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Abstract—Graph signal processing is a ubiquitous task in many
applications such as sensor, social, transportation and brain net-
works, point cloud processing, and graph neural networks. Often,
graph signals are corrupted in the sensing process, thus requiring
restoration. In this paper, we propose two graph signal restora-
tion methods based on deep algorithm unrolling (DAU). First, we
present a graph signal denoiser by unrolling iterations of the alter-
nating direction method of multiplier (ADMM). We then suggest
a general restoration method for linear degradation by unrolling
iterations of Plug-and-Play ADMM (PnP-ADMM). In the second
approach, the unrolled ADMM-based denoiser is incorporated as
a submodule, leading to a nested DAU structure. The parameters
in the proposed denoising/restoration methods are trainable in an
end-to-end manner. Our approach is interpretable and keeps the
number of parameters small since we only tune graph-independent
regularization parameters. We overcome two main challenges in
existing graph signal restoration methods: 1) limited performance
of convex optimization algorithms due to fixed parameters which
are often determined manually. 2) large number of parameters of
graph neural networks that result in difficulty of training. Several
experiments for graph signal denoising and interpolation are per-
formed on synthetic and real-world data. The proposed methods
show performance improvements over several existing techniques
in terms of root mean squared error in both tasks.
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I. INTRODUCTION

IGNAL restoration is a ubiquitous task in many applica-
S tions. Depending on the types of signals, the interconnectiv-
ity among samples can often be exploited, for example, signals
residing on sensor networks, social networks, transportation
networks, and brain networks, power grids, 3D meshes, and
point clouds, all have various connectivities which can often
be represented as graphs.

A graph signal is defined as a signal whose domain is the
nodes of the graph. The relations between the samples, i.e.,
nodes, are given by the edges. In contrast to standard signals on
aregular grid such as audio and image signals, graph signal pro-
cessing (GSP) explicitly exploits the underlying structure of the
signal [2]-[4]. GSP has been used in a wide range of applications
forirregularly-structured data such as compression [5], sampling
and restoration [6]-[10], and analysis of graph signals [11], [12].

Graph signal restoration is an important task aiming to address
the problems of noise and missing values. For example in sensor
networks, some sensors may not work properly resulting in miss-
ing values, and samples on the nodes are often noisy [13]. Many
approaches for graph signal restoration have been proposed
based on regularized optimization [14], graph filters and filter
banks [15]-[17], and deep learning on graphs [18]. These exist-
ing works can be classified into two main approaches: 1) model-
based restoration and 2) neural network-based restoration.

Model-based restoration: Model-based approaches often
rely on convex optimization whose objective function contains a
data fidelity term and a regularization term [14]. Signal priors are
often required in such tasks because the problem is ill-posed. For
example, a smoothness prior like graph total variation (GTV) has
demonstrated effectiveness in graph signal denoising, whereas
graph spectral filters have been shown to satisfy certain quadratic
optimization solutions [19]-[22]. A limitation of model-based
restoration methods is that they are often iterative as illustrated
in Fig. 1 (left). Performance and speed of the algorithm depend
on the hyper-parameters 6 (e.g., step size and regularization
strength) whose values are determined manually and are fixed
throughout the iterations.

Neural network-based restoration: Graph convolutional
networks (GCNs) are considered as a counterpart of the con-
volutional neural networks for image processing [23]. GCNs
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can automatically learn network parameters to minimize a loss
function. However, GCNs have two drawbacks: 1) lack of
interpretability and 2) the requirement of a large dataset for
training. Furthermore, as reported in [23]-[25], deeper networks
cannot always achieve good performance in the graph settings,
in contrast to the remarkable success of convolutional networks
for signals on a regular grid [26]. Therefore, many GCNs are
limited to a small number of layers [27], [28].

As a hybrid approach of the model- and neural network-
based restoration methods, we utilize deep algorithm unrolling
(DAU) by integrating learnable parameters into the iterative
algorithm [25], [29]—-[32]. As illustrated in Fig. 1 (right), DAU
unrolls the iterations of the iterative algorithm and deploys the
trainable parameters at each unrolled iteration [32], [33]. Instead
of manually choosing the parameters as in the conventional
iterative approach, parameters in each unrolled iteration are
determined from the training data so as to minimize a loss
function. The practical advantages of DAU against the classical
iterative solver are faster convergence and performance improve-
ment since the parameters are learned to fit the target signals.
Advantages compared with fully parameterized neural networks
are the interpretability and a small number of parameters. Hence,
the networks can be trained with a small number of training data.

An extension of DAU for graph signal denoising was recently
developed in [25], which proposed unrolled GCNs based on
two optimization problems of sparse coding and trend filter-
ing. Although the formulation itself allows the network to be
arbitrarily deep, the number of layers is set to be very small
(typically one middle layer) in its practical implementation. This
is because deeper networks do not result in better performance
in this case. Additionally, GCNs often assume a fixed graph
both in the training and testing phases. However, the underlying
graphs are often slightly perturbed in practice. Hence, restoration
algorithms should be robust to (small) perturbations of graphs.
A detailed comparison between [25] and our approach is further
discussed in Section III-D.

In this work, we first propose a simple yet efficient graph
signal denoising method that utilizes DAU of the alternating
direction method of multiplier (ADMM) to solve a minimization
problem with two regularizers based on graph total variation
and elastic net. In contrast to [25], we only train the graph-
independent regularization parameters in the model-based iter-
ative algorithms. The resulting denoising algorithm contains a
significantly smaller number of parameters than neural network-
based methods while showing better denoising results.

Next, we propose a nested version of DAU based on unrolling
the iterations of Plug-and-Play ADMM (PnP-ADMM) [34]-
[38]. This version is designed for general graph signal restoration

Deep Algorithm Unrolling

Conventional iterative optimization algorithm (left) and deep algorithm unrolling (right).

problems with linear degradation. In this approach, the ADMM-
based denoiser is plugged into the unrolled PnP-ADMM algo-
rithm leading to a nested DAU structure. All of the parameters
in the algorithm are trained in an end-to-end fashion [30], [32],
[33].

In contrast to GCN-based methods, parameters to be tuned in
the proposed techniques are graph-independent leading to the
following advantages:

1) Interpretability: All internal modules are designed based

on (convex) optimization algorithms.

2) Ease to train: Our techniques do not require large training
data due to the small number of parameters.

3) Transferability: Since our methods only tune graph-
independent parameters, we can immediately use the same
parameter set for graphs with different sizes.

We also avoid large matrix inversion by using popular accel-
eration techniques in GSP: 1) precomputing graph Fourier bases
and 2) polynomial approximation. Through comprehensive ex-
periments on denoising and interpolation for synthetic and real-
world data, our proposed methods are shown to achieve better
performance than existing restoration methods including graph
low-pass filters, model-based iterative optimization, and [25], in
terms of root mean squared error (RMSE).

The remainder of this paper is organized as follows. Signal
restoration algorithms using ADMM and PnP-ADMM are in-
troduced in Section II along with notation used throughout the
paper. The proposed two restoration methods are introduced
in Section III. Experimental results comparing denoising and
interpolation performances with existing methods are shown in
Sections IV and V. Section VI concludes this paper.

II. SIGNAL RESTORATION WITH ADMM

In this section, we first present notations and the problem
formulation. Then, we review ADMM and PnP-ADMM which
are the fundamental building blocks of our algorithms.

A. Notation

Throughout the paper, vectors and matrices are written in bold
style and sets are written as calligraphic letters. An undirected
graph G = (V, £, W) consists of a collection of undirected ver-
ticesV = {v;})¥; and edges € = {(e; ;, w; ;) }. The number of
vertices and edges is [V| = N and |€|, respectively; w; ; € R
denotes the edge weight between v; and v;. We define a weighted
adjacency matrix of G as an N x N matrix with [W];; = w; ;;
[W];; = 0 represents unconnected vertices. In this paper, we
consider a graph that does not have self-loops, i.e., [W];; =0
for all 7. The degree matrix of G is defined as a diagonal matrix
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[D]i; = >_; wi,j. The combinatorial graph Laplacian matrix of
Gisgivenby L = D — W. Since L is areal symmetric matrix, L
always has an eigendecomposition. Let the eigendecomposition
of the graph Laplacian matrix be L = UAUT, where U is an
eigenvector matrix and A = diag(\1, ..., Ay). The weighted
graph incidence matrix is denoted as M € RIEI*N | We index
integers to the set of edges as & = {es}lsg:ll. Then, the sth row
and tth column of M corresponding to es and v, is

VWij  es = (vi,vj)andt = i,
Mgt = —/Wi; es = (vi,vj)andt = j,
0 otherwise.

A graph signal z : V — R is a function that assigns a value
to each vertex. It can be written as a vector x € RY in which
the ith element x[i] represents the signal value at the ith vertex.

B. General Restoration Problem

Consider an observed graph signal y € RY which is related
to an input graph signal x € RY as

ey

where H € RV*¥ is a degradation matrix and n ~ N (0, o%I)
is an i.i.d. additive white Gaussian noise (AWGN).

Throughout the paper, we assume that x is a graph signal, i.e.,
its domain is given by G. This graph structure will be exploited to
provide a prior for the recovery problem. The degradation model
(1) generally appears in restoration problems such as denoising,
interpolation, deblurring, and super-resolution, to name a few.
The main objective of many restoration problems is estimating
an unknown x from a given degraded signal y. We assume that
H is known a priori. In this paper, we perform two representative
experiments with the following H: 1) H = I (denoising), and
2) a binary H matrix (interpolation).

y = Hx + n,

C. Plug-and-Play ADMM

1) Admm: Many inverse problems are posed as the following
unconstrained minimization problem:
1
min = |ly — Hx||? + A\g(Ax), 2
min, >y 12 + Ag(Ax) @)
where ¢ is some regularization function, A € R is the regu-
larization parameter, and A € R™*" is an arbitrary matrix. A
widely used algorithm to solve (2) is the alternating direction of
multipliers (ADMM) which has been used to solve generic un-
constrained optimization problems with nondifferentiable con-
vex functions (see [39] for details). Through variable splitting,
the general problem (2) is rewritten as the following constrained
minimization problem:
(%,8) = argmin
xRN seRM

1
3 lly = Hx]3 + Ag(s),

subjecttos = Ax.

3

Applying ADMM to (3) leads to the following sequence of
subproblems:

X(p+1) — (HTH + pATA)71 (HTy 4 pATi(p)) , (4a)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

s — argmin \g(s) + BHS — 52, (4b)
SERAI 2
Pt = ¢ 4 Ax(P+D) _ gp+1) (4¢)

where t() € RM is the Lagrangian multiplier, s’ € RM is an
auxiliary variable, g is the regularization function in (2), X(P) &f
s(®) — ¢®) and 5@ ¥ AxP+D) 4 @),

2) Plug-and-Play ADMM: PnP-ADMM is a variation of the
classical ADMM [34] for the problem of (3) with A = I. Often-
times, (4a) and (4b) are called the inverse step and denoising step
(i.e., denoiser), respectively [35]. A notable feature is that any
off-the-shelf denoiser, including deep neural networks, can be
used instead of naively solving (4b) without explicitly specifying
regularization terms g before implementation. Such examples
are found in [40]-[42].

Empirically, PnP-ADMM has demonstrated improved per-
formance over the standard ADMM with explicit regularization
in some image restoration tasks [36], [43], [44]. Graph signal
restoration with PnP-ADMM is also studied in [21] showing im-
proved restoration performance over the existing model-based
techniques.

In this paper, we follow an approach of PnP-ADMM proposed
in [37]. Suppose that two initial variables s(?),t(®) € RN are
set. The algorithm of PnP-ADMM corresponding to (4a)—(4c)
(again, assuming A = I) is represented as

x(@+1) — (HTH + pI)71 (HTy +p (S(P) _ t(p))) . (5a)

s+ = D, (X<p+1> n t(p)) 7 (5b)

gt = () 4 x+D) _ gp+1) (5¢)

where D, is an off-the-shelf denoiser. Note that we still need
to determine the parameter p and the off-the-shelf graph signal
denoiser D, (and its internal parameters) prior to running the
algorithm.

The key idea of our proposed method is to unroll the ADMM
and PnP-ADMM for graph signal processing.

III. GRAPH SIGNAL RESTORATION ALGORITHMS

In this section, we propose the following two graph signal

restoration methods, both based on DAU.

1) GraphDAU: Graph signal denoiser by unrolling ADMM
to address the problem H = I. We consider a mixture of
¢y and /5 regularization terms like the elastic net [45].
GraphDAU works as a better independent denoiser than
the model-based and deep-learning-based approaches.

2) NestDAU: General graph signal restoration algorithm by
unrolling PnP-ADMM to handle a generic H. We plug the
GraphDAU into each layer of an unrolled PnP-ADMM as
a denoiser.

Our methods are illustrated in Fig. 2.

A. GraphDAU

GraphDAU considers the case where H = I due to signal
denoising and A = M in (2). It combines the regularization
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terms of graph total variation (GTV) and graph Laplacian regu-
larization [46], leading to

! A
Dy(y) = argming [x — y|[3 + Asl|Mx|s + ZIMx[|3, (6)
xeRN

where |[Mx||; and |[Mx||3 = x"Lx (since L = M'M) are
the regularization terms for first-order and second-order differ-
ences, respectively, and \; and A are nonnegative regularization
parameters. The second and third terms in (6) can be written
explicitly as

IMx|ly = > il — ), (7)

JEN;

IMx|5 = wij (s — x)°, (8)
JEN;

where N; is a set of vertices connecting with v;. The norms
(7) and (8) are effective regularization functions for piecewise
constant and smooth graph signals [20].

In this paper, GraphDAU is only applied for denoising and
not used for the general restoration problems in (2). This is
because we use various acceleration techniques introduced in
Section III-A3 under the assumption H = 1.

We utilize ADMM as a baseline iterative solver of (6). The
variable splitting is applied to (6) with v = Mx, leading to the
following constrained minimization problem:

. 1 A2
argmin L~ y[3+ My vl + 2 v[
xRN veRE

Dy(y) =

subject tov = Mx. 9

The solution of (9) can be found by solving a sequence of the
following subproblems [47]:

-1
x(HD = (I + lMTM> (y + lMT (v(f) - u(o>) ,
v

v
(10a)

1
(e+1) _ (M (¢+1) <é>) 10b
v 1+)\2’YS)‘17 X +tu ’ (10b)
u) = u® ¢ Mx D) D) (10¢)

where 7 is the step size of the algorithm and S, is the soft-
thresholding operator

[S/\l’)’(x)]i = Sgn(xi) max{|xi| - )‘17?0}7 (11)

where sgn(-) denotes the signum function.

Next, we unroll the iteration of (10a)—(10c) to design a train-
able D,. In other words, instead of using fixed parameters in
(10a)—(10b), we deploy trainable parameters in each iteration.
The terms including M and M "M in (10a)—(10c) are graph
filters, i.e., graph convolution, and are fixed: We only tune three
parameters, 7y, A1, and Ao, in each unrolled iteration. This is
because we aim to construct an interpretable and easy-to-train
graph signal restoration algorithm. The training configurations
are described later in Section IV-A2.! In the following sections,
we propose two forms of GraphDAU and introduce its acceler-
ation techniques.

1) GraphDAU-TV: In this method, we only consider the ¢,
term of (9) by setting Ay = 0. Then, we choose v and y)\;
to be learnable, i.e., v — {7, }7=} and Y\; — {B¢}1=s. This
regularization is based on the assumption that the signal is
piecewise constant.

IThe detailed gradient computations for training the parameters are given in
the Appendix.
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2) GraphDAU-EN: This GraphDAU is based on a combi-
nation of the ¢; and /5 regularizations in (9) like the elastic
net (EN), defined by the weighted incidence matrix M. We
introduce a set of trainable parameters 1 /(1 + A27y) — {aw} iy
in addition to {v,} /4 and {3, }L-}. This method automatically
controls piecewise and smoothness terms at each layer.

3) Algorithm  Acceleration: The graph filter (I+
%MTM)‘1 in (10a) requires matrix inversion and its
computational complexity is typically O(N?) (for a dense
matrix). If each layer requires calculating the inversion, the
complexity becomes O(N3L). We consider accelerating
GraphDAU by the following two popular techniques: 1)
eigendecomposition of L, and 2) Chebyshev polynomial
approximation of a graph filter.

Precomputing Eigendecomposition: In this approach, we
precompute the eigendecomposition (EVD) of L. The inverse
matrix in (10a) can be decomposed as

1.\ ! T\
(I + L) =U (I + A) U’
Ve Ye

Since I + (1/v¢)A is a diagonal matrix, the inversion has O(N)
complexity. If G does not change frequently throughout the
iterations (which often is the case), the eigenvalues A and eigen-
vectors U are fixed. Therefore, the eigendecomposition of the
graph Laplacian is performed only once. This GraphDAU with
acceleration is represented with the suffix -E and is summarized
in Algorithm 1.

Chebyshev Polynomial Approximation: This technique ap-
proximates (12) with a polynomial, for example, using the
Chebyshev polynomial approximation (CPA) (see [48], [49] for
details).

First, we rewrite the inverse step at the ¢th layer corresponding
to (12) as

(12)

X = HOW)y, (13)

where y =y + %MT (v —u®) and HO(L):=
UHY(A)UT is the filter function. This filter kernel has the
following graph frequency response:

HO(A) = diag (RO (\),...HO0w)) . (14)
where h(*)(x) = 7/ (v, + ) is the filter kernel which acts as
a graph low-pass filter. By performing K -truncated Chebyshev
approximations to h() (), the approximated version () (L) is
represented as:

x(HFD = O @)y®), (15)

GraphDAU with Chebyshev polynomial approximation is spec-
ified by a suffix -C in Algorithm 1.

B. NestDAU: Unrolled PnP-ADMM With GraphDAU as the
Denoiser

Next, we develop a restoration algorithm for general H in (2).
The baseline algorithm we consider is PnP-ADMM introduced
in (4a)—(4c) because it is able to adapt to general H. In addition,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Algorithm 1 GraphDAU for graph signal denoising D}}’ )
NOTE: Background colors correspond to those in Fig. 2.

Input: noisy graph signal y; graph incidence matrix M;
initial variables v(©), u(®); network layers L; polynomial
order K (for GraphDAU-TV-C and GraphDAU-EN-C).

Output: denoised graph signal x(%).

1: compute the graph Laplacian L = M ™M

2: If GraphDAU-TV-E or GraphDAU-EN-E then

3: compute the eigendecomposition L = UAUT
4. for (=0,--- ,L—1do

s O cy+IMT (VO - u®)

U(1+2A) UTFO
for GraphDAU-TV-E and
GraphDAU-EN-E
HO@)y®
for GraphDAU-TV-C and
GraphDAU-EN-C

6: X(e+1) —

(S5, (Mx&+D) 4 u®)
for GraphDAU-TV
azSﬂe (Mx(”l) aF u(“'))
for GraphDAU-EN

7. | wEEhD

\

8 ut)  u® 4 Mx(HD) _ (et

9: end for
return x(X)

S

any denoiser can be used in its internal algorithm to boost
performance.

Suppose that the iteration number P is given. We then unroll
(5a)—(5¢c) of the PnP-ADMM iterations to construct P layer
networks. That is, we set p in (5a) to be learnable, i.e., p —
{pp 5:_01 in which p indicates the layer number. The restoration
steps are equivalent to those in PnP-ADMM with P iterations,
but each iteration is conducted with different regularization
parameters.

The important part of the restoration algorithm is the design
of the off-the-shelf denoiser D, in (5b) since (5a) and (5¢) are
independent of the underlying graph. In this paper, we aim
to keep the algorithm fully interpretable and the number of
parameters small for efficient training, and thereby, we utilize
GraphDAU in each layer as Dgp ). As a result, the restoration
algorithm has a nested unrolled structure as shown in Fig. 2.
Based on this structure, we refer to the proposed method as
NestDAU. Note that all the parameters in NestDAU, including
those in GraphDAU, can be trained in an end-to-end fashion from
atraining set. The training details are presented in Section IV-A2.

Algorithm 2 shows the details of NestDAU. Note that we
perform two representative signal restoration experiments (i.e.,
denoising and interpolation) in this paper, but NestDAU can be
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Algorithm 2 NestDAU for graph signal restoration
NOTE: Background colors correspond to those in Fig. 2.

Input: degraded graph signal y; initial variables s(® t(%);
network layers P; trainable denoiser Dép ).
Output: restored graph signal x(*).
1: forp=0,--- ,P—1do

2 xeH)  (HTH + ppI)—l (Hy + pp (s® — @)
3 s+  pP) (x(F1) 4 £(2))
4: te+) () 4 x(+1) _ g(p+1)

5: end for
6: return x(©)

applicable to other cases as well, e.g., deblurring [50] and point
cloud super-resolution [51].

C. Summary of Computation Issues

In Table I, we compare the proposed methods in terms of the
regularization function, the acceleration technique, the number
of parameters, and the computational complexity. NestDAUSs
are classified based on its GraphDAU specifications and have
the same suffix as the corresponding GraphDAU.

The number of parameters linearly increases in proportion to
the number of layers L but is independent of N. The complexity
mainly depends on the use of EVD. The methods with EVD
have complexities depending on the number of nodes N, while
those with CPA only rely on the number of edges |£| and the
polynomial order K; K|&| is generally much smaller than N2
when N becomes large.

As mentioned, the proposed methods require training data
(i.e., a set of ground-truth and degraded data) to tune param-
eters. They come from the hyperparameter(s) of the original
(PnP-)ADMM algorithms. Note that, even for a regular ADMM,
we need to determine the optimal hyperparameter(s) for practical
applications: This often needs training data.

In general, many trainable parameters in deep learning require
a large dataset to avoid overfitting. This implies that GNNS re-
quire many training data. In contrast, NestDAU and GraphDAU
have significantly fewer parameters than representative deep
learning methods. This leads to that the proposed method can
train with the small number of training data, which is beneficial
for practical applications. This is experimentally verified in
Sections IV and V.

D. Comparison to [25]

Two approaches for graph signal denoising based on DAU,
called graph unrolling sparse coding (GUSC) and graph un-
rolling trend filtering (GUTF), were proposed in [25]. Since they
have the same objective as that for GraphDAU, we compare
the details of DAU-based graph signal restoration methods in
Table II.
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First, GUSC/GUTF only consider the problem of graph signal
denoising. This is the same objective as that of GraphDAU, while
NestDAU focuses on a generic restoration problem in (1). This
is possible by employing the PnP-ADMM as a prototype of the
iterative algorithm. Second, the regularization of GUSC/GUTF
only contains the ¢; term, while GraphDAU also includes an /5
term |[Mx||3 = x " Lx, which is beneficial for globally smooth
signals. GraphDAU-EN can automatically control the regular-
ization weights between the /1 and /5 terms, leading to flexibility
in capturing signal characteristics. Third, GUSC and GUTF
train parameters in an unsupervised setting while our proposed
methods train the network in a supervised way. In the following
experiments, we train GUSC/GUTF in a supervised setting for
a fair comparison. Extending GraphDAU and NestDAU to the
unsupervised setting is left for future work.

In (10a), we keep the structure of the original graph filter

-1
h(L) = (I + %L) of the ADMM algorithm and only train a

graph-independent parameter . As such, GraphDAU performs
stably with many layers (typically L = 10 in the experiments).
In contrast, GUSC/GUTF use GCNs for its internal algorithm.
Therefore, they result in few middle layers (as reported in [25],
they have only one middle layer in the experiment). They reduce
many learnable parameters compared to usual GCNs thanks to
their edge-weight-sharing convolution, however, they still con-
tain many parameters. A detailed comparison of the number of
parameters is presented along with the restoration performance
in Section IV.

IV. EXPERIMENTAL RESULTS: DENOISING

In the following two sections, we compare graph signal
restoration performances of NestDAU and GraphDAU with
existing methods using synthesized and real-world data. In both
sections, parameters of the proposed and neural network-based
methods are trained by setting the mean squared error (MSE)
+|Ix — x*||3 as a loss function, where X € R is the restored
signal and x* € R¥ is the ground-truth signal available during
the training phase.

In this section, we consider denoising correspondingto H = I
in (1).

We conduct three experiments:

1) Denoising on fixed graphs;

2) Denoising on graphs with perturbation;

3) Transferring tuned parameters to different N.

In the following subsections, we describe the details of the
denoising experiment. We also show an in-depth analysis of the
proposed methods in terms of the number of layers (i.e., L or
P) and the polynomial order K.

A. Methods and Training Configurations

1) Alternative Methods: We compare the denoising perfor-
mance with several existing methods using smoothing filters and
optimization approaches:

® Graph spectral diffusion with heat kernel (HD) [53];

e Spectral graph bilateral filter (SGBF) [22], [54];
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TABLE I
COMPARISON AMONG THE PROPOSED METHODS

Methods i Task | Regularization | Acceleration | # of params | Computational complexity
GraphDAU-TV-E . Precomputing EVD O(N? + N?L)
GraphDAU-TV-C Denoisin Graph total variation CPA 2L O(K|€|L)
GraphDAU-EN-E & Elastic net Precomputing EVD 3L O(N?® + N?L)
GraphDAU-EN-C CPA O(K|E|L)

NestDAU-TV-E . I Precomputing EVD O(N?3 + N2LP)
NestDAU-TV-C General restoration Graph total variation CPA (2L +1)P O(K|E|LP)
NestDAU-EN-E ; Elastic net Precomputing EVD 3L+ 1)P O(N® 4+ N?LP)
NestDAU-EN-C ‘ CPA O(K|E|LP)
TABLE I
COMPARISON BETWEEN RELATED WORKS AND OURS
[ GUSC/GUTF [25] [ GraphDAU | NestDAU

Optimization algorithm for unrolling | Half-quadratic splitting [52] | ADMM [39] [ PnP-ADMM [34]

Problem setting unsupervised & supervised supervised

Considered restoration problem denoising denoising [ general restoration

TABLE III
TRAINING CONFIGURATION

Batch size 1
Epochs <3
Weight decay | 1.0 x 10%
Optimizer Adam [58]

Learning rate 0.02
Scheduler StepLR

o ADMM-based smoothing with a fixed parameter; ((10a)—
(10c)) with 10 iterations;

® PnP-ADMM-based smoothing with fixed parameters with
8 iterations [21]: Its formulation is given in Section I1I-B
and off-the-shelf denoisers are HD or SGBF.

Filtering operations of the algorithms are partly implemented
by pygsp [55]. For a fair comparison, their fixed parameters
are tuned by performing a grid search on the validation data to
minimize RMSE.

We also include the following deep learning-based methods
for comparison:

e Multi-layer perceptron (MLP);

e Graph convolutional network (GCN) and that with residual

connections (GCN-R) [23];

e QGraph attention networks (GAT) [56];

® QGraph unrolling-based trend filtering (GUTF) [25];

® Graph unrolling-based sparse coding (GUSC) [25].

These existing methods are set to 64 dimensions as a hidden
layer of neural nets as in the setting in [25]. These methods and
ours are implemented with Pytorch [57]. MLP, GCN, GCN-R,
and GAT are trained for 30 epochs that lead to convergence of
the loss function. GUTF and GUSC are trained with the same
hyper-parameters as [25], but they are trained in the supervised
setting in this paper.

2) Training Configuration: On the basis of preliminary ex-
periments, hyper-parameters used for training of the proposed
methods are summarized in Table III. Training scheduler StepLR
in Pytorch is used to gradually decay the learning rate by
multiplying 0.6 each epoch. Since our proposed methods have
a small number of parameters, training usually converges in

no more than three epochs. A detailed performance analysis
is discussed in Section IV-F.

B. Datasets and Setup

Here, we describe the details of the experiments and datasets.
The dataset specifications are summarized in Table IV.

1) Denoising on Fixed Graphs: The first experiment is graph
signal denoising for the following fixed graphs:

e Synthetic signals on a community graph having three clus-

ters (N = 250);

e Synthetic signals on a random sensor graph (N = 150);

e Temperature data in the United States (N = 614).

We assume that the graph is consistent in all of the training,
validation, and testing phases.

Characteristics of Graphs and Graph Signals: The com-
munity graph is generated by pygsp [55] and is shown in
Fig. 3(a). We synthetically create piecewise constant graph
signals based on the cluster labels of the community graph. Note
that the cluster labels are different while the graph itself is fixed.
Each cluster in the graph is assigned an integer value between 1
to 6 randomly as its cluster label. Then, AWGN (o = {0.5,1.0})
is added to the ground-truth signals.

The random sensor graph is also obtained by pygsp [55] and
is shown in Fig. 4(a). On the random sensor graph, piecewise-
smooth signals are synthesized in the following manner. First,
vertices on a graph are partitioned into eight non-overlapping
subgraphs {G, }%_, . Then, smooth signals on Gy, are synthesized
based on the first three eigenvectors of the graph Laplacian of Gy
Let Ly, and Uy, be the graph Laplacian of G, and its eigenvector
matrix, respectively. Then, a smooth signal on Gy, is given by

xp = Uy ad, (16)

where Uy, 3 is the first three eigenvectors in Uy, and d € R3
are expansion coefficients whose element is randomly selected
from [0, 5]. Finally, a piecewise-smooth signal on G is obtained
by combining eight x;’s as follows:

X = Z ]_Cka
k

A7)
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SUMMARY OF DATA USED IN SECTION IV
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Experiment | Graph Signal characteristic Type Data splitting (train/valid/test)
Community graph  Piecewise constant Synthetic data ~ 500/50/50
Denoising on fixed graphs Sensor graph Piecewise smooth Synthetic data  500/50/50
U.S. geometry Daily temperature (time-series) Real data 304/30/31
Piecewise constant 500/50/50
Denoising on perturbed graphs Sensor graph Piecewise smooth Synthetic data ~ 500/50/50
Globally smooth 500/50/50
3D Point clouds RGB color attributes Real data 129/43/44
Parameter transfer 3D Point clouds RGB color attributes for different N Real data N/A

(e) GUSC (f) GUTF () GraphDAU-TV-E

(h) NestDAU-TV-C

Fig. 3. Visualization: Denoising results of signals on community graph with o = 1.0.

(e) GUSC (f) GUTF () GraphDAU-EN-E

Fig. 4. Denoising signals on random sensor graph (o = 1.0).

(h) NestDAU-TV-C
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(e) ADMM (GTV) (f) GUTF

Fig. 5.

() GraphDAU-EN-E (h) NestDAU-EN-C

Denoising results of U.S. temperature data (o = 9.0). (a) is the original signal. The noisy and denoised results show the differences from the original

signal: For visualization, the area of the nodes is proportional to the magnitude of the error, i.e., a large node has a large error.

Ground trut] Denoised

N=10,000

Denoised

Ground truth Noisy

Fig. 6. Parameter transfer: The parameters of GraphDAU-TV-C with L =
10 and K = 10 are trained with N = 1,000. Then, the model with trained
parameters are applied to the larger number of points (N = 5,000 (top row)
and N = 10,000 (bottom row)).

where 1¢, € {0,1}V*ICl is the indicator matrix in which
[1¢,]i,; = 1 when the node ¢ in G corresponds to the node j
in Gy, and 0 otherwise. AWGN (o = {0.5,1.0}) is added to the
ground-truth signals.

In order to demonstrate the effectiveness of our method for
real-world data, we use daily average temperature data in the
United States in 2017, provided by QCLCD2 [59]. The data
contain local temperatures recorded at weather stations, yet they
include missing observations. To obtain the completed data (as
the ground truth) for a year, we conduct the following prepro-
cessing: 1) 614 stations (out of 7501 ones) having relatively few
missing values are selected. 2) Missing values in these stations
are filled using the average temperatures observed at the same
station in the previous and subsequent days. For experiment,
we split the dataset into three parts: 304 training (January to

2[Online]. Available:https://www.ncdc.noaa.gov/orders/qcled/

October), 30 validation (November), and 31 testing (December)
data. In this experiment, we study four noise strengths of AWGN,
ie., o =1{3.0,5.0,7.0,9.0}. The weighted graph is constructed
by an 8-nearest neighbor (NN) graph based on the stations’
geographical coordinates.

2) Denoising on Graphs With Perturbation: The second ex-
periment is conducted for signals on graphs with perturbation to
verify the robustness of the proposed method to small perturba-
tions of the underlying graph. Indeed, the tuned parameters for
one graph are not expected to work properly for a completely
different graph because the topologies and graph Fourier basis
on different graphs are different. However, signals on similar
graphs, in terms of their edge weights, could have similar charac-
teristics and therefore, it is expected that the learned parameters
for one graph could work satisfactorily for the signal on another
graph if these two graphs are similar enough.

Note that many graph neural network-based methods assume
the graph is fixed, while our approach based on DAU only
needs to tune graph-independent parameters. Thus, we can use
different graphs in each epoch for training, validation, and
testing. In this experiment, we only showcase the performance
with a comparison to the model-based methods because the
model-based approaches are applicable even if the graphs are
different.

We used the following graph signals:

® Synthetic signals on random sensor graphs (N = 150) hav-

ing piecewise-constant, piecewise-smooth, and globally-
smooth characteristics;

® RGB color attributes on 3D point clouds (/N = 1, 000).

Characteristics of Graphs and Graph Signals: For the
experiment on random sensor graphs, each graph is syntheti-
cally generated by using a different seed of graphs . Sensor
from pygsp [55]. This results in that all graphs have different
topologies and edge weights, but their characteristics are similar.

We then synthetically generate the following graph signals:

a) Piecewise constant signals: We first partition each graph

into five clusters with non-overlapping nodes and ran-
domly assign an integer for each cluster between 1 to 6.
The cluster labels are used as a graph signal.
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Fig. 7.
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Fig. 8. Average RMSEs of the validation data for graph signal denoising. The
upper right box is the zoomed-in part of the red area at bottom left.

b) Piecewise smooth signal: Similar to the piecewise constant
case, we first partition each graph into five clusters with
non-overlapping nodes. The signal is generated by (16)
and (17).

c) Globally smooth signal: The signal is obtained with a
linear combination of the first five graph Fourier basis with
random expansion coefficients d € R like (16).

In this experiment, we study two noise strengths of AWGN,
ie., 0 ={0.5,1.0}.

As real data on graphs with perturbation, we use the color
attributes of 3D point clouds from JPEG Pleno Database [60],
where the human motions are captured as point clouds. We
randomly sample 1,000 points from the original data. Then,
weighted graphs are constructed using a 4-NN method whose
weights are determined based on the Euclidean distance. Graphs
in this dataset are, therefore, not fixed because the Euclidean
distances between points are different due to random sampling.
AWGN with o = {20, 30,40} is added to each sample to yield
a noisy signal. Note that the implementation of the proposed
methods are conducted channel-wise so that the parameters are
adjusted to each channel.

3) Parameter Transfer for Different N : The number of nodes
of a graph directly influences computation complexities for all
(training, validation, and testing) phases. To apply the proposed

(b) GraphDAU: K.

(c) NestDAU: P.

Denoiser analysis with the results on community graph (o = 1.0).

methods to a signal with large N, naive training results in
large computational burden. Motivated by this, in the third
experiment, we consider transferring the learned parameters to
graph signals having different V. That is, parameters trained
with signals on a small graph G’ with N’(< N) nodes are reused
for evaluation with signals on G with N nodes. This approach can
be easily realized with the proposed method since its parameters
are independent of V.

We first train the GraphDAU-TV-C (i.e., Chebyshev polyno-
mial version of GraphDAU based on the GTV regularization)
on the 3D point cloud datasets with N’ = 1,000 points. After
that, the pre-trained parameters are applied to the datasets with
larger N = {2,000, 5,000, 10,000}.

C. Denoising Results: Fixed Graph

The experimental results on the fixed graphs are summarized
with the number of parameters in Table V. Visualizations of the
denoising results are also shown in Figs. 3, 4, and 5.

In most cases, the proposed methods show RMSE improve-
ments compared to all of the alternative methods. It is observed
that the proposed approach successfully restored graph sig-
nals having various characteristics. Note that, in spite of the
performance improvements, our methods have a significantly
smaller number of parameters than the neural network-based
approaches.

Although GraphDAU-TV and -EN outperform existing meth-
ods, NestDAUs provide even better performance by incorpo-
rating GraphDAUs as submodules of NestDAU. These results
imply that the nested structure is effective for graph signal
restoration. NestDAU using EVD often outperforms that using
CPA in most datasets and conditions.

D. Denoising Results: Graphs With Perturbation

Table VI summarizes the results of the second experiment,
denoising on graphs with small perturbation. Overall, our algo-
rithms outperform the alternatives as in the case for the fixed
graph. The proposed techniques show RMSE improvements for
all of the signal types under consideration. This implies that
our methods effectively reflect the signal prior as the tuned

parameters through training, leading to robustness against a
slight change of graphs.
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(e) PnP-SGBF (f) GUTF

Fig. 9.
truth signal.
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() NestDAU-TV-E (h) NestDAU-EN-E

Interpolation results of a community graph (AWGN (o = 0.5) with 50% missing). The proposed method ((g) and (h)) captured the property of the ground
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Fig. 10.
are set to be proportional to the magnitude of the error.

E. Transferring Tuned Parameters for Different N

The results of the third experiment, transferring the tuned
parameters to different N, are summarized in Table VII. This
shows that even if the number of nodes increases, the proposed
method works well as long as the signal and graph properties
are similar. Fig. 6 shows the visualization of noisy and denoised
results.

F. Performance Study: The Number of Layers

Along with the denoising results, the effect of the number of
layers is studied here. We use the dataset of the fixed community
graph whose details are described in Section IV-B.

() NestDAU-TV-E (h) NestDAU-EN-C

Interpolation results of U.S temperature data. (a) and (b) are shown in the original scale. For clear visualization, the node size of the interpolation results

1) GraphDAU: Fig. 7(a) shows the performance analysis
in terms of the number of layers L of GraphDAU for L €
{1,...,30}. The average RMSE in the test data is reported.
As can be seen in the figure, the RMSE of GraphDAU rapidly
decreases for L < 10, whereas there is a slight improvement for
L > 10. We observed that GraphDAU-TV-E steadily decreases
RMSEs while they are slightly oscillated for GraphDAU-EN-E.
Fig. 7(b) shows the influence of the polynomial order K €
{2,...30} of GraphDAU-TV-C and -EN-C with L = 10. Both
methods almost monotonically decrease RMSEs as K becomes
larger.

2) NestDAU: Fig. 7(c) shows the performance in terms of
the number of layers P of NestDAU. The submodule Graph-
DAU contains L = 10 for using EVD and L = 10 and K = 10
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DENOISING RESULTS ON FIXED GRAPHS (AVERAGE RMSES FOR TEST DATA)
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Community graph Random sensor graph U.S. temperature
(Piecewise constant) (Piecewise smooth) (Globally smooth)
Methods #params | L K P | 0=0.5 1.0 0.5 1.0 3.0 5.0 7.0 9.0
Noisy - - - - 0.495 1.002 0.499 0.996 2986 5.032  7.029 9.012
HD - - - - 0.230 0.325 0.405 0.598 1712 2.149 2475 2751
SGBF - - - - 0.195 0.256 0.394 0.588 1.731  2.167 2470 2762
ADMM (GTV) - 10 - - 0.114 0.233 0.378 0.603 1.784 2249 2483 2.805
PnP-HD - - - 8 0.218 0.324 0.400 0.592 1.706  2.168 2467 2745
PnP-SGBF - - - 8 0.195 0.294 0.399 0.586 1.730  2.164 2457 2749
MLP 4,353 - - - 0.436 0.795 0.454 0.739 2.892 4588 6.634 7.816
GCN 4,353 - - - 0.258 0.283 0.649 0.705 2208 2.380 2.653 2948
GCN-R 4,353 - - 0.272 0.305 0.718 0.759 2285 2411 2642 2931
GAT 2,050 - - - 0.236 0.247 0.560 0.752 2213 2776  3.042  3.698
GUTF 19,397 - - - 0.100 0.158 0.419 0.523 2127 2293 2551 2891
GUSC 11,205 - - - 0.139 0.206 0.383 0.512 2.069 2248 2587 2935
GraphDAU-TV-E 20 | 10 - - 0.060 0.117 0.364 0.583 1.688  2.154 2436 2775
GraphDAU-TV-C 20 | 10 10 - 0.073 0.142 0.364 0.583 1.693  2.170 2536 2.743
GraphDAU-EN-E 30 | 10 - - 0.081 0.138 0.340 0.547 1.652 2123 2411 2723
GraphDAU-EN-C 30 | 10 10 - 0.095 0.165 0.339 0.554 1.685  2.151 2479 2745
NestDAU-TV-E 168 10 - 8 0.054 0.106 0.324 0.559 1.661 2.153 2429 2.736
NestDAU-TV-C 168 | 10 10 8 0.056 0.103 0.374 0.631 1.665 2.124 2458  2.730
NestDAU-EN-E 248 | 10 - 8 0.072 0.105 0.324 0.528 1.656  2.087 2409 2713
NestDAU-EN-C 248 10 10 8 0.061 0.110 0.330 0.530 1.654 2100 2434 2.674
TABLE VI
DENOISING RESULTS ON GRAPHS WITH PERTURBATION (AVERAGE RMSES FOR TEST DATA)
Random sensor graph 3D Point Clouds
Piecewise constant ~ Piecewise smooth  Globally smooth RGB colors
Methods L K P |o=05 1.0 [ 05 1.0 [ 05 1.0 20 30 40
Noisy - - - 0.500 1.000 | 0.500 1.000 0.500 1.000 18.18  26.00 33.19
HD - - - 0.412 0.627 | 0417 0.646 0.357 0.537 11.84 1474 1742
SGBF - - - 0.405 0.634 | 0411 0.691 0.336 0.459 1476 16.12  17.94
ADMM (GTV) 10 - - 0.271 0.505 | 0.462 0.652 0.361 0.543 1096  14.08 16.84
PnP-HD - - 8 0.415 0.645 0.413 0.645 0.343 0.538 11.89 1497 17.78
PnP-SGBF - - 8 0.403 0.630 | 0412 0.635 0.308 0.462 1592 2049 2433
GraphDAU-TV-E | 10 - - 0.240 0.446 | 0.385 0.629 0.306 0.467 10.92 1397 16.69
GraphDAU-TV-C | 10 10 - 0.221 0.447 | 0.385 0.623 0.308 0.473 10.88  13.70  15.90
GraphDAU-EN-E 10 - - 0.192 0.401 0.394 0.629 0.312 0.451 10.74 13.83 16.64
GraphDAU-EN-C | 10 10 - 0.230 0.436 | 0.398 0.638 0.293 0.436 10.88  13.67 15.90
NestDAU-TV-E 10 - 8 0.206 0.407 | 0.368 0.613 0.290 0.439 1083  13.75  16.06
NestDAU-TV-C 10 10 8 0.207 0.402 | 0371 0.606 0.290 0.439 10.84 13.68 15.87
NestDAU-EN-E 10 - 8 0.206 0.410 | 0371 0.612 0.290 0.441 10.89 1392 1645
NestDAU-EN-C 10 10 8 0.211 0.398 | 0.366 0.609 0.295 0.436 10.81  13.65 15.89
b T g%BPLE Vlé " RMSE the number of training data). Furthermore, NestDAUs converge
’ARAMETER TRANSFER OF OINT CLOUDS (AVERAGE S .
FOR TEST DATA) faster than their GraphDAU counterparts.
N N
1,000 | 2,000 5,000 10,000
Noisy (0 = 30) | 2600 | 2596 2594  25.95 V. EXPERIMENTAL RESULTS: INTERPOLATION
Denoised 13.70 | 12.69 11.63 11.03

with that using CPA. The number of layers is selected to
P e {1,...,10}. For NestDAU, all configurations are stable
in terms of the layer size P. Even if the in-loop denoisers are
changed, the performances are almost equivalent.

G. RMSE Analysis During Training

Fig. 8 shows the average RMSEs of the validation data dur-
ing training. The data used are signals on community graphs
(o = 0.5) described in Section IV-B. As shown in the figure, the
RMSE:s rapidly decrease with less than 250 iterations (that is,

In this section, graph signal interpolation is performed and
compared with the alternative methods. We assume the nodes
for missing signal values are known and they are set to zero.
This leads to a diagonal binary matrix H = diag{0, 1}V in (1)
with various missing rates.

A. Alternative Methods

For interpolation, the following techniques are selected for
comparison:
e Bandlimited graph signal recovery based on graph sam-
pling theory [8]: Bandwidth is set to N/10;
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TABLE VIII
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INTERPOLATION RESULTS. (AVERAGE RMSES FOR TEST DATA)

Community graph U.S. temperature
noiseless o=0.5 o =9.0
P | params/miss(%) 30 50 70 30 50 70 30 50 70
Noisy + missing - - 2.034 2.633 3.092 | 2.099 2691 3.155 | 9.143 9.169 9.170
Graph sampling theory - - 0214 0279 0.571 | 0.341 0.465 1411 | 3961 4.851 10.06
PnP-HD 8 - 0.131  0.179 0.386 | 0.263 0316 0462 | 2938 3.155 3.558
PnP-SGBF 8 - 0.136 0.174 0.268 | 0.218 0.236  0.331 | 2982 3.293 3.512
GUSC - 11,270 0384 0.543 0.706 | 0.414 0.551 0.722 | 3.853 4921  6.657
GUTF - 19,397 0.309 0470 0.641 | 0338 0.472 0.636 | 3.478 4.395 6.162
NestDAU-TV-E 8 168 0.013  0.025 0.059 | 0.077 0.094 0.140 | 2940 3.177 3.491
NestDAU-TV-C 8 168 0.012 0.022 0.082 | 0.072 0.093 0.148 | 2968 3.179 3.501
NestDAU-EN-E 8 248 0.077  0.140 0.160 | 0.107 0.185 0311 | 2907 3.116 3.466
NestDAU-EN-C 8 248 0.084 0.120 0.175 | 0.123  0.128 0.321 | 2903 3.105 3.461

® PnP-ADMM-based interpolation with fixed parameters
with 8 iterations [21]: Its formulation is given in
Section III-B and off-the-shelf denoisers are HD or SGBF;

e GUTF [25];

e GUSC [25].

Although GUSC and GUTF are originally developed for a
denoising task, we also include these methods to compare with
neural network-based approaches. The setup is the same as the
previous section.

B. Datasets and Setup

We used the following graph signals for interpolation:
e Synthetic signals on a community graph having three clus-
ters (IN = 250);

e Temperature data of the United States (N = 614).

They are the same signals as those used in the denoising
experiment in the previous section.

Characteristics of Graphs and Graph Signals: Synthetic
graph signals on the community graph are generated in the same
setup as that of the denoising experiment. We then consider two
interpolation conditions: 1) noiseless and 2) noisy (AWGN with
o = 0.5). Three types of missing rate are considered: 30%, 50%,
and 70%.

The U.S. temperature data are also used in this experiment as
areal-world example. In this case, AWGN (o = 9.0) are added
onto the observed daily temperature data with the same setting
as the denoising experiment. Then, missing rates are set to 30%,
50%, and 70% to validate the interpolation method. Note that
the missing nodes are randomly chosen, i.e., H are set to be
different across all data.

C. Interpolation Results

The RMSE results obtained by the proposed and existing
methods are summarized in Table VIII. The visualizations of
the interpolation results are also shown in Figs. 9 and 10.

As can be seen, the proposed approaches show better RMSE
than the alternatives. For the community graph, NestDAU-
TV shows better results than NestDAU-EN. This is because
NestDAU-TYV reflects the prior of the graph signals, i.e., piece-
wise constant. For the U.S. temperature data, NestDAU-EN is
better than NestDAU-TV because the temperature data tend to
be very smooth on the graph. In particular, NestDAU-EN-C

outperforms the others in all missing rates. This implies that the
proposed NestDAU presents its effectiveness beyond denoising.

VI. CONCLUDING REMARKS

In this paper, we proposed graph signal denoising and restora-
tion methods based on ADMM and Plug-and-Play ADMM
with deep algorithm unrolling, respectively. The ADMM-
based unrolled denoiser automatically controls its regularization
strengths by tuning its parameters from training data. The PnP-
ADMM-based unrolled restoration is applicable to any linear
degradation matrix and contains the proposed ADMM-based
denoiser in its sub-module, leading to a nested DAU structure.
The unrolled restoration methods provide fully interpretable
structures and have a small number of parameters with respect to
fully parameterized neural networks. The techniques only tune
layer-wise trainable parameters in the iterative algorithm and
do not include fully-connected neural networks. This implies
that we only need a small set of training data: It is beneficial
especially for graph signals because their underlying structures
often change. In extensive experiments, the proposed methods
experimentally outperform various alternative techniques for
graph signal restoration. Furthermore, we can reuse the learned
parameters for graphs with different sizes.

APPENDIX

Here, we present some non-trivial gradient computations of
the trainable parameters with respect to the learnable parameters
in GraphDAU.

First, let £ be the loss function. Its partial derivatives with
respect to parameters are given as follows using the chain rule:

oL oL ox\Y s
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We also derive the partial derivatives with respect to 3, for
both GraphDAU-TV and EN. Let v() = Mx(*tD 4 u® and
o(-) be the ReLU activation function. The soft-thresholding
operator can be represented with two ReLLU functions as

Sp (V) =0 (V0 = 8) = o (-9 = 51).

Therefore, the auxiliary variable v(*1) is explicitly given by
vt — Sz, (V(e) ) , and its gradient for 3y is shown as follows:
av(é-'rl)

o5 =0 (%0 -8) o (50 -,

where o’(+) is the derivative of o(-). GraphDAU-EN also con-
tains the parameter a,y. By taking the partial derivative of v(‘*1)
with respect to ay is given as follows:
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