes. We
verify these findings in Section V.

IV. NYSTRÖM BASED SEMI-BLIND COMMUNITY INFERENCE

This section focuses on Task B. Our goal is to infer the
partition, C�

1 , . . ., C�
K , for the complete graph.

A. Semi-Blind Inference Method

As we recall from definition (5), the desired partition is found
using the eigenvectors V K of the normalized Laplacian. While
V K is not readily available, we utilize the spectral information
obtained from the partial graph signals and then interpolate
it using the partial topology information Anorm

h,o . We begin by

recalling from Proposition 1 that the eigenvectors Q̂K computed
in Algorithm 1 approximate a row-sampled version of V K , i.e.,
QK = EobsV KR−1

K . In this regard, the Nyström extension [46]
is a natural method for interpolating Q̂K .

In a nutshell, the Nyström extension method treats the un-
known positive semindefinite (PSD) matrix as a kernel, and
interpolates its eigenvectors through approximately solving the
eigenvector equations. To derive the Nyström extension method,

Algorithm 2: Semi-Blind Community Inference.

1: Input: partially observed graph signals {y(�)
obs}m�=1,

number of desirable clusters K, partial network
topology Anorm

h,o .

2: Follow line 2–3 in Algorithm 1 to obtain Q̂K .

3: Compute (32) to obtain either Ṽ
nys
K (or Ṽ

imp
K ).

4: Perform economy QR decomposition to obtain
Ṽ K = V̂ KΔ̂K , where columns of V̂ K ∈ R

N×K are
orthogonal and Δ̂K ∈ R

K×K is upper triangular.
5: Set (Ĉ1, . . ., ĈK) = kmeans(V̂ K ,K).
6: Output: estimated partition Ĉ1, . . ., ĈK

we let cL ∈ [λN , 2] be a user-designed constant and consider a
flipped Laplacian matrix as

L̃sym = cLI −Lsym. (28)

The column vectors of V K are the eigenvectors of L̃sym with
the largestK eigenvalues; the eigenvalues are {λ̃i}Ni=1 = {cL −
λi}Ni=1. Now, suppose we are given the row sampled version of
V K , i.e., V o,K = EobsV K . Let k ∈ {1, . . .,K} and vk be the
kth column of V K . Then,

L̃symvk = (cL − λk)vk. (29)

By expanding (29), the Nyström extension estimates the ele-
ments in vk for the hidden nodes, i ∈ Vhid, by

vi,k=
1

cL − λk

⎛⎝ ∑
j∈Vobs

[
L̃sym

]
ij
vj,k+

∑
j∈Vhid

[
L̃sym

]
ij
vj,k

⎞⎠
≈ 1

cL − λk

⎛⎝ ∑
j∈Vobs

[Anorm]ij vj,k

⎞⎠ , (30)

where the Nyström approximation is obtained by discarding the
second summation. In the above, we have used the definition for
L̃sym, Lsym, as we recognized that [−Lsym]ij with i ∈ Vhid, j ∈
Vobs can be mapped to the submatrix Anorm

h,o .
An alternative approximation can be obtained by exploiting

the structure of L̃sym. Specifically, take cL = 2 and observe that
as L̃sym = I +Anorm, we can retain the diagonal component of
the second summation in (30) by the following approximation:

vi,k ≈ 1

2− λk

⎛⎝ ∑
j∈Vobs

[Anorm]ij vj,k + vi,k

⎞⎠
=⇒ vi,k ≈ 1

1− λk

∑
j∈Vobs

[Anorm]ij vj,k. (31)

We find that (30), (31) lead to two different Nyström extension
models, where (31) enjoys better empirical performance when
the number of observed nodes is small.

For Task B, since both the sub-sampled matrix V o,K and the
eigenvalues λk are unknown, we replace V o,K by its surrogate
Q̂K used in Task A. Observe that λk ≈ 0 for 1 ≤ k ≤ K when

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on May 19,2022 at 11:10:12 UTC from IEEE Xplore.  Restrictions apply. 



WAI et al.: COMMUNITY INFERENCE FROM PARTIALLY OBSERVED GRAPH SIGNALS: ALGORITHMS AND ANALYSIS 2143

the graph is K-modular. Applying λk ≈ 0 to (30), (31) yields
the following estimate of V K :

Ṽ
nys
K :=

(
Q̂K

1
cL

Anorm
h,o Q̂K

)
, Ṽ

imp
K :=

(
Q̂K

Anorm
h,o Q̂K

)
. (32)

Note that the two estimates differ by a factor of cL in the lower
block matrix. As we will demonstrate in Section V, Algorithm 2
using either one of the estimates of V K achieves reasonable

performance with Ṽ
imp
K offering slightly better performance.

We summarize the proposed inference method for Task B in
Algorithm 2 which performs K-means clustering on the rows

of Ṽ
nys
K or Ṽ

imp
K . The final clustering step is performed on the

orthogonalized eigenmatrix V̂ K of Ṽ K .
Related algorithms have been proposed in the data clustering

literature [47]–[50], yet these works assume knowledge of the
adjacency matrix between observable nodes, while in our set-
tings, we do not observe the edges between observable nodes.
The Nyström extension has also been applied to graph signal
interpolation [42]. In fact, one may be tempted to first interpolate
the partial graph signals, and then applying [30] to infer com-
munities of the complete graph based on the interpolated graph
signals. However, graph signal interpolation (such as [42]) also
requires the Laplacian matrix between observable nodes, which
is not available in our setting.

We comment on the computation complexity of Algorithm
2. As discussed in Section III it requires O(n2(K +m)) flops
to obtain Q̂K . In addition, the Nyström step in (32) takes
O(nnz(Anorm

h,o )K) flops where nnz(Anorm
h,o ) is the number of

non-zeros in the matrix Anorm
h,o . Finally, the K-means step re-

quires O(2(K/ε)O(1)
KN) flops. Overall, the algorithm requires

flops O(N(nnz(Anorm
h,o ) +K) + n2(K +m)) to run. In con-

trast, inferring partitions from fully observed graph signals
involve a complexity of O(N2K) flops (or through the formed
similarity matrix). Algorithm 2 thus reduces the complexity
of community inference when n � N and partial topology
information is available.

B. Performance Analysis

Algorithm 2 tackles the semi-blind inference Task B using
estimates of the full eigenvectors V̂ K . Unlike the analysis
of Algorithm 1, we have to explicitly consider the effects of
randomness in sampling nodes. For simplicity, we make the
following assumption.

Assumption 3: The observable node set Vobs is sampled uni-
formly at random from V = {1, . . ., N}.

In the following, we analyze the performance of Algorithm
2 under Assumption 3 while treating the full graph signals
{y�}m�=1 given in (7) as fixed. We first define the following
constants for facilitating our analysis: for any Δ > 0,

δ̃eig(Δ) = inf

{
δ̂eig : P(max

k∈[K]
|λk(Lo,o)| ≤ δ̂eig) ≥ 1−Δ

}
,

ρ̃gap(Δ) = sup{ρ̂gap : P(ρgap ≥ ρ̂gap) ≥ 1−Δ}, (33)

where Lo,o, ρgap are defined in (12), (23), respectively, in which
they are treated as random variables due to the selection of the
observable node set Vobs.

Observe that δ̃eig(Δ) ≈ 0 when G is K-modular and the
number of observed nodes is large. To see this, denote Eobs ∈
{0, 1}n×N as the selection matrix induced by Vobs. Then

Lo,o = I −EobsD
−1/2AD−1/2E	

obs

= I −D
−1/2
obs EobsAE	

obsD
−1/2
obs , (34)

where Dobs is the diagonal matrix of the degrees of the nodes
in Vobs. Notice that EobsAE	

obs is the adjacency matrix of the
subgraph G[Vobs]. Under Assumption 3 and assuming that G is
K-modular, with high probabilityVobs includes nodes from each
cluster, forming a K-modular graph itself. Thus, the K largest
eigenvalues ofD−1/2

obs EobsAE	
obsD

−1/2
obs will be close to n

N asn
nodes are selected to formG[Vobs]. This leads to the observation
that the K smallest eigenvalues of Lo,o are approximately N−n

N ,
i.e., δ̃eig(Δ) ≈ N−n

N . Furthermore, ρ̃gap(Δ) is bounded away
from zero when the number of observed graph signals, m, is
moderate [cf. (26)]. We remark that these constants can be
characterized when a specific (random) graph model is assumed.

The following theorem introduces a bound on the sub-
optimality of Algorithm 2:

Theorem 2: Let Assumption 1, 2, 3 hold and the K-means
algorithm outputs an (1 + ε) optimal solution. Fix any fail-
ure probability Δ > 0. If ρ̃gap(Δ) > 0, n ≥ 8μK log(3K/Δ)

where μ := N
K maxj=1,...,N ‖Ṽ row

1:K,j‖ such that Ṽ
row

1:K,j is the

jth row of the matrix of first K eigenvectors of L̃sym, then with

probability at least 1−Δ, Algorithm 2 with Ṽ
nys
K [cf. (32)] finds

a partition of V = {1, . . ., N} satisfying

√
F (Ĉ1, . . ., ĈK ;V K)−

√
(1 + ε)F �

=
2 + ε

cL − λK
O
(
δ̃eig(Δ) +

√
K

(
ηK +

‖Ĉm

obs −Cobs‖2
ρ̃gap(Δ)

)

+

(
1 +

√
2N
n

)
(cL − λK+1)

)
, (35)

where F � is the minimum objective value of F (·;V K) in (4),
and λK+1 is the K + 1th smallest eigenvalue of Lsym.

The proof can be found in Appendix D. Our result is achieved
by decomposing the l.h.s. of (35) into the error of the Nyström
extension for the eigenvectors of L̃sym and the error of approx-
imating QK by Q̂K in line 2 of Algorithm 2. In our analysis,
we adopt [48], [49] to show that the low-rank approximation
of L̃sym produced by the Nyström method admits an error of
O(1/

√
n), where n is the number of observed nodes, and we

apply Proposition 1 to treat the error between QK , Q̂K .
Similar to the analysis for Task A, we recall that ‖Ĉm

obs −
Cobs‖2 = O(

√
log(1/δ)/m+ ‖Ce‖2)with probability at least

1− δ [45, Ch. 4]. As such, when we take cL = 1, (35) implies
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that√
F (Ĉ1, . . ., ĈK ;V K)−

√
(1 + ε)F �

= O
⎛⎝ηK+

√
log(δ−1)

m +‖Ce‖2
ρ̃gap(Δ)

+
N − n

N
+

√
1

n

⎞⎠ (36)

with probability at least 1− δ −Δ, where the randomness
comes from the selection of n nodes in Vobs and the excita-
tion/noise signals in (13). Note we have taken the approxima-
tions δ̃eig(Δ) ≈ N−n

N , λK ≈ 0 and λK+1 ≈ 1 for K-modular
graphs. The latter follows from the intuition that A is approxi-
mately rank-K; see [51, Th. 10] for a precise bound for K = 2.

The bound in (36) consists of two parts. The first two terms
are small provided that the graph filter is low pass ηK � 1, the
number of observed nodes is sufficiently large, and the number of
graph signal samples m is large. The remaining terms decrease
with the number of observed nodes n if we take cL = 1. The
requirement n ≥ 8μK log(3K/Δ) reveals that for Algorithm
2 to succeed, the number of observed nodes has to be at least
a constant multiple of the number of existing communities. In
conclusion, the performance of Algorithm 2 is sensitive to the
number of observed nodes, as we will demonstrate in Section V.

V. NUMERICAL EXPERIMENTS

This section examines the efficiency of our proposed methods
applied on synthetic and real data. We validate the theoretical
results on generated graph signals and present an application on
finding communities in the S&P100 stocks network through the
daily returns of a subset of stocks.

A. Synthetic Data

We consider applying Algorithm 1 and 2 on tackling Task A
and Task B, respectively. To generate the partial graph signals
data, we adopt the data generation model from (7) where the
graph related operator is given as the graph diffusion filter
H(S) = (I − 0.5S)P and P is the order of diffusion. The
input to the graph filter is x(�) = Bz(�) where B ∈ R

N×R is
a random matrix with i.i.d. elements generated from N (0, 1),
and z(�) ∼ N (0, I). The GSO is selected as the normalized
Laplacian matrix S = Lsym = I −Anorm. The graph is gen-
erated according to a planted partition stochastic block model
denoted by SBM(N,K, a, b) – such that there are N nodes
divided into K equal sized clusters, the intra-cluster (resp. inter-
cluster) connectivity is a (resp. b). Throughout this section, we
fix N = 150 nodes, K = 3 clusters in the randomly generated
graphs, and the excitation rank is R = 15. We observe m = 100
samples from the output of the graph filter with an observation
noise following Ce = 10−4I . For benchmarking purpose, we
compare the error rate of the detected communities/partitions
with the SBM’s ground truth:

Pe := E

[
1
N minπ:[K]→[K]

∑N
i=1 �π(ci) �=ctrue

i

]
, (37)

Fig. 4. (Task A) Error rate of inferred communities from graph signals against
the number of sampled nodes n. Different plots represent different filter param-
eters for the filter (I − 0.5Lsym)P .

Fig. 5. (Task A) 1− F1 scores of inferred communities from graph signals
against the ratio of inter/intra partition connectivity in the SBM model. In the
legend, [x, y, z] means that a fraction of x (resp. y, z) nodes are sampled from
the 1st (resp. 2nd, 3 rd) cluster, e.g., [0.1,0.1,0.8] is an uneven sampling.

where ci is the output of Algorithm 1 or Algorithm 2, and ctrue
i is

the ground truth used in generating the SBM graph. We evaluate
the error rates using 104 Monte-carlo trials.

First, we focus on the Task A of blind inference which
partitions only the observable nodes Vobs. For reference, we
compare the performance of spectral clustering (SC) on the
ground truth partial Laplacian Lo,o and full Laplacian L; and
a procedure that first learns a graph topology via [15], [52], then
applying SC. We begin by assessing the effect of graph filter and
number of sampled nodes on the accuracy of partition inference.
We fix the parameters at a = 8 logN/N , b = logN/N and the
observed nodes are sampled uniformly at random. The results are
presented in Fig. 4. Observe that the performance is generally
invariant with respect to the number of sampled nodes n; the
performance improves significantly as we increase the order of
diffusion T . Our observation is consistent with the analysis in
Section III-B.

The second example evaluates the impact of node sampling
scheme on the blind partition inference performance. Motivated
by Lemma 1, we are interested in the combined effect of
the SBM parameters and the sampling scheme. Here, we fix
a = 8 logN/N , and order of diffusion at P = 10. There are
N = 150 nodes and K = 3 clusters. Notice that due to the
uneven sampling, the ground truth clusters are of different sizes.
In this case, we compare the averaged F1 score in lieu of the
error rate. The results are presented in Fig. 5, where we observe
that when the ratio b/a is large, i.e., when the graph is not
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Fig. 6. (Task B) Error rate of inferred communities from graph signals against
the number of sampled nodes n. The solid (resp. dashed) lines represent the
error rates with a

b = 16 (resp. a
b = 4). We compare the error rate using different

Nyström extension approximations in (32).

modular, the performance deteriorates if an uneven sampling
scheme is adopted. The above observation is consistent with
Lemma 1. Furthermore, for the two examples, the proposed
approach outperforms the 2-step procedure. It demonstrates the
benefits of direct community inference.

Next, we focus on Task B for semi-blind community in-
ference. We compare the performance of SC on the ground
truth Laplacian L and applying [30] on the zero-padded graph
signals. We fix a = 8 logN/N , b = a/16, P = 10 for the order
of diffusion, and the observed nodes are sampled uniformly at
random. In Fig. 6, we present the error rate against the number
of sampled nodes n in inferring the communities of the full
graph G using Algorithm 2. From the figure, we see that the
performance of Algorithm 2 improves when the number of
sampled nodes increases. With approximately 70 out of 150
nodes sampled, the semi-blind inference procedure infers the
communities correctly. Interestingly, we observe that when n

is small, the modified Nyström extension with V imp
K achieves

a better performance than plain Nyström extension with V nys
K .

The performance withV nys
K remains consistent with the analysis

in Theorem 2.
The next example studies the effects of erroneous side topol-

ogy information on the semi-blind community inference. Again,
we consider the same simulation setting as the previous example
while we fix a

b = 16 for the SBM parameters. The partial net-
work topology Anorm

h,o used in Algorithm 2 is contaminated with

noise. In particular, we consider using Â
norm
h,o = Anorm

h,o +Eh,o

where Eh,o ∈ R
(N−n)×n is a sparse matrix with varying den-

sity and the non-zero elements with the uniform distribution
U [0, 0.2]. The error rate performance against the number of
sampled nodes n is presented in Fig. 7. We observe that the
performance of Algorithm 2 is robust to erroneous side infor-
mation Â

norm
h,o .

In the last example, we study the effects of overlapping
community structure on the semi-blind inference performance.
We consider an overlapping SBM model where in each block,
there are r nodes that belong to two communities simultaneously.
The rest of the settings are similar to the previous examples.
In Fig. 8, we compare the error rate against the number of
overlapped nodes per community. For nodes that belong to two

Fig. 7. (Task B) Error rate of inferred communities from graph signals against
the number of sampled nodes n. We compare the error rate with different error
level in the side information Anorm

h,o with V
imp
K in (32) for Algorithm 2.

Fig. 8. (Task B) Error rate of inferred communities from graph signals against
the number of overlapping nodes in each community. We compare the error rate
with different SBM parameters a, b.

communities, we count the detection as erroneous only if it is
not found in neither of the ground truth communities. From
the result, for graphs that are not modular (when a

b is small),
we observe that the performance generally deteriorates as the
amount of overlap increases. On the other hand, for modular
graphs (when a

b is large), the semi-blind inference method
achieves reasonable performance.

B. Real Data

We consider applying the proposed community inference
methods on a dataset of S&P100 stocks obtained from https:
//www.kaggle.com/camnugent/sandp500. We focus on a subset
of the data with the stock prices ofN = 92 stocks in S&P100 that
are collected from a window of Feb. 2013 to Dec. 2016, where the
opening and closing prices of 975 days are considered. We treat
the daily returns on day �, defined as the ratio between closing
and opening price, of each stock as the �th graph signal. Denote
the �th graph signal by y(�) ∈ R

N and consider m = 875 days
of data and leave the remaining 100 days of data for later use. We
also normalize the variances of the daily returns of each stock in
the data. We postulate that these graph signals follow a model
like (7) with a low pass graph filter satisfying ηK < 1 [cf. (10)]
for any K. The graph signals on each day is the result of a latent
excitation signal modeling the global market environment. Our
goal is to discover communities of companies with close ties,
where the latter forms a stock network. Ideally, the communities
detected include companies from the same business sector.
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TABLE I
FINDING K = 10 COMMUNITIES FROM S&P 100 DATA. RED COLOR

INDICATES HIDDEN NODES WHOSE PRICE SIGNALS ARE NOT OBSERVED

TABLE II
(TASK A) ACCURACY OF FINDING COMMUNITIES COMPARED TO THE GICS

SECTOR CLASSIFICATION

To evaluate the proposed methods, we hand picked n = 46
stocks from K = 10 business sectors (classified by GICS) as
the observed nodes. We consider Task A by applying Algorithm
1 to infer K = 10 communities using the covariance matrix of
the observables stocks. The results can be found in Table I. We
observe close match with the clustering as Community 5 are
technology companies such as ‘Apple,’ ‘Intel,’ etc.; Community
8 are financial companies such as ‘Bank of America,’ ‘JP Mor-
gan,’ etc.. In Table II, we compare the F1 score of classification
of the result from Algorithm 1 to that of a 2-step procedure
with [15]. Note that the ground truth communities are unknown.
We take the GICS classification of stocks as the ground truth. We
observe that the F1 score of Algorithm 1 is significantly higher
than that of [15].

Next, we consider Task B where we infer communities by
combining the observed graph signals with partial graph infor-
mation using Algorithm 2. To estimate the connectivity from
hidden nodes to observable nodes, i.e., the matrix Anorm

h,o , we
compute the correlation between these nodes using the daily
return data from the unused 100 days of data. Our results can be
found in Table I, where we have highlighted the stocks that were
not observed in the partial graph signals y(�)

obs. Determining their
communities has to rely on the Nyström extension method. We
observe that companies in related sectors are grouped together.
For example, Community 3 are technology companies such

Fig. 9. (Task B) V -measure against number of sampled stocks/nodes in
S&P100 dataset. Shaded area represents the 90% confidence interval.

as ‘Cisco,’ ‘Alphabet,’ ‘Qualcomm,’ etc..; Community 2 are
health care companies including ‘Biogen Inc.’ and ‘Eli Lilly
and Co’; Community 1 are industrial companies such as ‘3 M,’
‘Raytheon Co.,’ ‘Honeywell,’ etc.. We notice that there are some
mismatches such as ‘General Motors’ and ‘Ford Motors’ in
Community 10 while the majority are financial companies.

Finally, we compare the consistency of our algorithm against
the number of randomly (and uniformly) sampled stocks/nodes
n in Fig. 9. We consider the V -measure5 of the output of
Algorithm 2 against the ground truth given by applying [30] on
the full graph signals, averaged over 100 trials. The V -measure
increases with n consistently.

VI. CONCLUSION

We introduced community inference methods for filtered
graph signals with hidden nodes. Under the assumption of a
low-pass graph filter and conditions on how the hidden nodes
are selected, we analyzed the performance of spectral methods
for blind and semi-blind inference. Our analysis reveals that
the key factors determining the performance of the spectral
methods are the strengths of the low-pass graph filter and the
sampling pattern of the observable nodes. We then propose a
Nyström extension based community inference method when
connectivity information from hidden nodes to observable nodes
is available. Numerical results on synthetic and real data justify
our theoretical claims.

APPENDIX A

PROOF OF LEMMA 1

Under Assumption 1, expanding the squared norm and using
the Cauchy-Schwarz inequality, we obtain for all i ∈ C�

obs,k the
following inequalities:

‖vrow
i − v�

k‖2 − ‖vrow
i − v�

obs,k‖2

≤ 2‖vrow
i − v�

obs,k‖‖v�
k − v�

obs,k‖+ ‖v�
k − v�

obs,k‖2

≤ (2R1 + δce) δce. (38)

5The complexity of computing the F1 score can be overwhelming in order to
take care of label permutation withK = 10. As a remedy, we use theV -measure
which is built in with Clustering.jl.
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Similarly, for all i ∈ C�
k , it holds that

‖vrow
i − v�

obs,k‖2 ≤ ‖vrow
i − v�

k‖2 + (2R2 + δce) δce.(39)

Analyzing the surrogate objective function, we then have:

F̃o(C�
obs,1, . . ., C�

obs,K) =
K∑

k=1

∑
i∈C�

obs,k

∥∥vrow
i − v�

k

∥∥2
≤

K∑
k=1

∑
i∈C�

obs,k

{∥∥vrow
i − v�

obs,k

∥∥2 + (2R1 + δce) δce

}
(a)

≤
K∑

k=1

∑
i∈C�

k∩Vobs

∥∥vrow
i − v�

obs,k

∥∥2 +N (2R1 + δce) δce

≤
K∑

k=1

∑
i∈C�

k∩Vobs

∥∥vrow
i − v�

k

∥∥2 + 2N (R1 +R2 + δce) δce,

where (a) is due to that C�
obs,1, . . ., C�

obs,K is a K-means opti-
mal solution with the centroid vector v�

obs,k and the fact that∑K
k=1 |C�

obs,k| = N . This concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 1

Observe the following bound:

‖Q̂KQ̂
	
K −QKQ	

K‖F ≤ ‖QKQ
	
K −QKQ	

K‖F
+ ‖Q̂KQ̂

	
K −QKQ

	
K‖F, (40)

where we have defined QK as the largest K eigenvectors of the
noiseless covariance matrix Cobs.

To bound the first term in r.h.s. of (40), observe that QK can
be obtained as the top-K left singular vectors of EobsV ΣU	B
[cf. (15)], and recall that Cx = BB	. The latter can be decom-
posed as:

V o,KΣKU	
KB︸ ︷︷ ︸

=:P

+V o,N−KΣN−KU	
N−KB︸ ︷︷ ︸

=:T

, (41)

we have defined the partitions of Σ, U with Σ =
(ΣK0;0ΣN−K) and U = (UKUN−K), and we have
V o,N−K = EobsV N−K with V N−K corresponding to the last
N −K eigenvectors ofLsym. On the other hand, the range space

of P is equivalent to that of QK provided that rank(U	
KC

1
2
x ) =

K [cf. Assumption 2]. If we let Q̃K be the largestK left singular

vector of P , then we have QKQ	
K = Q̃KQ̃

	
K . We invoke [53,

Th. 3], which is a variant of the Wedin’s theorem:

‖QKQ	
K −QKQ

	
K‖F

= ‖Q̃KQ̃
	
K −QKQ

	
K‖F = ‖ sinΘ(Q̃K ,QK)‖F

≤ 2(2‖P ‖2 + ‖T ‖2)
σ2
K(P )

min{
√
K‖T ‖2, ‖T ‖F} , (42)

where σi(P ) denotes the ith largest singular value of the matrix
P and ‖T ‖2 denotes the spectral norm of the matrix T . It is
easy to obtain:

‖P ‖2 ≤ max{s1, . . ., sK}‖U	
KB‖2‖V o,K‖2 ,

‖T ‖2≤max{sK+1, . . ., sN}‖U	
N−KB‖2‖V o,N−K‖2,(43)

where we defined sk := Σk,k. Furthermore, we have

σK(P ) = min{s1, . . ., sK}σK

(
V o,KDiag(ŝ)U	

KB
)

= min{s1, . . ., sK}
√

λK

(
V

sym
K

)
, (44)

where we scaled sK := (s1, . . ., sK) as ŝ :=
1

min{s1,...,sK}sK ≥ 1. Moreover, we have

V
sym
K := B	UKDiag(ŝ)V 	

o,KV o,KDiag(ŝ)U	
KB

�B	UKV 	
o,KV o,KU	

KB , (45)

where A1 � A2 indicates that A1 −A2 is positive semidef-
inite, the above inequality is obtained by (i) rewriting

Diag(ĥ)V 	
o,KV o,KDiag(ĥ) as V 	

o,KV o,K � (ĥĥ
	
) and (ii)

applying Schur’s theorem [54, Theorem 7.5.3] with the fact that

ĥĥ
	 − I � 0. Consequently,

σK(P ) ≥ min{s1, . . ., sK}
√

λK(B	UKV 	
o,KV o,KU	

KB)

(46)
such that UK contains the first K columns of U . Combining
(42), (43) and (46) gives the desired bound as

‖QKQ	
K −QKQ

	
K‖F

≤ 2γ
√
K

2‖U	
KB‖2 + ‖U	

N−KB‖2
λK(B	UKV 	

o,KV o,KU	
KBx)

ηK . (47)

To bound the second term in (40), we follow a similar deriva-
tion as in [30, Proposition 2]. First,

‖Q̂KQ̂
	
K −QKQ

	
K‖F ≤

√
2K‖Q̂KQ̂

	
K −QKQ

	
K‖2.

Asρgap > 0 [cf. (23)], applying the Weyl’s inequality and Davis-
Kahan theorem [55, Sec. VII.3] show that:

‖Q̂KQ̂
	
K −QKQ

	
K‖2 ≤ ‖Ĉm

obs −Cobs‖2
ρgap

. (48)

Substituting the above back into (40) shows the desired bound.

APPENDIX C

PROOF OF THEOREM 1

We adopt the proof from [30, Theorem 1] (also see [56]). De-
fine the indicator matrix X̂ ∈n×K associated with the partition
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Ĉobs,1, . . ., Ĉobs,K found with the proposed method:

X̂ik :=

{
1/

√
|Ĉobs,k|, ifi ∈ Ĉobs,k

0, otherwise.
(49)

Similarly, we define the indicator matrix X� based on the parti-
tion C�

obs,1, . . ., C�
obs,K. The latter partition is an optimal solution

obtained by clustering the rows of V obs, i.e., it minimizes
the K-means objective function (4). In particular, using our
definition it can be shown that

F (C�
obs,1, . . ., C�

obs,K;V o,K) = ‖(I −X�(X�)	)V o,K‖2F
≤ F (C1, . . ., CK ;V o,K), ∀C1, . . ., CK . (50)

We proceed by observing

F (Ĉobs,1, . . ., Ĉobs,K;V o,K)
1
2 = ‖(I − X̂X̂

	
)V o,K‖F

(a)
= ‖(I−X̂X̂

	
)QKRK‖F≤‖RK‖2‖(I−X̂X̂

	
)QK‖F(51)

where (a) uses the QR factorization in (22). Moreover,

‖(I − X̂X̂
	
)QK‖F (a)

= ‖(I − X̂X̂
	
)QKQ	

K‖F
≤ ‖(I − X̂X̂

	
)Q̂KQ̂

	
K‖F + ‖QKQ	

K − Q̂KQ̂
	
K‖F

(b)

≤ √
1 + ε‖(I −X�(X�)	)Q̂K‖F

+ ‖QKQ	
K − Q̂KQ̂

	
K‖F, (52)

where (a) is due to the orthogonal property of QK , and (b) is
due to the fact X̂ is an (1 + ε) optimal solution to the clustering
problem based on the rows of Q̂K . By following a similar upper
bounding techniques in (51), (52), and observe that

√
1 + ε ≤

1 + ε, we obtain that

F (Ĉobs,1, . . ., Ĉobs,K;V o,K)
1
2 ≤{

(1 + ε)F
�
o

} 1
2

+ ‖RK‖2(2 + ε)
{
‖QKQ	

K − Q̂KQ̂
	
K‖F
}
.

Lastly, ‖QKQ	
K − Q̂KQ̂

	
K‖F is upper bounded using Proposi-

tion 1. Combining terms conclude the proof.

APPENDIX D

PROOF OF THEOREM 2

Similar to the proof of Theorem 1, we begin by defining
the N ×K indicator matrices X̂ , X�, based on the partitions
(Ĉ1, . . ., ĈK) and (C�

1 , . . ., C�
K), respectively. For instance, with

a slight abuse of notations, we define

X̂ik :=

{
1/

√
|Ĉk|, ifi ∈ Ĉk,

0, otherwise.
(53)

Similar to (51), we observe that

F (Ĉ1, . . ., ĈK ;V K)
1
2 = ‖(I − X̂X̂

	
)V K‖F

≤ ‖(I − X̂X̂
	
)V̂ KV̂

	
K‖F + ‖V̂ KV̂

	
K − V KV 	

K‖F
(a)

≤ √
1 + ε‖(I −X�(X�)	)V̂ KV̂

	
K‖F

+ ‖V̂ KV̂
	
K − V KV 	

K‖F
(b)

≤
√

(1 + ε)F � + (2 + ε)‖V̂ KV̂
	
K − V KV 	

K‖F. (54)

where (a) uses the fact that X̂ is an (1 + ε) optimal solution,
and (b) uses

√
1 + ε ≤ 1 + ε with the triangular inequality.

Next, we denote the SVD of the partial Laplacian as Lo,o =
QΛobsQ

	. The following matrix is the Nyström rank-K ap-
proximation of L̃sym [48]:

Lnym,K=

(
QK

Anorm
h,o QKΛ̃

−1

obs,K

)
Λ̃obs,K

(
QK

Anorm
h,o QKΛ̃

−1

obs,K

)	
,

(55)
where QK is the largest K eigenvectors of 2I −Lo,o, and
Λ̃obs,K = 2I −Λobs,K such that Λobs,K is the principal K sub-
matrix of Λobs.

On the other hand, V̂ K has the same range space as

L̂nym,K =

(
Q̂K

2−1Anorm
h,o Q̂K

)
Λ̃obs,K

(
Q̂K

2−1Anorm
h,o Q̂K

)	
, (56)

where we recall that Q̂K is obtained from applying line 2–3 in
Algorithm 1. To proceed with the bound in (54), we apply the
Davis-Kahan theorem [55, Sec. VII.3] to obtain

‖V̂ KV̂
	
K−V KV 	

K‖F≤
√

2K
cL − λK

‖L̂nym,K−L̃sym‖2, (57)

where we recall that λK is the Kth smallest eigenvalue of Lsym.
The triangular inequality gives

‖L̂nym,K − L̃sym‖2 ≤ ‖L̂nym,K −Lnym,K‖2
+ ‖Lnym,K − L̃sym‖2. (58)

For the first term on the right hand side of (58), we further
observe the following decomposition,

‖L̂nym,K −Lnym,K‖2
≤ ‖QKΛ̃obs,KQ

	
K − Q̂KΛ̃obs,KQ̂

	
K‖2

+ 2
∥∥(QKQ	

K − 1
2Q̂KΛ̃obs,KQ̂

	
K

)
(Anorm

h,o )	
∥∥
2

+
∥∥Anorm

h,o

(
QKΛ̃

−1

obs,KQ
	
K−1

4Q̂KΛ̃obs,KQ̂
	
K

)
(Anorm

h,o )	
∥∥
2

≡ T1 + 2T2 + T3.
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The following holds with probability at least 1−Δ,

T1 ≤ 2‖QKQ	
K − Q̂KQ̂

	
K‖2 + 2‖2I − Λ̃obs,K‖2

≤ 2
(
‖QKQ	

K − Q̂KQ̂
	
K‖F + δ̃eig(Δ)

)
, (59)

where we have used the norm equivalence ‖ · ‖2 ≤ ‖ · ‖F for
symmetric matrix. Moreover,

T2 ≤ ‖Anorm
h,o ‖2

∥∥QKQ	
K − 1

2Q̂KΛ̃obs,KQ̂
	
K

∥∥
2
. (60)

Since∥∥QKQ	
K − 1

2Q̂KΛ̃obs,KQ̂
	
K

∥∥
2

≤ ‖QKQ	
K − Q̂KQ̂

	
K‖F + ‖Q̂K(I − 1

2Λ̃obs,K)Q̂
	
K‖2,

we have

T2 ≤ ‖Anorm
h,o ‖2

(
‖QKQ	

K − Q̂KQ̂
	
K‖F +

δ̃eig(Δ)

2

)
. (61)

Finally,

T3≤‖Anorm
h,o ‖22

∥∥QKΛ̃
−1

obs,KQ
	
K− 1

4Q̂KΛ̃obs,KQ̂
	
K

∥∥
2
, (62)

with probability at least 1−Δ. Since∥∥QKΛ̃
−1

obs,KQ
	
K − 1

4Q̂KΛ̃obs,KQ̂
	
K

∥∥
2

≤ 1
2

(
‖QKQ	

K − Q̂KQ̂
	
K‖F

+‖2Λ̃−1

obs,K − I‖2 + ‖I − 1
2Λ̃obs,K‖2

)
, (63)

we obtain

T3 ≤ 1
2‖Anorm

h,o ‖22
(
‖QKQ	

K − Q̂KQ̂
	
K‖F + 3

2 δ̃eig(Δ)
)
.

(64)
Combining the above observations, if we denote that eK :=

‖QKQ	
K − Q̂KQ̂

	
K‖F, then

‖L̂nym,K −Lnym,K‖2
≤ (2 + 2‖Anorm

h,o ‖2 + ‖Anorm
h,o ‖22

) (
eK + δ̃eig(Δ)

)
. (65)

Note that eK can be bounded using Proposition 1 as
O(

√
K(ηK + ‖Ĉm

y −Cobs‖2/ρ̃gap(Δ))).
For the last term in the r.h.s. of (58), under the uniform

sampling assumption, we can invoke [49, Lemma 8] which
shows that with probability at least 1−Δ,

‖Lnym,K − L̃sym‖2 ≤
(
1 +

√
2N
n

)
(cL − λK+1) , (66)

provided that n ≥ 8μK log(3K/Δ), where μ is a coherence
factor for the top-K eigenvector of L̃sym. The bound is obtained
from [49, Lemma 8] by setting q = 1, ε = 1/2 and observing
the bound ‖L̃sym − L̃sym,K‖2 ≤ cL − λK+1.

Invoking Proposition 1 and Assumption 3-(1) gives an upper
bound to eK with probability at least 1−Δ. Lastly, combining
(54), (57), (65), (66) yield the desired bound.
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