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Deep Unfolded Recovery of Sub-Nyquist
Sampled Ultrasound Images

Alon Mamistvalov™ and Yonina C. Eldar

Abstract—The most common technique for generating
B-mode ultrasound (US) images is delay-and-sum (DAS)
beamforming, where the signals received at the transducer
array are sampled before an appropriate delay is applied.
This necessitates sampling rates exceeding the Nyquist
rate and the use of a large nhumber of antenna elements
to ensure sufficient image quality. Recently, we proposed
methods to reduce the sampling rate and the array size
relying on image recovery using iterative algorithms based
on compressed sensing (CS) and the finite rate of innova-
tion (FRI) frameworks. Iterative algorithms typically require
a large number of iterations, making them difficult to use
in real time. In this article, we propose a reconstruction
method from sub-Nyquist samples in the time and spatial
domain, which is based on unfolding the iterative shrinkage
thresholding algorithm (ISTA), resulting in an efficient and
interpretable deep network. The inputs to our network are
the subsampled beamformed signals after summation and
delay in the frequency domain, requiring only a subset
of the US signal to be stored for recovery. Our method
allows reducing the number of array elements, sampling
rate, and computational time while ensuring high-quality
imaging performance. Using in vivo data, we demonstrate
that the proposed method yields high-quality images while
reducing the data volume traditionally used up to 36 times.
In terms of image resolution and contrast, our technique
outperforms previously suggested methods as well as DAS
and minimum-variance (MV) beamforming, paving the way
to real-time applicable recovery methods.

Index Terms— Beamforming, compressed sensing (CS),
deep networks, sub-Nyquist reconstruction, ultrasound
(US) imaging, unfolding.

|. INTRODUCTION

EDICAL ultrasound (US) imaging has become the
method of choice in a variety of clinical cases due to its
nonradiating and noninvasive nature while being of low cost
compared to other medical imaging modalities. In classic US
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imaging, an output image is built line by line, by transmitting
from an array of transducer elements a series of acoustic pulses
along a narrow beam. While propagating through the tissue,
the pulses are scattered after encountering acoustic impedance
perturbations, resulting in echoes that are detected by the
same transducer array. The collected data are then processed
digitally, resulting in an image line, in a method referred
to as beamforming [1]. The beamforming process involves
applying an appropriate time delay to the received signals and
subsequently averaging them, resulting in a B-mode US image.

Having a relatively low computational load, the most widely
used method for beamforming is delay-and-sum (DAS) [2],
[3]. In DAS, the delays are implemented digitally after the
data are sampled. However, to avoid artifacts and to obtain
satisfactory time delay resolution, US signals are traditionally
sampled at a rate 4—10 times higher than their actual Nyquist
rate [4], which is the rate required for perfect reconstruction
of the beamformed US signal [5]. These high rates result in a
massive amount of data that need to be stored and processed.

Generating high-resolution US images typically requires
that the beampattern of the beamformer will consist of
a narrow main lobe and low sidelobes [6]. To this end,
adaptive beamforming methods, such as minimum variance
(MV), or regularized beamformers [7] can be used [8].
Although MV offers better image resolution, its computa-
tional cost is relatively high and increases the data volume.
Therefore, in clinical scenarios, where real-time imaging is
required, the method of choice is DAS beamforming, leading
to decreased image quality. Another possible approach for
achieving high-resolution US images is considering larger
transducer arrays, with more receiving elements, while keep-
ing the pitch below half the wavelength to avoid grating
sidelobes [9]. However, a large set of receiving channels,
each consisting of high rate samplers, leads to an enormous
amount of data to store and process. Therefore, it is of great
importance to consider a US imaging method that will generate
high-quality images out of partial data, sampled at a low rate.

To reduce the data size, easing the high computational
load, but yet reconstructing high-quality US images, several
techniques have been studied recently. Wagner et al. [10]
and Chernyakova and Eldar [11] considered the translation
of the process of time alignment to the frequency domain.
They showed that DAS beamforming can be implemented
equivalently in the Fourier domain, leading to a method called
frequency-domain beamforming (FDBF). Based on FDBFE,
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they considered sub-Nyquist sampling while reconstructing
the signals using compressed sensing (CS) techniques [12]
based on the finite rate of innovation (FRI) structure of the
beamformed signal [13].

Other approaches for reducing the number of receiving
elements were studied in the literature. These methods con-
sider the usage of sparse arrays [14]-[17] where some of the
elements are removed. In [18], a technique for reducing the
data size using a sparse array with a new beamforming method
called convolutional beamforming algorithm (COBA) is pre-
sented. Cohen and Eldar showed that by choosing an array that
satisfies appropriate conditions, the achieved beampattern of
the virtual array, based on the array’s sum coarray [19]-[21],
is equivalent to the full uniform linear array (ULA). Thus,
using a subset of array elements, whose sum coarray is the
full ULA, results in better resolution and contrast using fewer
receiving elements.

In [22] and [23], we combined the ideas of spatial and
sampling rate reduction. High-quality US images were pro-
duced by sampling the signals below their Nyquist rate, using
a sparse set of array elements, in a method called compressed
frequency-domain COBA (CFCOBA). For reconstructing the
signals, the FRI structure of the convolutionally beamformed
signal was exploited [22], leading to the recovery of the signal
based on solving an optimization problem using CS techniques
and iterative algorithms.

Many other works, inspired by the impressive performance
of deep learning [24], in a variety of fields, including medical
imaging [25], combined the ideas of deep learning with US
imaging [26]. To the best of our knowledge, all previously
suggested deep learning-based methods in US imaging use and
store full channel data of all transmitting elements, leading to
an enormous size of information to store. In addition, general
deep networks for US imaging are traditionally more complex
as they need to process high-dimensional tensors. Zhuang
and Chen [27], for example, combined MV beamforming
with deep learning for contrast improvement. Their idea is
to use an ensemble of networks, operating over subbands in
the frequency domain, before or after computing the adaptive
weights. Luijten er al. [28] considered applying adaptive
weights, which are calculated using a deep network with a
fully connected deep neural network. Kessler and Eldar [29]
used temporally and spatially subsampled data to generate
high-quality US images using a deep neural network that is
based on a UNet architecture [30]. However, they reached only
an 11-fold reduction in data size. Moreover, their recovery
method required the storage of the diluted data from all of the
channels, while in practice, as we will show, only a subset of
the Fourier coefficients of the beamformed signal itself, after
the summation over the elements, is needed, leading to further
reduction of the data size.

Our main goal in this work is to present an efficient
recovery method of a beamformed signal from a small subset
of its samples based on a deep unfolded neural network.
The proposed method, as opposed to other complicated deep
learning approaches for beamforming, consists of fast and
efficient training and testing steps since only a small fraction

of the samples of the beamformed signal needs to be stored
for training the network and for full image recovery. Namely,
while previous works needed data from all receiving channels,
we suggest using subsamples of the beamformed signal. Fur-
thermore, the suggested technique for recovery is based on
a relatively small pretrained deep network, leading to much
faster reconstruction when compared to iterative approaches.
The method we propose is based on previously suggested
frameworks, including inverse problems, FRI structure, and
algorithm unrolling; we show that combining these ideas
yields high-quality experimental results.

We begin by introducing the model of the beamformed
signal, which follows an FRI structure, and formulate a recov-
ery problem from the subsampled beamformed signal. In pre-
vious works, the problem was solved using CS techniques
with iterative shorthand for Nesterov’s algorithm (NESTA)
[31], [32]. Here, we present a deep network architecture,
based on learned iterative shrinkage thresholding algorithm
(LISTA) [33], [34], which unrolls the iterative ISTA algorithm
[35]. The same unrolling approach was shown to be successful
for super-resolution in US [26]. The basic architecture of
our network is the same, namely, cascading several iterations
of ISTA, resulting in a deep network. However, we slightly
modified the network by adding a layer for final recovery.
In addition, we changed the training process to better fit the
characteristics of the US signal by choosing an appropriate
loss function that is different from standard mean squared
error (MSE), traditionally used for LISTA. In our method,
channel data are acquired using a sparse set of array elements,
each sampled below its effective Nyquist rate. The input to
our network is the subsamples of the beamformed signal
after delay is applied in the frequency domain following
[11]. The signals are then summed according to FDBF or
CFCOBA, resulting in the input to our network. We train
our network with DAS beamformed targets, where training
is performed for each image line separately. Despite the
data size reduction that reaches 36-times fewer data and
the simplification of the training process compared to other
deep learning-based approaches, our network consists of only
30 layers that are only half the iterations needed for reconstruc-
tion in an iterative manner using NESTA, which incorporates
more complex steps. Specifically, we present recovery in
computation time of O(n) achieving a reduction on the order
of square root the operations needed for recovery in NESTA,
O(n?). Moreover, our method shows higher robustness to
data size shrinkage by yielding better results in cases of
higher data size reduction. Thus, our approach offers much
faster and higher quality imaging than those of existing
methods.

The rest of this article is organized as follows. Section II
discusses several previously proposed beamforming methods.
Section III reviews methods for beamformed signal recov-
ery from subsampled data based on iterative algorithms and
algorithm unrolling. In Section IV, we present our method
and discuss its properties. The performance of the suggested
technique is validated in Section V using phantom and in vivo
scans. This article is concluded in Section VI.
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1. US BEAMFORMING TECHNIQUES

Using multiple transducer elements for transmission and
reception of acoustic pulses, a US image is built for each
direction @, line by line. In transmission, a pulse is trans-
mitted by each element in the array, where the pulses are
delayed and scaled so that their sum creates a directional
beam propagating at a specific direction through the tissue.
The real-time computational complexity in the transmission
is negligible since the relevant parameters per angle are
calculated offline and saved in tables. On the other hand,
beamforming in reception is more challenging. A line in
the image is formed by dynamically delaying the signals
received at each element of the array and then averaging
them, which leads to signal-to-noise-ratio (SNR) enhancement.
Here, we describe both the standard beamforming method and
techniques that reduce the number of samples required for
imaging.

A. Time-Domain Beamforming

Consider a ULA U comprised of M transducer elements
aligned along the x-axis. Let m( be the reference element,
at the origin, and J, denote the distance between m, and
the mth element. At t+ = 0, a pulse is transmitted by
each transducer element, resulting in a beam propagating at
direction @ through the tissue, with the speed of sound in
the tissue, c. Reflectors in the tissue cause echoes that are
received by all array elements at times that depend on their
location. Let ¢,, () be the received signal at the mth element.
The process of beamforming involves averaging the signals
received by different array elements while applying appropri-
ate time shifts for alignment due to the differences in arrival
time. The geometry of the imaging setup defines the delay
that needs to be applied. The aligned signal, @, (¢; #), results
from applying an appropriate delay to ¢,,(t) and aligning it
to mg [10], [36]

(Z)m (t; 6) = ¢m (Tm (t’ 9))

Tm = %(f + \/I2 —4@0n/c)tsin€ +4(0u/c)?). (1)

These signals are then averaged to form the beamformed signal
for direction 6

1 <,
Ppas(t:0) = - Zl P (£:.0). @)
DAS beamforming is performed digitally. To achieve delays
on the order of nanoseconds, the required sampling rate is on
the order of hundreds of megahertz [37], a requirement that is
not feasible. Therefore, US signals are sampled at lower rates,
on the order of tens of megahertz, and fine delay resolution is
obtained by digital interpolation. However, these lower rates
are still much higher than the Nyquist rate of the signal, which
is defined by twice its bandwidth [4]. In general, a well-known
rule of thumb is that the sampling rate of the signal should be
4-10 times the transducer’s central frequency. These sampling
rates lead to a huge amount of data that need to be stored and
processed.

B. Frequency-Domain Beamforming

To reduce the required sampling rate, applying the delay in
the frequency domain was presented in [11]. In addition, it was
shown that using a small number of Fourier coefficients of the
received signals, beamforming can be performed efficiently.
Let c[k] denote the kth Fourier series coefficient of the
beamformed signal, ®(z; ) as described in (2), and let é,,[k]
be the kth Fourier series coefficient of ¢, (¢; #). Then,

1 M
clkl = - > enlk] 3)

m=1

where ¢,,[k] is obtained by calculating

—2rj

1 T o
nlk] = / Loz, o) Odn(t: ) T4dr. ()
0

The indicator function, /j4 ), is equal to 1 when a < ¢ <
b. Here, Tg(#) < T is defined in [10] and 7 is the pulse
penetration depth, and the beam is supported on [0, T3(0)).
Following [10] and [11], one can write the Fourier coeffi-
cients of the delayed signal as
oo
enlkl= D" culk — n]Qumaln] )
n=—0oo
where c,,[k] are the Fourier coefficients of the received signal
in the mth channel before the delay is applied. The variables
Qr.m:0[n] are the Fourier coefficients of a distortion function,
determined solely by the geometry of the imaging setup and
can be computed offline once and stored in memory. The
delay in the frequency domain is obtained by using the Fourier
coefficients of the distortion function. The decay properties of
{Qkm:p[n]} and the fact that most of the energy of this set
is centered around the dc component lead to the option of
replacing the summation in (5) with a relatively small finite
summation. Thus, assuming that {Qy ..¢[n]} decays rapidly
for n < —Ny, n > N,, where Ny, N, € N, it leads to
N>
6m[k] = Z Cm [k - n] Qk,m;b‘[n]~ (6)

n=—N,
Combining (6) and (3) leads to FDBF

1 M N,
ckl=22 D cnlk —nlQumoln] @

m=1 n=—N,

With appropriate zero padding and applying an inverse Fourier
transform to {c[k]}, the time-domain beamformed signal is
obtained.

The main advantage of FDBF is that only the nonzero
Fourier coefficients of the received signal are required. Those
coefficients are obtained from sub-Nyquist samples of the sig-
nal at each receiving element, leading to significant reduction
in the sampling rate. To obtain the sub-Nyquist samples of
the signal, we follow the mechanism proposed and discussed
in [13] and [38]. The output is sampled at its effective Nyquist
rate, and the required Fourier coefficients are the Fourier trans-
form of the output; using these coefficients, the beamformed
signal is recovered, as will be discussed in Section II-E.
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C. Convolutional Beamforming

Using a sparse set of array elements, following COBA [18],
[20], can lead to substantial data reduction while producing
images at least as good as those obtained with DAS. As was
shown in [18], using COBA, one can achieve the effective
beampattern as would have been obtained using the sum
coarray of the given array of transducers [39].

The beamformed signal in COBA is

N—-1 N—1
Ocopa(p: )= D, D ua(p; Dun(p:0) (8)

n=—(N—1) m=—(N-1)

U (p: 0) = e L5013 (p: 0)] ©9)

with @, (p, 0) the pth sample of the delayed signal at channel
m, sampled at sampling intervals T, = (1/f;), with 2, (p, )
and |@,, (p, 0)| being its phase and the magnitude, respectively.
Applying (9) ensures that the product of COBA will have the
same order of the received signal. An equivalent form of (8)
is

where

2(N=1)
Deosa(p; )= D su(p; 0) (10)
n=—2(N—-1)
where
si(pi0) = D wilp; O)u;(p; 0) (11

i,jeU,i+j=n
with n = =2(N — 1), ...,2(N — 1). Therefore, the vector s
can be calculated by applying lateral convolution on u# with

itself, after zero padding it to length 2|M| — 1, i.e., the entries
s, can be calculated by

s(p; 0) = u(p; 0) * u(p; 0)

where * stands for convolution over the spatial dimension.

(12)

The i)eampattern of DAS beamforming is given by

0, Sin 9)

N—-1

2

n=—(N-1)

Hpas(0) =

exp(—jam 13)

where wy is the central frequency of the transducer and ¢ is the
distance between two adjacent array elements such that J, =

no. Following [18] and based on (8), we see that Hcopa =
Hpas Hpas, and it can be written as a single polynomial

. 0sinf
apexp| —jwo n (14)
c

where a, are intrinsic apodization weights given by a = Is *

2(N-1)

2

n=—2(N—-1)

Hcopa(0) =

Is. Here, I is a binary vector whose mth entry is 1 if m € Ms

The beampattern given by (14) is equivalent to that of
a DAS beamformer, using the sum coarray of the original
ULA, U. Due to the fact that effectively the array used for
imaging is bigger, improved imaging performance is obtained.
Therefore, Cohen and Eldar [18] suggested using a sparse
array, given by the original array after removing several
elements, for generating a desired beamformer beampattern,

in a method called sparse COBA (SCOBA). The use of fractal
arrays [40]-[44] was discussed in [20]. The geometry of such
arrays is given by

Wo =0

Wi = Unec (W, +nLr)a reN (15)

where r is the array order, G is the generator array in fractal
terminology, and min(G) = 0. The factor L is given by
L = 2max(G) 4+ 1 and is referred to as the translation
factor. This choice of geometry leads to the resulting array
W, which after applying convolutional beamforming provides
an effective beampattern with better image resolution and
contrast.

D. Compressed Frequency-Domain
Convolutional Beamforming

Further reduction of the data volume was discussed in [22],
where both the time and the spatial dilution are applied. The
method is referred to as CFCOBA, and it combines the ideas of
FDBF and SCOBA using a fractal array geometry. In that way,
the main advantages of both FDBF and SCOBA are obtained,
and the beamformed signal is recovered from only a partial set
of samples, acquired by a sparse set of array elements while
preserving the same image quality.

Following the steps in [22], we let Ny be the num-
ber of samples acquired by sub-Nyquist sampling of the
received signal [13]. The compressed frequency-domain signal
is defined by

(i)(ns)CFCOBA = Z Z a)n(ns)ésm (ny) (16)
nelU meU
where ng = 0, ..., Nov — 1, Nyn = || are the discrete time

samples with u being the set of Fourier series coefficients
obtained using the Xampling mechanism [13], [45]-[47], and
&m(ny) and B, (ny) are the delayed signals at channels m and n,
respectively, with the delay applied in the frequency domain.
Based on the derivations in [22], by calculating the Fourier
series coefficients of both sides of (16), a relation between the
subsampled Fourier coefficients of the received signal and the
Fourier coefficients of the convolutionally beamformed signal
is given by

elklcrcosa = Now > > D eulpléilq]

leU meU p+q=k

= sNZZ(ém *él)[k]

leU meU

a7)

where the last equation is obtained by setting ¢ = k — p, and
¢l p] and ¢;[q], the Fourier coefficients at channels m and [,
are calculated by (6).

To efficiently calculate the relation in (17), it was shown
in [22] that due to the linear operations in the temporal
dimension, the relation between the Fourier coefficients of the
received signals and those of the convolutionally beamformed
signal is given by

elklcrcosa = Nox D (2 **C)[k]

IESU

(18)

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on November 25,2021 at 08:04:27 UTC from IEEE Xplore. Restrictions apply.



3488

IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 68, NO. 12, DECEMBER 2021

where U is a sparse array based on a sparse set of elements
from the ULA, U, that was previously defined, and S; is
its corresponding sum coarray [39]. The calculation in (18)
denotes a 2-D convolution operation, one over the temporal
dimension and one over the spatial dimension. The calculation
is performed efficiently using inverse fast Fourier transform
(IFFT) and appropriate zero padding based on the convolution
theorem.

In [22], the FRI structure of the convolutionally beamformed
signal was proved, and it was shown that it consists of
time-shifted replicas of the square of the known transmitted
pulse. This leads to the possibility of reconstructing the signal
based on a portion of its Fourier coefficients.

In Section II-E, we discuss a possible iterative recovery
approach of the subsampled signal in both methods, FDBF
and CFCOBA.

E. CS Recovery for Further Reduction

When sampling below the effective Nyquist rate of the
signal, applying IFFT is insufficient. In [11] and [22], CS tech-
niques were suggested to fully recover the signal based on
its FRI structure. We follow the steps in [11], but the same
steps are performed in [22] using the square of the known
transmitted pulse.

According to [10], a beamformed signal obeys an FRI
model, which means that it can be written as a sum of shifted
replicas of the known transmitted pulse, (), with unknown
amplitudes and delays

S
(1) =D ah(t —1y) (19)

s=1

where S is the number of scattering elements in the tissue
in a certain direction # and {a,} and {t;} are the unknown
amplitudes of the reflections and the times at which the reflec-
tion from the sth scatterer arrived at the receiving element,
respectively. Based on the FRI model and the known pulse
shape, the beamformed signal is completely defined by 2§
parameters. For a duration 7', the Fourier series expansion of
(19) can be written as

1T ,
clk] = ?/ Zash(t — fs)ej((zﬂ:)/T)ktdt
0 =1

27k <
=H (T) z aye— 1 (@m)/ Tk,

s=1

(20)

where ¢[k] are the Fourier coefficients of the beamformed
signal and H (®) is the continuous-time Fourier transform of
h(t). Writing (20) in matrix form results in

¢=HVa, Q1)

where ¢ is a vector of length || with {¢[k]}ie, as its entries,
H is a diagonal matrix of size |u| x |u| with H(2zk/T) on
its diagonal, V is a Fourier matrix of size |u| x § with the
(k, s)th element ¢=/(@7)/ Tk "and g is a vector of size S with
the amplitudes, {ay}, as its entries. If the set of k is comprised
consecutive indices, then the matrix V has a Vandermonde
form and has full column rank as long as |u| > S and the

time delays #; # ty, Vs # 5. Moreover, if |u| > 28, then this
problem can be solved for the unknown delays and amplitudes
using methods, such as an annihilating filter [48].

In practice, the recovery problem is solved using CS meth-
ods. By quantizing the delays with step size Ty = (1/ f), such
that t;, = q,Ty, where f; is the sampling rate for traditional
DAS beamforming, and letting N = |[7/7;], the Fourier
coefficients can be written as

N-1

2wk :
s=0
The vector a of length N is defined as
a4, = as, if s =g (23)
0, else.

The recovery problem then reduces to determining the S-
sparse vector @ from

¢ = HDa = Aa (24)

where D is a |u| x N matrix, formed by taking the set u
of rows from an N x N FFT matrix. By choosing |u| >
CL(log N)* rows uniformly at random for some constant C >
0, the matrix A obeys the restricted isometry property (RIP)
with high probability [49]. The proposed formulation has a
standard CS structure.

In [10], an [y regularizer was suggested, assuming that the
US signal is sparse. However, this suggestion produced worse
results when compared to an /; regularizer [11]. The reason for
these results is that in practice, due to speckle, the coefficient
vector a, defined in (23), is only approximately sparse. Hence,
to reconstruct a, we use the /; norm, leading to

min @l s.t|Aa@ -2, <€ (25)
a

with € being an appropriate noise level. This optimization
problem can be solved using various known techniques, such
as interior-point methods [50] or iterative shrinkage tech-
niques [35], [51]. For solving this problem, Chernyakova
and Eldar [11] suggested using the NESTA algorithm [31],
[32]. This algorithm was shown to be highly suitable for
a compressible signal with a high dynamic range, which is
true in the case of US signals. However, applying NESTA to
signals sampled at very low rates leading to a small number
of samples fails to fully recover the signal, and artifacts,
such as high granularity, are present in the resulting image.
Moreover, NESTA’s computational complexity is relatively
high compared to other iterative algorithms, such as ISTA.
As will be discussed in Section III-A, ISTA consists of only
two matrix multiplications and one nonlinear operation per
iteration; one iteration of NESTA includes more than twice
the operations in ISTA, making it less efficient. For easing
the computational load, one may suggest using ISTA for
recovering the signal; however, as shown in Fig. 1, even after a
relatively high number of 100 iterations, the algorithm fails to
recover the beamformed signal and many artifacts are present
in the image.

To overcome the difficulties of recovering the signal from
a very small set of samples and the computational load,
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Fig. 1. In vivo images produced with (a) DAS - 1920 samples, (b) FDBF + ISTA recovery—130 samples and 100 iterations, and (c) FDBF + NESTA

recovery—130 samples and 60 iterations.

we next propose a deep unfolded recovery. In Section V,
we show that for several reduction factors in data size, ranging
from 8- to 36-fold dilution, the proposed method performs
better than previously suggested iterative algorithms in terms
of image quality, such as resolution and contrast. Moreover,
the suggested technique is more efficient than the iterative
techniques and requires only 30 layers of a deep network for
recovering the beamformed signal. Finally, when comparing
our method to traditional end-to-end DNNs, which typically
require storing the complete channel data prior to DAS, in our
method, we suggest storing only a small set of samples of the
beamformed signal, leading to a considerable reduction in data
size.

I1l. MODEL-BASED RECOVERY VIA A DEEP
UNFOLDED NETWORK

Iterative algorithms that consider the structure and the model
of the beamformed signal, such as ISTA and NESTA, run
iteratively until a certain threshold condition is met. However,
they suffer from high computational load as well as artifacts
and low image quality when the number of samples is very
low. By unfolding the iterations of these algorithms as deep
network layers, in a method that is referred to as algorithm
unfolding or algorithm unrolling [26], [33], [34], the quality
of the recovery is enhanced. In this section, we briefly present
the ISTA algorithm for sparse recovery and discuss a possible
way of cascading its iteration to a deep network resulting in
LISTA. The network proposes the usage of an architecture
dedicated to sparse recovery, which consists of a relatively
small number of layers compared to the number of iterations
needed for ISTA and NESTA [26].

A. lterative Shrinkage Threshold Algorithm

The ISTA algorithm is a widely used algorithm for sparse
inference. The convex optimization problem presented in (25)
can be written in an equivalent form as

1
min Elly—AxlliJrillxlh (26)

for a given input vector y € C", where A € C"", with
m > n, is the measurement matrix and x € C” is the sparse
code representation based on the measurement matrix A and
A is a regularization parameter that controls the sparseness

k - k+1
x—» W?.' b—l\i»/\.l »| S ) 4‘”»
F Y
We
Y
y

Fig. 2. Block diagram of the kth iteration of the standard ISTA algorithm.

of the solution. The block diagram of ISTA is presented in
Fig. 2. The main part of ISTA is recursively iterating, until
convergence, the following iterations:

=5, (Wey + Wix*), x°=0 (27)

where x**1, x* describe the kth iteration approximation for x,
W, =uA", W, =1 — uA" A with step size u, and §; is a
soft-thresholding operator with threshold A.

B. Learned lterative Shrinkage Threshold Algorithm

To overcome the disadvantages of the iterative algorithms,
such as high computational load and the difficulty of recov-
ering the signal from a small number of samples, one can
unfold the algorithm’s iterations into network layers, with each
layer replacing the standard algorithm iteration. Unfolding was
found to be beneficial when the measurement matrix is not
known precisely, which can be the case in US imaging when
the scanning depth is changed [33], and was also shown to be
useful in super-resolution tasks [26].

LISTA is based on the ISTA algorithm whose iteration is
shown in Fig. 2. The iteration can be easily converted into
a single deep network layer since it comprises a series of
analytic operations (summation, matrix—vector multiplication,
and soft thresholding), which are of the same nature as basic
operations of a deep neural network. Therefore, executing K
iterations of ISTA can be converted to a network of K such
cascaded layers. In the unfolded network of LISTA, each layer
k of the network consists of trainable convolutions W* and W¥*
and a trainable shrinkage parameter A, corresponding to the
threshold in ISTA. The block diagram of LISTA is shown in
Fig. 3, within the dashed yellow rectangle.

Training is performed with a sequence of input vectors,

y',...,y" € R" and their corresponding ground-truth sparse
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Fig. 8. LISTA block diagram. In the proposed network, the layer G is

added for calculating the output beamformed signal ®. All rectangles rep-
resent 5 x 1 1-D trainable convolution layers, and Sy, is a nonlinear layer
with trainable parameter X\, given by (30) in the proposed architecture.

codes ¥',...,%". The training process is done by feeding
an input, y', i € 1,..., N, to the network and retrieving its
corresponding predicted sparse code, & (y'; W,, W,, 1). The
output is then compared to the ground-truth sparse code, %',
using a loss function

N
1 N yawi =i
L(Wf,We,z)=N§ 12 (y's Wi, We, 2) — X3, (28)
i=1

Training is performed through loss minimization using stan-
dard methods such as stochastic gradient descent [52] to
learn the weights W’f, W’e‘, A for each layer. After training is
completed, the predicted sparse code is obtained by inserting
an input from a dataset different from the training set.

IV. LISTA FOR SUBSAMPLED US
IMAGE RECONSTRUCTION

Here, we discuss the recovery of the beamformed signal
from a sparse set of its Fourier coefficients. Since the signal
is sampled below the Nyquist rate, it suffers from aliasing in
the time domain, after applying the inverse Fourier transform.
Our goal is to determine the recovered beamformed signal
from the subsampled signal using a deep network. Our output
is a high-quality B-mode US image, consisting of recovered
image lines, one for each 6, the propagating direction.

A. Problem Formulation

In Section II-E, we have seen that a beamformed signal
obeys an FRI model, and therefore, its recovery from a subset
of Fourier coefficients is reduced to determining a sparse
vector from (24). Here, we suggest solving (24) in the time
domain using LISTA. Therefore, the Fourier coefficients are
zero-padded to maintain the appropriate temporal resolution
of the beamformed signal, as described in Section IV-C, and
transformed back to the time domain, leading to

® = Ga. (29)

Here, ® € R is a vector of samples of the beamformed sig-
nal, whose Fourier coefficients are the subsampled coefficients,
G € RN« is a known convolution matrix with time samples
of the known transmitted pulse as its entries, and &@ € R™ is
the L-sparse vector such that Ny > L. We insert the vector ®
to LISTA, as the input y and result in ¥ which is the predicted
beamformed signal.

B. Network Architecture

The main goal of our deep unfolded network is to recover
the beamformed signal from temporal and spatial subsampled
data. Although the final output is an image, the training is
performed line by line, and the output is the beamformed
signal corresponding to each direction in the image.

The basic architecture of our network is similar to that
discussed in Section III-B. The input to our network is
the 1-D vector of the subsampled beamformed signal, ®. The
output of the proposed network is an estimated vector of the
beamformed line, of the same length as the input, denoted
by ®. To better suit our recovery problem, we made two
modifications to LISTA. First, a convolution layer is added
to the output layer. The new output layer is designed to act
as the final conversion between the sparse code, generated by
the traditional LISTA, denoted by @, and actual replicas of the
transmitted pulse, namely it mimics G in (29). The second
change is choosing the soft-thresholding layer, S;,, to be of
the form [53]

85 () = —— 30
n(xX) = T+ e 0 (30)
where A, is learned and is different in each layer k €
{0, ..., K} of the network. This term was chosen after empir-

ically yielding good results.

The rest of the network consists of 1-D operations designed
to replace ISTA, and cascaded to overall 30 layers of a
deep network, smaller networks that consist of fewer layers
were tested; however, they empirically failed to produce fine
results in the case of the lowest sampling rate, specifically we
checked ten-layer architecture. The final size of the network
of 30 layers was finally chosen due to its ability to produce
both visually and quantitatively good results. Similar to LISTA
presented in Sections I and III-B, the learned parameters are
weights of the convolution layers W’e‘ and Wf, which are of
size 5 x 1, and a shrinkage parameter 1; as described in (30).
Therefore, the output of the network is <i>(<I>; W, W, 1).

C. Data Subsampling and Preprocessing

We evaluated our method on three different datasets. Prior
to training and testing, the data is transferred through a
preprocessing pipeline consisting of several steps. Two of
the datasets consist of temporal subsampled data using the
Xampling mechanism [13] with different reduction factors.
The third dataset consists of spatial reduction as well, fol-
lowing [18], [20], [22]. The subsampled Fourier coefficients
are calculated as previously described in Section II-B, for
the first two datasets, and following Section II-D for the
third dataset. After calculating the Fourier coefficients, each
dataset is transformed back to the time domain, by restoring
its negative side spectrum, and zero padding with appropriate
zero-vector size, to maintain the same temporal resolution in
time as the DAS beamformed signal. Finally, applying the
inverse Fourier transform results in the subsampled signal in
the time domain, which is the input to our proposed network,
described in Section IV-B.

The entire flow of the proposed method is shown in Fig. 4.
For convenience and clarity of presentation, the figure depicts
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Fig. 4. Beamforming methods algorithm flow. (a) Standard DAS beamforming. Nyquist sampling acquires Ng; x |U| samples in |U| receiving elements,
the signal is delayed via linear interpolation and summed to obtain an image line of size Ns;. The green dashed line denotes the size of the vector
stored in DAS. (b) Proposed technique. US signal is subsampled to size Ns\ x |U|, and the signal is then delayed in the frequency domain, resulting in
the Fourier coefficients of the beamformed signal. Before inserting the signal into the network, the temporal resolution is preserved by zero padding,
and the signal is transformed back to the time domain before inserted into the LISTA network. The red dashed line denotes the size of the vector

where Ngt > Ngn.

the flow of reduction in sampling rate without reducing the
number of elements, i.e., for the first two datasets. One can
adjust the sizes to fit the case of reduction in receiving ele-
ments and adding the spatial convolution block after delaying
the signal in the frequency domain, following (18).

D. Loss Function

In US imaging, the data are characterized by high dynamic
range and is typically compressed after beamforming to gen-
erate the final image. Therefore, we follow [28], [29], replace
the MSE function used for LISTA traditionally (28), and use
signed-mean-squared-logarithmic error (SMSLE) as the loss
function, which is given by

Lsmsite(W,, W, 1)

1 X
|| logyo ((DEISTA) — logy ((DJﬂAs) H

1 A _
+ 5 H log, ((DLISTA) — log (CDDAS) ”

S 2
where ®; ¢4 and @[ gp, are the positive and the negative
parts of the network’s prediction respectively, and @,
and @y, are the DAS target’s positive and negative parts,
respectively.

€1V

V. EVALUATION RESULTS

In this section, we evaluate our results both quantitatively
and visually. For quantitative evaluation, we discuss its benefits
compared to standard DAS and iterative techniques. For evalu-
ating axial and lateral resolutions, full-width at half-maximum
(FWHM) is calculated for a phantom scan and in vivo data.

For contrast evaluation, contrast-to-noise ratio (CNR) [54]
is calculated. CNR is evaluated from two regions in each
image, the cyst mimicking part and its background. The value
is calculated after envelope detection and log compression and
is given by

[tte — upl

) 2
o: + o

CNR = 20log,, (32)

Authorized licensed use limited to: Weizmann Institute of Science.

where up, ¢, 0p, and o, denote the means and the STD of
the cyst and the background, respectively.

The proposed method was evaluated using in vivo data from
healthy volunteers for training and testing. The set for testing
included tissue-mimicking phantoms Gammex 403GSLE and
404GSLE, as well as different body parts, such as bladder,
kidney, and liver.

The acquisition was performed using the Verasonics
Vantage 256 System, using the 64-element phased array
transducer P4-2v. The frequency response of this probe is
centered at 2.72 MHz, and a sampling rate of 10.8 MHz
was used, leading to 1920 samples per image line. Two
temporally subsampled datasets were generated from it, using
the Xampling mechanism, and one dataset of both temporal
and spatial dilution. In the first, 230 samples out of 1920 were
used per image line, leading to an 8-fold reduction in data
size. In the second dataset, only 130 samples were used,
leading to a 15-fold reduction in the volume of the data. The
third dataset was generated by diluting both time and space
data based on the fractal array geometry, where a generator
array G = {0, 1} with array order 4 was taken, leading to 15
elements, and 230 samples at each, resulting in a 36-fold total
reduction.

Data from two healthy volunteers are used for training, and
data from a third volunteer are used for testing. The training
data consist of 72 frames of bladders, and each consists
of 128 image lines of size 1920. The testing is applied to
a wide range of organs and not solely to the bladder, to check
the robustness of the proposed method. Targets for training
were generated using standard DAS beamforming. DAS was
chosen over MV beamforming [55] after empirically yielding
better results.

The network was implemented using Keras based on Tensor-
flow backend. The training was done separately to each of the
datasets, based on the Adam optimizer, reaching convergence
in less than 120 epochs. The initial learning rate was le™3, and
the learning rate was set to decrease each time the loss is not
improved over few epochs, to make sure that the minimum is
reached and not skipped due to high step size. The input vector
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Fig. 5. Phantom images produced with (a) DAS-1920 samples, (b) FDBF + NESTA recovery—230 samples and eightfold reduction, (c) FDBF +
LISTA recovery—230 samples and eightfold reduction, (d) FDBF + NESTA recovery—130 samples and 15-fold reduction, (e) FDBF + LISTA
recovery—130 samples and 15-fold reduction, (f) CFCOBA + NESTA recovery—230 samples, 15 channels, and 36-fold reduction, (g) CFCOBA +
LISTA recovery—230 samples, 15 channels, and 36-fold reduction. The regions used for calculating CNR are marked with orange circles in (a). The
top region denotes the cyst and the bottom region denotes the background. In (b), the yellow rectangle marks the zoomed in region in Fig. 6.

Fig. 6. Zoomed-in phantom images produced with (a) DAS—1920 samples, (b) FDBF + NESTA recovery—230 samples and eightfold reduction,
(c) FDBF + LISTA recovery—230 samples and eightfold reduction, (d) FDBF + NESTA recovery—130 samples and 15-fold reduction, (e) FDBF
+ LISTA recovery—130 samples and 15-fold reduction, (f) CFCOBA + NESTA recovery—230 samples, 15 channels, and 36-fold reduction, and
(g) CFCOBA + LISTA recovery—230 samples, 15 channels, and 36-fold reduction.

size to the network was 1920 x 1 as described previously. The
initialization of the weights was based on the Glorot uniform
initialization [56].

To demonstrate the performance of the proposed reconstruc-
tion method, we compare it quantitatively to DAS and NESTA,
the iterative algorithm used in previous works.

Table I shows a quantitative evaluation of the lateral and
axial resolutions of the compared reconstruction methods.
The resolution is calculated from the in vivo scans and
averaged over the three organs and for phantom scan data.
The results were estimated by computing FWHM for each
lateral and axial cut per frame and averaging the results.
For 230 samples at 64 channels, LISTA recovery outper-
forms NESTA. The recovery for 130 samples using the full
ULA resulted in slightly worse resolution than produced by
NESTA, but NESTA caused high granularity in the resulting
image. The evaluated resolution of the proposed method
over the third dataset is much better than that produced

TABLE |
RESOLUTION EVALUATION

Beamforming technique in-vivo data Phantom data

[ axial [ Tateral [[ axial | lateral

DAS 1920 samples, 64 elements 3.66 5.01 3.2 4.5
MV 1920 samples, 64 elements 2.77 4.06 2.64 4.2
NESTA 230 samples, 64 elements 4.89 5.65 4.82 5.56
NESTA 130 samples, 64 elements 5.6 5.57 6 5.8
NESTA 230 samples, 15 elements 4.89 5.65 3.6 4.6
LISTA 230 samples, 64 elements 3.37 4.38 4.38 5.37
LISTA 130 samples, 64 elements 8.51 7.36 9.5 7.9
LISTA 230 samples, 15 elements 1.92 2.77 1.43 2.4

by NESTA and DAS, and it is actually better than MV
beamforming.

In Table II, the quantitative evaluation of CNR for a
tissue-mimicking phantom scan is evaluated. As can be seen,
in all cases, our method outperforms NESTA. In addition,
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NESTA - 230 samples

LISTA - 230 samples

DAS

NESTA - 130 samples LISTA - 130 samples NESTA - 230 smaples, 15 elements LISTA - 230 samples, 15 elements

DAS NESTA - 230 samples LISTA - 230 samples

NESTA - 230 samples, 15 elements LISTA - 230 samples, 15 elements

NESTA - 230 samples LISTA - 230 samples

NESTA - 130 samples LISTA - 130 samples NESTA - 230 samples, 15 elements LISTA - 230 samples, 15 elements

Fig. 7. In vivo images produced with (a) DAS—1920 samples, (b) FDBF + NESTA recovery—230 samples and 8-fold reduction, (c) FDBF + LISTA
recovery—230 samples and 8-fold reduction, (d) FDBF + NESTA recovery—130 samples and 15-fold reduction, (e) FDBF + LISTA recovery—
130 samples and 15-fold reduction, (f) CFCOBA + NESTA recovery—230 samples, 15 channels, and 36-fold reduction, and (g) CFCOBA -+ LISTA
recovery—230 samples, 15 channels, and 36-fold reduction.
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TABLE Il
CNR EVALUATION

CNR (dB)

DAS 1920 samples, 64 elements 8.35
NESTA 230 samples, 64 elements 5.9
NESTA 130 samples, 64 elements 1.9
NESTA 230 samples, 15 elements 6.1
LISTA 230 samples, 64 elements 8.7
LISTA 130 samples, 64 elements 7.7
LISTA 130 samples, 15 elements 7.9

the second dataset reconstructed using NESTA leads to the
lowest CNR, which indicates that contrast between noises
of the signal of interest almost does not exist. These results
indicate that our method is much more robust to a reduction
both in sampling rate and in the number of acquiring channels
than NESTA reconstruction. The resulting images from the
phantom scans are presented in Fig. 5. For visually better
examining the results, zoomed-in images are given in Fig. 6.
While in (a)—(c) all three options depict approximately the
same visual quality. Comparing (d) and (e), one may claim that
(e) exhibits worse resolution with regard to (d), and however,
there are two major disadvantages in the latter. First, due to the
relatively high reduction in the number of samples per image
line, the recovered image shows high granularity. The second
drawback is low contrast, as calculated and as can be seen,
making it difficult to notice actual reflectors that are easily
visible in (e). Finally, in (f)—(g), both contrast and resolution
are visually proved to be much better in (g).

Images produced from in vivo scan data are presented in
Fig. 7. It can be seen that the proposed method, over the first
dataset of 230 samples, yields the results that are visually
better than those produced with DAS or NESTA. Moreover,
in the case of 130 samples per image line, the proposed method
outperforms NESTA. The image reconstructed using NESTA
suffers from high granularity that results from the high dilution
factor and can be considered as an artifact. In addition, testing
the proposed method over the spatially and temporally diluted
data presents better image contrast in comparison to NESTA
and DAS, a result that agrees with previously calculated CNR.

In addition to the visual and quantitative improvement of
our method, we also managed to ease the computational load
compared to the iterative approach used in previous works.
While NESTA is an iterative process, our method is based on a
pretrained network that mimics ISTA, a relatively simple algo-
rithm, with weights that are saved before reconstruction, lead-
ing to a real-time applicable recovery technique. Moreover,
our method offers a network of only 30 layers, while NESTA
iterates over 60 times until convergence and produces poorer
results when compared to the proposed method. To emphasize
the total reduction in computation complexity of our technique,
we estimate the total operations in each of the methods. The
NESTA algorithm includes several matrix multiplications in
each iteration, leading to an overall complexity of over O (n?),
for a given input vector of size n and several lower complexity
operations. In LISTA, each layer includes two convolutions
with a kernel of size 5 x 1 and nonlinear operation, leading to
a computational complexity of O(n). This, combined with the

fact that each iteration of NESTA consists of more operations
than the iterative version of ISTA, leads to a highly efficient
implementation of US image reconstruction from sub-Nyquist
samples. These results validate that recovery of the beam-
formed signal using LISTA is much more efficient without
degrading image quality compared to the iterative approach
of NESTA.

Although we focus on line-based beamforming in this
work, the proposed mechanism can be extended to other US
imaging techniques, such as plane-wave imaging. In [57],
Chernyakova et al. formulated the recovery from subsampled
signals acquired via plane-wave US imaging. Using their
inverse problem formulation, one can recover the beamformed
signal using a similar architecture as the one described in this
article.

VI. CONCLUSION

In this article, we presented a deep unfolding-based recon-
struction method, for high-quality images, from temporally
and spatially subsampled channel data based on the Xampling
mechanism. We extended the proposed methods in [11]
and [22] and showed that based on the FRI model, a US
image can be recovered using a deep network that mimics
the iterations of ISTA.

Our network consists of only 30 folds, leading to an efficient
implementation, using a loss function that better fits the
studied field of US than traditionally used MSE. After training
the network on a dataset of only in vivo bladders, we validated
our approach and tested it on phantom channel data and
several in vivo scans different from bladders, demonstrating
the high versatility of our network. The proposed method
produced high-quality results both in quantitative and visual
terms while using 36 times less data. The output of our
technique yields better image resolution and CNR compared
to NESTA, proving the robustness of our method and resulting
in visually high-quality B-mode images.

These results prove that our method can be easily
plugged into previously suggested schemes, for recovery from
sub-Nyquist sampling and sparse arrays, while improving
image quality and using an efficient deep neural network
instead of iterative algorithms.
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