IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

3699

Graph Unrolling Networks: Interpretable Neural
Networks for Graph Signal Denoising

Siheng Chen

Abstract—We propose an interpretable graph neural network
framework to denoise single or multiple noisy graph signals. The
proposed graph unrolling networks expand algorithm unrolling to
the graph domain and provide an interpretation of the architec-
ture design from a signal processing perspective. We unroll an
iterative denoising algorithm by mapping each iteration into a
single network layer where the feed-forward process is equivalent
to iteratively denoising graph signals. We train the graph unrolling
networks through unsupervised learning, where the input noisy
graph signals are used to supervise the networks. By leveraging
the learning ability of neural networks, we adaptively capture
appropriate priors from input noisy graph signals. A core compo-
nent of graph unrolling networks is the edge-weight-sharing graph
convolution operation, which parameterizes each edge weight by a
trainable kernel function whose trainable parameters are shared by
all the edges. The proposed convolution is permutation-equivariant
and can flexibly adjust the edge weights to various graph signals.
We further consider two special cases of this class of networks,
graph unrolling sparse coding (GUSC) and graph unrolling trend
filtering (GUTF), by unrolling sparse coding and trend filtering, re-
spectively. To validate the proposed methods, we conduct extensive
experiments on both real-world datasets and simulated datasets,
and demonstrate that our methods have smaller denoising errors
than conventional denoising algorithms and state-of-the-art graph
neural networks. For denoising a single smooth graph signal, the
normalized mean square error of the proposed networks is around
40% and 60% lower than that of graph Laplacian denoising and
graph wavelets, respectively.

Index Terms—Graph neural networks, algorithm unrolling,
graph signal denoising, graph convolution, weight sharing.

1. INTRODUCTION

ATA today is often generated from diverse sources, in-
cluding social, citation, biological networks and physical
infrastructure [1]. Unlike time-series signals or images, such

Manuscript received June 2, 2020; revised March 3, 2021 and May 13, 2021;
accepted May 25,2021. Date of publication June 11, 2021; date of current version
July 2,2021. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Jarvis Haupt. This work was supported
by Mitsubishi Electric Research Laboratories (MERL). This work was mainly
done while Siheng Chen was working at MERL. (Corresponding author: Siheng
Chen.)

Siheng Chen is with the Shanghai Jiao Tong University and Shang-
hai Artificial Intelligence Laboratory, Shanghai 200240, China (e-mail:
sihengc @sjtu.edu.cn).

Yonina C. Eldar is with the Department of Math and CS, Weizmann Institute
of Science, Rehovot 7610001, Israel (e-mail: yonina.eldar@weizmann.ac.il).

Lingxiao Zhao is with the Heinz College, Carnegie Mellon University, Pittrs-
bugh, PA 15213 USA (e-mail: lingxiao@cmu.edu).

This article has supplementary downloadable material available at https://doi.
org/10.1109/TSP.2021.3087905, provided by the authors.

Digital Object Identifier 10.1109/TSP.2021.3087905

, Member, IEEE, Yonina C. Eldar

, Fellow, IEEE, and Lingxiao Zhao

signals possess complex and irregular structures, which can be
modeled as graphs. Analyzing graph signals requires dealing
with the underlying irregular relationships. Graph signal pro-
cessing generalizes the classical signal processing toolbox to
the graph domain and provides a series of techniques to process
graph signals [1], including graph-based transformations [2],
[3], sampling and recovery of graph signals [4], [S] and graph
topology learning [6]. Graph neural networks provide a powerful
framework to learn from graph signals with graphs as induced
biases [7]. Permeating the benefits of deep learning to the
graph domain, graph convolutional networks and variants have
attained remarkable success in social network analysis [8], point
cloud processing [9] and computer vision [10].

In this work, we consider denoising graph signals [11],[12]. In
classical signal processing, signal denoising is one of the most
ubiquitous tasks [13]. To handle graph signals, there are two
mainstream approaches: graph-regularization-based optimiza-
tion and graph dictionary design. The optimization approach
usually introduces a graph-regularization term that promotes
certain properties of the graph signal and solves a regularized
optimization problem to obtain a denoised solution [12], [14],
[15]. In image denoising, the total variation, which captures
the integral of the absolute gradient of the image [16], [17],
is often used. Minimizing the total variation of an image helps
remove unwanted noise while preserving important details, such
as edges and contours. In graph signal denoising, the regularizers
are often chosen to relate to the graph properties. For example,
a popular choice is a quadratic form of the graph Laplacian,
which captures the second-order difference of a graph signal,
corresponding to a graph smoothness prior [11], [18]. Graph
total variation captures the sparsity of the first-order difference
of a graph signal, reflecting piecewise-constant prior [14], [15],
[19].

In comparison, the graph-dictionary approach aims to recon-
struct graph signals through a predesigned graph dictionary, such
as graph wavelets [2], windowed graph Fourier transforms [20],
and graph frames [21]. These dictionaries are essentially variants
of graph filters. A reconstructed graph signal consists of a
sparse combination of elementary graph signals in a graph dic-
tionary. The combination coefficients can be obtained through
sparse coding algorithms, such as matching pursuit and basis
pursuit [22], [23]. A fast implementation of graph dictionary
are graph filter banks, which use a series of band-pass graph
filters that expands the input graph signal into multiple subband
components [3], [21], [24], [25]. By adjusting the component
in each subband, a graph filter bank can flexibly modify a

1053-587X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9144-0583
https://orcid.org/0000-0003-4358-5304
mailto:sihengc@sjtu.edu.cn
mailto:yonina.eldar@weizmann.ac.il
mailto:lingxiao@cmu.edu
https://doi.org/10.1109/TSP.2021.3087905

3700

graph signal and suppress noise, especially in the high-frequency
band.

A fundamental challenge for both denoising approaches is that
we may not know an appropriate prior on the noiseless graph
signals in practice. It is then hard to either choose an appro-
priate graph-regularization term or design an appropriate graph
dictionary. Furthermore, some graph priors are too complicated
to be precisely described in mathematical terms or may lead to
computationally intensive algorithms.

To solve this issue, it is desirable to learn an appropriate
prior from given graph signals; in other words, the denoising
algorithm should have sufficient flexibility to learn from and
adapt to arbitrary signal priors. Deep neural networks have
demonstrated strong power in learning abstract, yet effective
features from a huge amount of data [26]. As the extension of
neural networks to the graph domain, graph neural networks
have also received a lot of attention and achieved significant
success in social network analysis and geometric data analy-
sis [8], [27]. One mainstream graph neural network architecture
is the graph convolutional network (GCN), which relies on a
layered architecture that consists of trainable graph convolu-
tion operations, followed by pointwise nonlinear functions [8],
[28], [29]. Some variants include graph attention networks [30],
deep graph infomax [31], simple graph convolution [32], and
the graph U-net [33]. These models have shown remarkable
success in graph-based semi-supervised learning [8], [30] and
graph classification tasks [34]. However, these neural network
architectures are typically designed through trial and error. It is
thus hard to explain the design rationale and further improve the
architectures [35], [36].

In this work, we leverage the powerful learning ability of
graph neural networks and combine them with interpretablity
based on a signal processing perspective. Furthermore, most
graph neural networks are developed for supervised-learning
tasks, such node classification [8], link prediction [37] and graph
classification [33]. Those tasks require a large number of ground-
truth labels, which is expensive to obtain. Here we consider an
unsupervised-learning setting, where the networks have to learn
from a few noisy graph signals and the ground-truth noiseless
graph signals are unknown. Through unsupervised learning, we
demonstrate the generalization ability of the proposed graph
neural networks.

Our goal is to develop a framework for graph network denois-
ing by combining the advantages of both conventional graph
signal denoising algorithms and graph neural networks. On the
one hand, we follow the iterative procedures of conventional
denoising algorithms, which provides interpretability and ex-
plicit graph regularization; on the other hand, we parameterize
a few mathematically-designed operations through neural net-
works and train the parameters, which provides flexibility and
learning ability. We bridge between conventional graph signal
denoising algorithms and graph neural networks by using the
powerful framework of algorithm unrolling [38]. It provides a
concrete and systematic connection between iterative algorithms
in signal processing and deep neural networks, and paves the
way to developing interpretable network architectures. Related
unrolling techniques have been successfully applied in many
problem areas, such as sparse coding [39], ultrasound signal

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

processing [35], power system [40] image deblurring [41], [42],
image denoising [43], and super resolution [44].

In this work, we expand algorithm unrolling to the graph
domain. We first propose a general iterative algorithm for graph
signal denoising and then transform it to a graph neural network
through algorithm unrolling, where each iteration is mapped
to a network layer. Compared to conventional denoising algo-
rithms [12], the proposed graph unrolling network is able to
learn a variety of priors from given graph signals by leveraging
deep neural networks. Compared to many other graph neural net-
works [8], the proposed graph unrolling network is interpretable
by following analytical iterative steps. To train graph unrolling
networks, we use single or multiple noisy graph signals and
minimize the difference between the original input, which is the
noisy graph signal, and the network output, which is the denoised
graph signal; in other words, the input noisy measurements are
used to supervise the neural network training. Surprisingly, even
when we train until convergence, the output does not overfit the
noisy input in most cases. The intuition is that the proposed
operations and architectures carry implicit graph regularization
and thus avoid overfitting.

A core component in the proposed graph unrolling networks
is the edge-weight-sharing graph convolution operation. The
proposed graph convolution parameterizes edge weights by a
trainable kernel function, which maps a pair of vertex coordi-
nates in the graph spectral domain to an edge weight. Since the
trainable parameters in the kernel function are shared by all the
edges, this graph convolution has a weight-sharing property. We
also show that it is equivariant to the permutation of vertices. Our
convolution is different from conventional graph filtering [12],
as it includes trainable parameters that can transform a graph
signal from the original graph vertex domain to a feature domain.
It is also different from many trainable graph convolutions [8],
since it adjusts edge weights according to the input graph signals
during training, which makes it flexible to capture complicated
signal priors.

Based on the graph unrolling network framework, we further
propose two specific architectures by unrolling graph sparse
coding and graph trend filtering. These two are typical denois-
ing algorithms based on graph dictionary design and graph-
regularization-based optimization, respectively. We consider
both networks to demonstrate the generalization of the proposed
framework.

To validate the performance of the proposed methods, we
conduct a series of experiments on both simulated and real-world
datasets with Gaussian noise, mixture noise and Bernoulli noise.
We show that graph unrolling networks consistently achieve
better denoising performance than conventional graph signal
denoising algorithms and state-of-the-art graph neural networks
on various types of graph signals and noise models. Even for
denoising a single smooth graph signal, the proposed graph
unrolling networks are around 40% and 60% better than graph
Laplacian denoising [11] and graph wavelets [2], respectively.
This demonstrates that the unrolling approach allows to obtain
improved results over existing methods even using a single
training point.

The main contributions of this work include:

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

e We propose interpretable graph unrolling networks by
unrolling a general iterative algorithm for graph signal
denoising in an unsupervised-learning setting;

® We propose a trainable edge-weight-sharing graph convo-
lution whose trainable parameters are shared across all the
edges. It is equivariant to permutation of vertices;

e We propose two specific network architectures under the
umbrella of graph unrolling networks: graph unrolling
sparse coding and graph unrolling trend filtering; and

® We conduct experiments on both simulated and real-world
data to validate that the proposed denoising methods out-
perform both conventional graph signal denoising methods
and state-of-the-art graph neural networks on various types
of graph signals and noise models.

The rest of the paper is organized as follows: Section II
formulates the graph signal denoising problem and revisits a
few classical denoising methods. Section III proposes an edge-
weight-sharing graph convolution operation, which is a core
operation in the proposed network. Section IV describes the
general framework of graph unrolling networks and provides
two specific architectures: graph sparse coding and graph trend
filtering. Experiments validating the advantages of our methods
are provided in Section V.

II. PROBLEM FORMULATION

In this section, we mathematically formulate the task of graph
signal denoising and review a few classical denoising methods,
which lay the foundation for the proposed methods.

We consider a graph G = (V, &, A), where V = {v,} N, is
the set of vertices, £ = {e,, }_, is the set of undirected edges,
and A € RV* is the graph adjacency matrix, representing con-
nections between vertices. The weight A; ; of an edge from the
ith to the jth vertex characterizes the relation, such as similarity
or dependency, between the corresponding signal values. Using
the graph representation G, a graph signal is defined as a map
that assigns a signal coefficient x,, € R to the vertex v,,. A
graph signal can be written as a length-N vector defined by
CUN]T , where the nth vector element z,, is
indexed by the vertex v,,.

Multiplication between the graph adjacency matrix and a
graph signal, A x, replaces the signal coefficient at each vertex
with the weighted linear combination of the signal coefficients
at the corresponding neighbors. In other words, the graph ad-
jacency matrix enables the value at each vertex shift to its
neighbors; we thus call it a graph shift operator [45]. Some other
choices of a graph shift operator could be the graph Laplacian or
the graph transition matrix [1]. In order for the output norm not to
increase after graph shifting, we normalize the graph adjacency
matrix, A" = A /|Apax(A)|, where Apax(A) denotes the
eigenvalue of A with the largest magnitude. The normalized
matrix has spectral norm || A"™ || = 1. In this paper, we
assume that the all graph shift operators are normalized, that
1S A — Anorm.

Assume that we are given a length- N noisy measurement

t=x+e, (D

where x is the noiseless graph signal and e is noise. The
goal of graph signal denoising is to recover x from t by

X = [a:1 T2

3701

removing the noise. We can further extend this setting to
multiple graph signals. Consider K measurements in a [N X
K matrix, T =[t® @ t0] = X +E, where X =
[x(%™ x(k) x(] is a matrix of K noiseless
graph signals, and E is a N x K matrix that contains indepen-
dent and identically distributed random noise. We assume that
all graph signals in X are generated on the same graph and share
related graph-based properties. We thus aim to recover X from
T by removing the noise E.

Without any prior information on the noiseless graph signals,
it is impossible to split noise from the measurements. Possible
priors include sparsity, graph smoothness and graph piecewise-
smoothness [46]. Here we consider a general graph signal model
in which the graph signal is generated through graph filter-
ing over vertices; that is, x = h %, s = 2521 he A’s, where
s € RY is a base graph signal, which may not have any graph-
related properties, *,, indicates a convolution on the graph vertex
domainand h = [h1 he n.]" € RE are the predesigned
and fixed filter coefficients with L the filter length. Here we con-
sider a typical design of a graph filter, which is a polynomial of
the graph shift; see detailed discussion in Section III. The graph
filtering process modifies a given base graph signal according
to certain patterns of the graph and explicitly regularizes the
output.

Based on this graph signal model, we can remove noise by
solving the following optimization problem:

1
min ||t — x||2 + u(Px) + s),
min 26 = x| + u(Px) +(Qs)

subject to x = h %, s, 2)

where u(-),r(-) € R are additional regularization terms on s
and x respectively and P and Q) are two matrices. The denoised
graph signal is then given by h %, s.

To connect the general graph signal denoising problem (2) to
previous works, we present several special cases of (2).

1) Graph Sparse Coding: Here we consider reconstructing a
noiseless graph signal through graph filtering and regularizing
the graph signal to be sparse. The optimization problem of graph
sparse coding is

1 . €2
sfélﬂgvth*;heA sli3 +a sl - 3)

In this setting, x = h %, s = ZEL:1 heAbs,u(-) =0,7(:) =
all - |3 and P = Q =1. The term ||s||; promotes sparsity of
the base signal and h x, s allows the sparse signal coefficients
to diffuse over the graph. Many denoising algorithms based
on graph filter banks and graph dictionary representations are
variations of graph sparse coding [46]. They design various
graph filters to adjust subbbands’ responses and use matching
pursuit or basis pursuit to solve (3).

2) Graph Laplacian Denoising: Here we consider using the
the second-order difference to regularize a graph signal. The
optimization problem of graph Laplacian denoising is

,{2]11@% %Ht — x5 + ax” Lx, 4
where £ = D — A € RY*¥ s the graph Laplacian matrix with
diagonal degree matrix D; ; = Zj A; ;. Inthissetting,x = h x,

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

3702

s=su(-)=al-||%r(s) =0,P = £2 and Q = L. Here we do
not consider the effect of graph filtering and directly regularize
the graph signal x. The term

2
Px) — HlH: Tox=a Y Agla— ;)%
u(P x) a£2x2 ax’ Lx 04(. - @i —)
i

is well known as the quadratic form of the graph Laplacian,
which has been widely used in graph-based semi-supervised
learning, spectral clustering and graph signal processing [1],
[47], [48]. It captures the second-order difference of a graph
signal by accumulating the pairwise differences between signal
values associated with adjacent vertices. When solving (4), we
regularize x to be smooth [47].

3) Graph Trend Filtering: Here we consider using the first-
order difference to regularize a graph signal. The optimization
problem is

1 2
Jnin o[t — x|l + o f|Ax], ,)
where Aisa M x N graph incidence matrix with M the number
of edges and N the number of nodes. Each row of A corresponds
to an edge. For example, if e; is an edge that connects the jth
vertex to the kth vertex (5 < k), the elements of the ith row of
A are

—V Aj,k:a f:j7
Az‘,z = \/Aj,k7 l=k;

0, otherwise.

(6)

The graph incident matrix measures the first-order difference
and satisfies ATA = L. In this setting x = h x, s = s, u(-) =
all -1, 7(-) =0,P = A and Q = L. The term

uPx) =al|Ax|ly =a > Ajjle -,
(i,5)€€

is known as the graph total variation and is often used in graph
signal denoising. Similar to the graph-Laplacian regularization,
the graph total variation considers pairwise differences. How-
ever, it uses the /1 norm to promote sparsity of the first-order
differences. When solving (5), we encourage x to be piecewise-
constant [14], [15].

Section IV solves the general denoising problem (2) through
algorithm unrolling and proposes a framework for developing
graph unrolling networks. Before that, we first propose a core
component of graph unrolling networks: graph convolution.

III. EDGE-WEIGHT-SHARING GRAPH CONVOLUTION

In this section, we present a graph convolution operation,
which can be trained in end-to-end learning. The proposed
convolution parameterizes each edge weight by a kernel function
whose trainable parameters are shared across all the edges; we
thus call it edge-weight-sharing graph convolution. It will be
used as a building block of the graph unrolling networks in Sec-
tion IV. Here we first revisit the standard graph convolution used
in signal processing, and then equip it with trainable parameters,
suitable for neural networks.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

A. Graph Convolution in Signal Processing

We first revisit 1D cyclic convolution in conventional discrete
signal processing. Letx € R” be a time-series. The output time-
series after cyclic convolutionisy = h x x = 25:1 heClx €
R, where L is the length of a filter, h = [r1 ho "'hL]T €
R’ are the filter coefficients and the cyclic-permutation matrix

0 o -~ 0 1]
10 - 0 0

C=10 1 . 0 0| crN*N
o0 . 1 0]

is a matrix representation of a directed cyclic graph [45]. It
reflects the underlying structure of a finite, periodic discrete
time series. All edges are directed and have the same weight
1, reflecting the causality of a time series. A polynomial of
the cyclic-permutation matrix, ZZL:1 he CY, is a filter in the
time domain. The essence of convolution/filtering is to update
a signal coefficient by weighted averaging of the neighboring
coefficients. The neighbors are defined based on the cyclic-
permutation matrix C where the weights, or the filter coeffi-
cients, are shared across the entire signal.

We can use a mathematical analogy to generalize convolution
from the time domain to the graph domain; that is, we simply
replace the cyclic-permutation matrix C by the graph adjacency
matrix A [1], [45]. Let x € RY be a a graph signal. The output
graph signal is the length N vector

L
y:h*vx:Zthex. @)
(=1

The filter coefficientsh = [ko hy] are usually fixed
and designed based on graph filter banks and graph wavelets [2].
Note that in (7), we remove the Oth order of the graph shift
because an identity mapping can trivially produce an output that
is the same as the input and does not contribute any denoising
effect.

Some variations also consider the vertex-variant graph con-
volution [49], where each filter coefficient h, is expanded to be a
vector, and the edge-variant graph convolution [50], [51], where
each filter coefficient hy is expanded to be a matrix. In this paper,
we consider (7) as our default graph convolution in any non-
neural-network-based model. For example, in the general graph
signal denoising problem (2), the graph convolution follows the
definition in (7). We will use Vh *, x = hx, = zL=1 he Al to
denote the derivative of h *,, x, which will be used in SectionIV.

B. Graph Convolution in Neural Networks

As one of the most successful neural network models, con-
volution neural networks (CNNs) use a sequence of trainable
convolution operations to extract deep features from input data.
The convolution in CNNs follows the same spirit of conventional
convolution. At the same time, it allows feature learning in a
high-dimensional space, which is one of the most important
characteristics of CNNs [26]. A convolution operator usually

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

contains a large number of trainable parameters and allows for
multiple-channel inputs and outputs.

Let X = [x® x® x(1)] € RV*K pe a K-channel
signal; in other words, there are K features at each time stamp.
Let a three-mode tensor H € RZ*5*X" be a collection of train-
able filter coefficients that takes a K -channel signal as input and
outputs a K’-channel signal. Each convolution layer operates as
Y = H« X € RV*K' with &/th output channel

L K
vy =20 Hepw Cx®), ®)
£=1k=1
where £ is the index of the filter length, k is the index of the input
channel, and £’ is the index of the output channel. Each element
in His trainable and is updated in an end-to-end learning process.
This is the standard convolution operation that is widely used
in many applications, such as speech recognition and computer
vision [26]. Comparing to conventional convolution in signal
processing, (8) introduces trainable parameters and the choices
of K, K’ allow feature learning in high-dimensional spaces.
We can extend trainable convolution to the graph domain
by replacing the cyclic-permutation matrix with the graph ad-
jacency matrix. Similar generalizations have been explored
in [52]. Define X = [x® x® x()] € RV*K a5 a K-
channel graph signal; in other words, there are K features at each
vertex. Let a three-mode tensor H € RL*5*K" be a collection
of trainable graph filter coefficients that takes a K -channel
graph signal as input and outputs a K’-channel graph signal.
A trainable graph convolution is Y = H %,, X, with k’th output
channel

L K
Yy =37 Hppw ATx®, ©)

(=1 k=1

where the response Y is a N x K’ matrix, y*) is the k'th
column of Y and Hy ;, ;- is trained during learning. We use the
symbol *,,, instead of *,,, to emphasize that the filter coefficients
in the proposed graph convolution (9) are trained in end-to-end
learning while the filter coefficients in (7) are manually designed.

Graph convolution (9) is analogous to conventional convo-
lution (8); that is, the output signal coefficient at each vertex
is a weighted average of the signal coefficients at neighboring
vertices. At the same time, (9) is a multi-channel extension
of (7): when K = K' =1, (9) degenerates to (7). To make
the notation consistent, when K = K’ = 1, we still use y =
H o, x = S0 Hp 1 AYx, where H € RE*1%1 An equiva-
lent representation of (9) is,

L
Y =) A‘XH®Y,
=1

where H®) is a K x K’ trainable matrix with H,(ﬂ, =Hypw.

Through multiplying with H®, we transform X to a high-
dimensional feature space. After that, we diffuse the new fea-
tures over the vertex domain according to the graph adjacency
matrix A. A special case is when L = 1, in which case (9)

degenerates to

Y =AXH. (10)

3703

This graph convolution is actively used in semi-supervised
vertex classification [8].

C. Weight-Sharing Mechanism

Previously, we obtained graph convolution through a math-
ematical analogy with standard convolution. However, the def-
initions of the neighborhoods are clearly different in the con-
ventional convolution (8) and graph convolution (9). For a
time-series, each shift order ¢ introduces one neighbor for each
time stamp. Given a cyclic convolution of length L, each time
stamp has L distinct neighbors and is associated with L corre-
sponding filter coefficients. On the other hand, for a graph signal,
each graph shift order ¢ might introduce zero, one or multiple
neighbors for each vertex. The number of neighbors depends on
the local graph structure. Given a graph convolution of length
L, those L filter coefficients are insufficient to reflect distinct
weights for all the neighbors. This difference in the neighbor-
hood definition distinguishes (8) and (9) since a vertex cannot
adjust the contribution from each of its neighbors individually.
Here we propose a new graph convolution to fill this gap.

To make the graph convolution more flexible and powerful,
we consider updating the edge weights in the given graph
adjacency matrix. In this way, each vertex will have different
impact on its neighbors, just like in conventional convolution. A
straightforward approach is to introduce a trainable mask matrix
WRK) ¢ RNXN expanding a single filter coefficient Hy x 4
in (9) to a matrix of coefficients [51]. We then use WRE) o AL
to replace Hy 1, &/ A% in (9), so that we make each edge weight
trainable. However, when the graph size, IV, is large, training
O(N?) parameters in ¥(“%) is computationally difficult.

To reduce the number of training parameters, we allow all
the edges to share the same set of weights, which is similar to
the weight-sharing mechanism in conventional convolution [26].
We aim to design a kernel function to parameterize each edge
weight. For example, for 2D convolution in image processing,
the key is to use a local kernel function to map the relative
difference between two pixel coordinates to a weight. For graphs,
we assign a coordinate to each vertex and use a local kernel
function to map the relative difference between two vertex
coordinates to an edge weight.

The vertex coordinates can be obtained through the
graph Fourier transform [45]. Let the eigendecomposition
of the graph adjacency matrix be A =V AVT, where A =
diag(A1,...,An) is a diagonal matrix of N eigenvalues and
V is the matrix of corresponding eigenvectors. The eigenval-
ues of A represent the graph frequencies and the eigenvec-
tors form the graph Fourier basis. The coordinate of the ith
vertex is the row vector of the truncated graph Fourier basis,
pi=[Vii Vi Vi,p]T € RP, where p < N is a hyper-
parameter. Through the graph Fourier transform, we map the
information of each vertex from the graph vertex domain to the
graph spectral domain.

Next, we assume that the edge weight between the ¢th and the
jth vertices is parameterized by a kernel function:

Vij =vw ([P

-pi]) €R, (In

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

3704

where 1, (+) is a trainable function, which can be implemented
by a multilayer perceptron (MLP) [26]. Given a pair of vertex
coordinates, we convert their relative coordinate difference to a
scalar that reflects the corresponding edge weight. In 2D convo-
lution for images, the convolution kernel function is independent
of the absolute pixel coordinates. Specifically, when we set the
origin of the kernel function to a pixel, the weight from each of
the pixel’s neighbors depends on the relative coordinate differ-
ence between a neighboring pixel and the origin. Similarly, here
we use the relative coordinate difference as the input because
it allows the kernel function v,,(+) to be irreverent to the exact
coordinate and to be applied to arbitrary edges.

Note that a few previous works also consider learning edge
weights. For example, EdgeNet considers each edge weight as
an independent trainable parameter [51]. However, the number
of trainable parameters depends on the graph size, which is
computationally expensive. Graph attention networks learn edge
weights through the attention mechanism. Each edge weight
is parameterized by a kernel function, whose inputs are graph
signals [30]. Here we consider a different parameterization: the
input of a kernel function is the difference between a pair of
vertex coordinates, which relies on the graph structure and is
independent of the graph signals. This approach leverages the
graph spectral information, which fuses both global and local
information on graphs. The number of trainable parameters
depends on the kernel function and is independent of the graph
size.

D. Edge-Weight-Sharing Graph Convolution

We finally apply the convolution kernel function (11) and
propose the edge-weight-sharing graph convolution (EWS-GC)
as Y = H x, X with kth output channel

_ii((0,k,K) @AZ)

(=1 k=1

eRY, (12

where the response Y is a N x K’ matrix, U(6:5F) ¢ RN*N jg

an edge-weight matrix whose elements are trainable and follow
from (11). We use the symbol #,, instead of *,,, to emphasize
that (9) works with trainable filter coefficients, yet fixed edge
weights; while in (12), edge weights are included in graph filter
coefficients, which are all trainable. We stress that the Oth order
of the graph shift has been removed in (12) to avoid the resulting
network to learn an identity mapping.

Here the graph filter coefficients form a five-mode tensor
H e REKKNAN with By g0y = U5, where L is
the filter length, K is the number of input channels K' is the
number of output channels and NV is the number of nodes. An
intuitive way to consider this filter tensor is that we stack the
graph adjacency matrix A € RV*¥ for LK K' times; at each
time, we are allowed to vary the nonzero edge weights in A to
enrich the filtering ability. To implement this tensor of graph
filter coefficients, for an edge that connects the 7th and the jth
nodes, we input the difference between two graph vertex coordi-
nates p; € R? and p; € R?, the MLP (11) would map p; — p;
to LK K' graph filter coefficients, whose (¢, k, k')th element
is then Hy j i ;. Since there are maximally N? edges, the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

P3 Ps P9

Graph vertex domain Graph spectral domain

(a) Pixel coordinates. (b) Vertex coordinates.

Fig. 1. Vertex coordinates and edge weights in images and graphs. Plot (a)
shows a 2D image, where each pixel naturally is a coordinate on a 2D lattice. A
weight in a 2D convolution is determined by the relative difference between a
pair of pixel coordinates. Plot (b) shows a irregular graph, where each vertex can
be mapped to a vertex coordinate in the graph spectral domain through the graph
Fourier transform (GFT). An edge weight in the proposed graph convolution is
determined by the relative difference between a pair of vertex coordinates (11).

maximum number of filter coefficients are LK K'N?2. Through
reshaping, we obtain the tensor H. Note that i) a single MLP
is shared by all the edges, which is the essence of the edge-
weight-sharing mechanism; ii) the graph structure is usually
sparse and we do not need to go through all the N2 entries in the
graph adjacency matrix. We only need to compute the entries
whose original edge weights in the graph adjacency matrix
A are nonzero; and iii) when the number of input and output
channels are one; that is, K = K’ = 1, the number of filter
coefficients for each edge is simply the filter length L, which
is the same with the conventional graph filters (7). Since we
preserve the connectivity pattern in the graph adjacency matrix,
the proposed edge-weight-sharing graph convolution (12) still
relies on the given graph structure to propagate information, but
has flexibility to adjust the edge weights.

The convolution (12) promotes weight sharing as all edge
weights adopt the same kernel function with shared training
parameters; see Fig. 1. Specifically, we can represent a vertex
by its coordinate in the graph spectral domain. Since the vertex
coordinate is continuous, the proposed graph convolution kernel
function can be mathematically rewritten in the form of a con-
tinuous convolution. Let us represent K graph signals as a train
of delta functions supported on the graph spectral space; that is,
s(p) = Zj 10(p — pj)x;, wherex; € R andp; € RPisthe
jthvertex’s K signal coefficients and the vertex coordinate in the
graph spectral space, respectively. Let a continuous convolution
be 1., (+) : R? — R. The response is then

/T L Vulp =TSt

/ vulp

= > Yu(p—pj)x;,
JENp
where A, is the neighborhood of a vertex coordinate p.
For instance, the signal output at the ith vertex is y(p;) =
E;\rzl 1w (P — Pj) Aij X, where the neighborhood of the ith
vertex is specified by the graph adjacency matrix. We thus can
see that the proposed graph convolution can be reformulated as
a continuous convolution in the graph spectral domain. Since
a continuous convolution has the shift-invariant property, the

y(p) =

N
25 T — p;)x;dr
j=1

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

proposed edge-weight-sharing graph convolution naturally car-
ries the weight-sharing mechanism. For example, in Fig. 1, the
weight between the 4th and the 7th pixels is equal to the weight
between the 5th and the 8th pixels because the relative pixel
coordinates are the same; thatis, ¥, (ps — P7) = ¥w (D5 — Ps)-
We can also present (12) from another perspective. Let £
be the edge set associated with the polynomial of the graph
adjacency matrix A“. For an arbitrary edge e = (v;,v;) € £,
0. is defined as a N x N indicating matrix whose elements
are (0¢)i j = Af 1y when e = (vy,vy) and 0, otherwise. The
subscript e indicates an edge and J, is a one-hot matrix, only
activating the element specified by the edge e. This edge is
associated with a K x K trainable matrix H®) with elements
H;:?« = Hy x,k,4,;- The equivalent representation of (12) is!

L
Y = Z Z 5. XH®,

(=1 ec£()

13)

where A? = > ece Oe. The first summation considers all edge
sets and the second summation considers all edges. We parse
a graph to a collection of edges and the effect of each edge is
reflected through the corresponding trainable matrix H).

The edge-weight-sharing graph convolution (12) is a specific
type of edge-variant graph convolution, which leverages the
weight-sharing mechanism to reduce the number of trainable
parameters. Indeed, (9) is a special case of (12) when all elements
in each ¥(©#*) have the same value. Similarly, (10) is a special
case of (9) when the filter length L = 1.

We can apply the proposed edge-weight-sharing graph con-
volution (12) as a substitute to conventional graph filtering in
the denoising problem (2). In the next section, we use (12)
as a building block for graph neural networks. Its associated
parameters will be trained in an end-to-end learning process.

Finally, we consider the permutation-equivariant property of
the edge-weight-sharing graph convolution (13). Let J € RV*V
be a permutation matrix. After permutation, a graph adjacency
matrix A € RV*Y and a K-channel graph signal X € RV*K
become J A JT and J X, respectively.

Theorem 1: The edge-weight-sharing graph convolution (13)
is permutation equivariant. Suppose that a kernel function), (-)
is fixed and given. Then,

J(H %, X) =H %, (JX).

Proof: We first show the effect of permutation on the trainable
edge-weight matrix (11). When we permute the graph structure,
the vertex coordinates permute accordingly. Therefore, after per-
mutation, a edge-weight matrix U(“-%*) becomes JW(&:F-F) J7T
The kth channel of H x, (J X) becomes

(H %, (JX))®
L K
_ ((FwR99T) @ (3497)") ax ¥

(=1 k=1

"Equation (13) suggests a randomized implementation of the edge-weight-
sharing graph convolution. Instead of using the entire edge sets, we randomly
sample a subset of edges and approximate the exact value of (13) as ¥ =~

v e X H(®) . The edge set M Cc EMUED ... UEW) is obtained
through edge sampling, which can be implemented via random walks [53].

3705

L K
_ JZZ(Ek,k’)QAE)X(k)
=1

k=1
= (J(H#, X)W,

which is the the kth channel of J(H #, X). |

The permutation-equivariant property is important because it
ensures that reordering of the vertices will not effect the training
of the edge-weight-sharing graph convolution. With the new
graph convolution operation, we now propose an interpretable
framework for designing graph neural networks.

IV. GRAPH UNROLLING NETWORKS

In Section II, we mathematically formulated the task of
graph signal denoising (2). In this section, we aim to solve (2)
through algorithm unrolling and propose a general framework
for developing graph unrolling networks. The core strategy is
to follow iterative algorithms and then use the trainable edge-
weight-sharing graph convolution proposed in Section III to
substitute fixed graph filtering. We further consider two specific
architectures of graph unrolling networks by unrolling graph
sparse coding and graph trend filtering.

A. General Framework

Consider a general iterative algorithm to solve the graph signal
denoising problem (2) based on the half-quadratic splitting
algorithm. The basic idea is to perform variable-splitting and
then alternating minimization on the penalty function [41], [54].

Introduce two auxiliary variables y = P x and z = Qs and
then reformulate (2) as

min 2 6 — I+ u(y) + r(s),

SERN 2
subjecttox =hx,s, y=Px, z=Qs.

The penalty function is

1
J(x,8,y.2) = - ||t—x||§+u<y>+r<z>+ﬂ Ix—h %, s

||y Px ||2+ Iz — Qs

where pu1, po, (13 are approprlate step sizes. We alternately min-
imize J over x, s, ¥, z, leading to the following updates:

xeﬁ(ulh*vs—i—t—i—ngTy), (14a)
seé(ulh*ijwg QTz), (14b)
y argmin 2 |y ~Px|ls tuly), (140
zeargmin% |z — Qsll5 +7(2), (14d)
where
P = (I+p I+, PTP)!
and

L L -1
— (M Zhg, Af’zm Al s QT Q))

=1 (=1

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

3706

Intuitively, (14a) denoises by merging information from the
original measurements t, filtered signals h *,, s and the auxiliary
variable y; (14b) generates a base graph signal through graph
deconvolution; and (14c) and (14d) solve two proximal functions
with regularization u(-) and r(-), respectively.

In practice, the filter generating graph signals in (14) might be
unknown. Instead of solving the original optimization problem
exactly, our unrolling network leverages the learning ability to
capture complicated filters. To unroll the iteration steps (14),
we consider two major substitutions. First, we replace the fixed
graph convolution by the trainable edge-weight-sharing graph
convolution (12). Second, we replace the sub-optimization prob-
lems in (14c) and (14d) by a trainable neural network. Note that
because of the above substitutions, while (14) inspires (15), (15)
might not guarantee the optimal solution to (2). A unrolling layer
in our graph unrolling network is then,

X Axgs+Bx, t+Cx, (PTy), (15a)
s+ Dx,x+Ex, (Q"z), (15b)
y « NN, (Px), (15¢)
z < NN, (Qs), (15d)

where Ax,, Bx,, Cx,, D%,, and Ex, are individual edge-
weight-sharing graph convolutions with filter coefficients that
are trainable parameters, and NN, (-) and NN,.(-) are two
neural networks, which involve trainable parameters. Intu-
itively, (15a) and (15b) are neural-network implementations
of (14a) and (14b), respectively, replacing fixed graph convo-
Iutions hx, by trainable edge-weight-sharing graph convolu-
tions (12); and (15¢) and (15d) are neural-network implemen-
tations of the proximal functions (14c) and (14d), respectively,
using neural networks to solve sub-optimization problems; see
similar substitutions in [35], [39], [41], [42]. The implementa-
tions of (15¢) and (15d) depend on specific regularization terms,
u(+) and r(-). For some wu(-),7(-), we might end up with an
analytical form for (15¢) and (15d). We will show two examples
in Sections I'V-B and I'V-C.

One characteristic of neural networks is to allow feature
learning in a high-dimensional space. Instead of sticking to a
single channel, we can easily extend (15) to handle multiple
input noisy graph signals and enable multiple-channel feature
learning. The corresponding bth unrolling layer of multi-channel
graph signals is

X® Ay SE 1B s, T+ C s, (PT Y<b*1>) ,
SO ¢« Dx, XO 4E %, (QT z<b-1>) :
Y® NN, (P X) :

7(® NN, (Q s) , (16)

where T € RV*K is a matrix of K noisy graph signals, yARNS
RV %4 is the intermediate feature matrix, and S®) ¢ RNxD®
is the output matrix of the bth computational block. The feature
dimensions d®), D(®) are hyperparameters of the network; see
a graph unrolling layer in Fig. 2.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

20— @ —

Fig. 2. A generic graph unrolling layer for graph signal denoising (16),
which is one computational block in a graph unrolling network. Given the raw
measurement T', the proposed unrolling layer updates Z, S, and Y.

To build a complete network architecture, we initialize
7 80 y(©) (o be all-zero matrices and sequentially stack
B unrolling layers (16). This is hypothetically equivalent to
running the iteration steps (14) for B times. Through optimizing
trainable parameters in edge-weight-sharing graph convolutions
and two sub-neural-networks, we obtain the denoised output
X=X®,

Here the trainable parameters come from two parts, including
filter coefficients in each edge-weight-sharing graph convolution
and the parameters in the neural networks (15c) and (15d).
Through optimizing those parameters, we can capture compli-
cated priors in the original graph signals in a data-driven manner.
To train those parameters, we consider the loss function

~ 2
loss = |If (D) =TI = |R -7 . a7

where | - || is the Frobenius norm, X is the output of the
proposed network f(-), and T are the original measurements.
We then use the stochastic gradient descent to minimize the loss
and optimize this network [26]. The noisy measurement T is
used as both input and supervision of the network.

Hypothetically, the loss could be zero when a neural network
is trained to be an identity mapping. In other words, the denoised
output is the same as the input noisy measurements. However,
this does not happen since the building block of a graph unrolling
network is an edge-weight-sharing graph convolution, where the
Oth order of the graph shift has been removed. Furthermore,
this convolution leverages irregular graph structures and injects
implicit graph regularization to the network architecture and the
overall optimization problem.

Our algorithm unrolling here is rooted in the half-quadratic
splitting algorithm. In practice, our optimization problem can be
solved using various alternative iterative algorithms, which may
lead to distinct network architectures. No matter what iterative
algorithm is used, the core strategy is to follow the iterative steps
and use a trainable edge-weight-sharing graph convolution to
substitute fixed graph filtering. We call a network architecture
that follows this strategy a graph unrolling network (GUN).

Compared to conventional graph signal denoising algo-
rithms [11], [12], the proposed GUN is able to learn a variety of
complicated signal priors from given graph signals by leveraging
the learning ability of deep neural networks. We emphasize that
our signal model assumes that the graph signal is generated from
graph filtering, but empirically this graph filter is trained through
the end-to-end learning. Compared to many generic graph neural

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

networks [8], the proposed GUN is interpretable. Here inter-
pretability means that a method is developed by modeling the
physical processes underlying the problem or capturing prior
domain knowledge. The proposed general iterative algorithm of
solving the graph signal denoising problem (14) is interpretable
because i) the iteration procedure minimizes an explicit objective
function; and ii) the objective function models the potential
signal priors through graph filtering and graph regularization
terms. Similarly to many other unrolling methods, our network
layers naturally inherit interpretability from the iteration pro-
cedure by following analytical iterative steps. We unroll an
iterative algorithm for solving (2) into a graph neural network by
mapping each iteration into a single network layer and stacking
multiple layers together. In this manner, the proposed GUN can
be naturally interpreted as a parameter optimized algorithm; see
other examples of interpretable unrolling networks in the review
paper [38].

In the following, we present two special cases of GUN, which
are obtained through unrolling graph sparse coding and graph
trend filtering, respectively. Graph sparse coding is a typical
graph-dictionary-based denoising algorithm, where we first de-
sign a graph dictionary based on a series of graph filters and then
select a few elementary graph signals from a graph dictionary to
approximate a noisy graph signal [2], [20], [21]. The unrolling
version of graph sparse coding essentially combines these two
steps in an end-to-end learning process and uses an edge-weight-
sharing graph convolution to substitute the predesigned graph
dictionary; we call this architecture a graph unrolling sparse
coding (GUSC). On the other hand, graph trend filtering is a
typical graph-regularization-based denoising algorithm, where
we first formulate an optimization problem with graph total
variation and then solve this optimization problem to denoise
graph signals [14], [15]. The unrolling version of graph trend
filtering uses a trainable edge-weight-sharing graph convolution
to provide an implicit graph regularization and uses end-to-end
learning to optimize the trainable parameters; this resulting
architecture is called a graph unrolling trend filtering (GUTF).

Comparing these two methods, graph trend filtering is de-
signed for piecewise-constant and piecewise-smooth graph sig-
nals, so that GUTF is more regularized. On the other hand,
graph sparse coding works for a broader class of graph signals,
resulting in GUSC being more general, but typically requires
more training data. In the experiments, we will see that GUTF
achieves better denoising performance than GUSC for simulated
data, including smooth graph signals, piecewise-constant graph
signals, and piecewise-smooth graph signals. When the number
of graph signals increases, the gap between GUTF and GUSC
decreases. On the other hand, GUSC achieves better denoising
performance than GUTF for real-world data, which has more
complicated structure than simulated data.

B. Graph Sparse Coding

Asdiscussed in Section II-A 1, graph sparse coding (3) consid-
ers reconstructing noiseless graph signals through graph filtering
with sparse base graph signals. In this setting, x = h %, s =
S heAls,u(-)=0,7()=a -1 and P =Q =1.

3707

Algorithm 1: Graph Unrolling Sparse Coding (GUSC).
Input T matrix of measurements
A graph adjacency matrix
B number of network layers
« hyperparameter

Output X matrix of denoised graph signals
Function GSC(T, A, B, o)
S0
{pi}icy + eigendecomposition of A
forb=1:B

AJB,]D), Eé,k,k,’i,j < MLP([pJ — pz])
X® e Ax, SEY 4B «, T,
S® D xy X 4E x, 207D,
7 S, (S®)
end
He x.%,i,; < MLP([p; — pi))
X« Hx, 8P
minimize ||X — T||% and update all the
parameters
return X

We can plug in those specifications to (15) and obtain a
customized graph unrolling network. We consider two mod-
ifications. First, we remove the terms related to y because
u(y) = 0andy should not effect optimization anymore. Second,
we replace (15d) by a soft-thresholding function because it is
the analytical solution of (14d) [55]. We finally obtain the bth
unrolling layer customized for graph sparse coding as

X® Ak, SO 4B x, T,
SO Dy XO 4E 5, 207D,
7Z® s, (s),

where « is a hyperparameter and S.(-) is a soft-thresholding
function,

r, —a, ifx; > —aq,
[Sa(x)]; =<0, if —a<z; <a,
r;+a, ifz; <-—a.

All the training parameters are involved in the edge-weight-
sharing graph convolutions, Ax,, Bx,, Cx,, D%, and Ex,. The
training paradigm follows the general graph unrolling network;
see its overall implemetation in Algorithm 1. The hyperparame-
ter « in the soft-thresholding function could be trainable. In the
experiments, we find that the performance of a fixed « is slightly
better than a trainable «; see Section V-B.

C. Graph Trend Filtering

As discussed in Section II-A3, graph trend filtering (5) in-
troduces a graph total variation term to regularize the sparsity
of the first-order difference of a graph signal. In this case,
x=hx,s=s,u(-)=qaf ||1,7(")=0,P=Aand Q =1.

Plugging these specifications into (15) leads to a customized
graph unrolling network. We consider three modifications. First,
we remove the terms related to z because (z) = 0. Second, we

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

3708

Algorithm 2: Graph Unrolling Trend Filtering (GUTF).

T matrix of measurements
A graph adjacency matrix
B number of network layers
a hyperparameter
Output X matrix of denoised graph signals
Function GTF(T, A, B, «)
X© o0
Obtain A from A via (6)
{pi }iey + eigendecomposition of A
forb=1:B
Be.kksigs Conrij < MLP([pj — pi])
Y® 5, (AXEY)
X® B, T4 Cx, (ATY®),
end
X « X®)
minimize ||)A(— T||% and update all the weights
return X

Input

remove the terms related to s because x = s and there is no need
to update both. Third, we replace (15c) by a soft-thresholding
function which is the analytical solution of (14¢) [55]. We finally
obtain the bth unrolling layer customized for graph trend filtering
to be

XO® B, T+Cx, (AT y(o-1))

Y® S, (AX<’>)),

where S.(-) is a soft-thresholding function. All the training
parameters are involved in the edge-weight-sharing graph con-
volutions, Bx, and Cx,. The training paradigm follows the
general graph unrolling network; see its overall implemetation
in Algorithm 2.

Comparing GUTF and GUSC, both follow from the gen-
eral graph unrolling framework and are based on the proposed
edge-weight-sharing graph convolution. The main difference is
that GUTF involves a vertex-edge dual representation, where
the vertex-based features and edge-based features are converted
through the graph incident matrix A. This design is poten-
tially better in capturing fast transitions over edges, leading to
improved denoising performance on piecewise-constant graph
signals. GUSC heavily relies on the learning ability of the
edge-weight-sharing graph convolution, which is more general,
but needs more training data than GUTFE.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed graph unrolling
networks on denoising both simulated and real-world graph
signals. Our experiments show that the proposed graph un-
rolling networks consistently achieve better denoising perfor-
mance than conventional graph signal denoising algorithms and
state-of-the-art graph neural networks on both simulated and
real-world graph signals under Gaussian noise, mixture noise
and Bernoulli noise.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

A. Experimental Setup

Configurations. For GUSC and GUTF, we set the number of
epochs for stochastic gradient descent to be 5000, the number
of network layers B = 1, feature dimension d® = p®) = 64,
the threshold in the soft-thresholding function oo = 0.05 in all
the cases. To make a fair comparison, we use the same network
setting and training paradigm for graph unrolling networks to
train other networks.

Baselines. We consider three classes of competitive denois-
ing algorithms: graph-regularized optimizations, graph filter
banks and neural networks. For graph-regularized optimizations,
we select graph Laplacian denoising (GLD) [11] and graph
trend filtering (GTF) [14]. Both algorithms introduce graph-
regularization terms to the optimization problem. For graph
filter banks, we consider graph Fourier transform (GFT) [11],
spectral graph wavelet transform (SGWT) [2], graph quadrature-
mirror-filters (QMF) [24] and critically sampled filter banks
(CSFB) [56]. In each case, we obtain the corresponding graph
dictionary and use basis pursuit denoising [55] to reconstruct
graph signals from noisy inputs. As competitive neural networks,
we consider a multilayer perceptron with three fully-connected
layers [26], graph convolution networks (GCN) with three graph
convolution layers [8], graph attention networks (GAT) with
one graph attention layer [30] and graph autoencoder (GAE)
with three graph convolution layers and one kron-reduction
pooling layer [57]. In many supervised-learning tasks, previous
works realized that deep graph neural networks with too many
layers can suffer from oversmoothing and hurt the overall per-
formance [32], [58]. We also find that more layers do not lead to
better denoising performance even with residual connections.
We tune hyperparameters for each denoising algorithm and
report the best performances.

Graph signals. We consider three types of simulated graph
signals as well as three types of real-world graph signals.
For simulations, we consider smooth, piecewise-constant and
piecewise-smooth graph signals; for real-world scenarios, we
consider temperature data supported on the U.S weather stations,
traffic data based on the NYC street networks and community
memberships based on citation networks. The details will be
elaborated in each case.

Noise models. We consider three types of noise to validate
the denoising algorithms: Gaussian noise, the mixture noise
and Bernoulli noise. In the measurement model (1), we use
a length-N vector e to denote noise. For Gaussian noise,
each element of e follows a Gaussian distribution with zero
mean; that is, e; ~ N(0,0?). The default standard deviation
is o = 0.5. For the mixure noise, each element of e follows
a mixture of Gaussian distribution and Laplace distribution;
that is, e; ~ N(0,02) + Laplace(0,b). By default, we set
o = 0.2,b = 0.2. For binary graph signals, we consider adding
Bernoulli noise [59]; that is, we randomly select a subset of
vertices and flip the associated binary values. Note that (i) the
proposed graph unrolling network is not designed for this noise
model, but surprisingly, it still performs well; (ii) we change
the loss function (17) to the cross-entropy loss during training;
and (iii) this denoising task is essentially a classification task,
identifying whether the binary value at each vertex is flipped.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

3709

TABLE I
DENOISING ERROR OF THREE TYPES OF SIMULATED GRAPH SIGNALS WITH GAUSSIAN NOISE

SMOOTH PIECEWISE-CONSTANT PIECEWISE-SMOOTH

METHOD 1 10 100 1000 1 10 100 1000 1 10 100 1000

BASELINE | 0.563 0.517 0.498 0.5 0.563 0.516 0.498 0.5 0.562 0.517 0.498 0.5
GLD 0.078 0.076 0.071 0.07 0.045 0.045 0.047 0.042 0.114 0.111 0.143 0.13
GTF 0.098 0.1 0.093 0.094 0.039 0.043 0.045 0.039 0.135 0.115 0.104 0.111
GFT 0.159 0.125 0.111 0.112 0.078 0.077 0.082 0.077 | 0.162 0.157 0.185 0.171
SGWT 0.117 0.128 0.107 0.110 0.087 0.086 0.079 0.072 0.172 0.146 0.153 0.165
QMF 0.319 0.322 0.327 0.334 0.373 0.369 0.349 0.346 0.361 0.332 0.326 0.343
CSFB 0.106 0.101 0.069 0.075 0.101 0.094 0.104 0.097 | 0.173 0.163 0.231 0.197
MLP 0.373 0.189 0.079 0.032 0.182 0.137 0.04 0.014 | 0.335 0.209 0.089 0.037
GCN 0.067 0.058 0.039 0.037 | 0.048 0.039 0.028 0.024 | 0.102 0.094 0.118 0.074
GAT 0.062 0.057 0.032 0.028 | 0.034 0.05 0.023 0.018 0.095 0.076 0.045 0.033
GUSC 0.049 0.053 0.029 0.023 | 0.036 0.04 0.024 0.014 0.074 0.069 0.031 0.022
GUTF 0.045 0.046 0.027 0.023 | 0.035 0.039 0.023 0.011 | 0.066 0.064 0.031 0.022

Evaluation metrics. To evaluate the denoising performance,
the default metric is the normalized mean square error (NMSE);
that is, NMSE = ||X — x||2/||x]|3, where x € RY is a noiseless
graph signal, and X is a denoised graph signal. A smaller value
of NMSE indicates a better denoising performance. We also
consider the normalized mean absolute error (NMAE); that is,
NMAE = [— x|1/[Ix]s.

For binary graph signals, we evaluate by the error rate (ER),
ER = vazl 1(x; # Z;)/N, where x; and T; are the ith element
in x, X, respectively. A smaller value of ER indicates better
denoising performance. We also consider the F1 score, which is
the harmonic mean of the precision and recall. A higher value
of F1 indicates a better denoising performance.

B. Simulation Validation

Smooth graph signals. We simulate a random geometric
graph, by generating an undirected graph with 500 vertices
randomly sampled from the unit square. Two vertices are con-
nected when their Euclidean distance is less than a threshold. To
generate a smooth graph signal, we consider bandlimited graph
signals [4]. We conduct the eigendecomposition of the graph
Laplacian matrix and ascendingly order the eigenvalues. The
first few eigenvectors span a subspace of smooth graph signals,
called a bandlimited space [4]. We use a linear combination of
the first few eigenvectors to obtain a smooth graph signal; see
an illustration in Appendix.

We denoise four different numbers of graph signals: 1, 10, 100
and 1000. We expect that graph unrolling networks will provide
better performances with more samples. Columns 2 — 5 in Ta-
ble T compares the denoising performances of smooth graph
signals under Gaussian noise. We see that (i) the proposed
two graph unrolling networks significantly outperforms all the
other competitive methods. For denoising a single graph signal,
GUTEF is around 40% better than the standard graph Laplacian
denoising; for denoising 1000 graph signal, GUTF is around
70% better than the standard graph Laplacian denoising! The
intuition is that by following the analytical iterative steps and
using the edge-weight-sharing graph convolution, the proposed
unrolling network carries an implicit regularization, allowing

it to learn graph signal prior with a few examples; see similar
phenomenons in image restoration [60], [61]. (ii) among the con-
ventional graph signal denoising algorithms, graph Laplacian
denoising achieves the best performances; (iii) neural-network-
based methods overall outperform conventional graph signal
denoising algorithms. Surprisingly, even training with a single
graph signal, most neural networks still provide excellent de-
noising performance; and (iv) as standard neural networks, MLP
performs poorly when training samples are few and gets better
when the number of training samples is increased, which makes
sense because MLP does not leverage any graph structure. This
shows that we cannot expect an arbitrary neural network without
dedicated design to work well for graph signal denoising.

Piecewise-constant graph signals. We next simulate
piecewise-constant graph signals on a random geometric graph.
We first randomly partition the graph into a fixed number of
connected and mutually exclusive subgraphs with roughly the
same size. Within each subgraph, for each graph signal, we
randomly generate a constant value over all vertices in the
subgraph. The generated graph signal is piecewise-constant and
only changing at the boundary between graph partitions; see an
example in Appendix.

Again, we denoise four different numbers of graph signals:
1,10,100 and 1000. Columns 6 — 9 Table I compare the de-
noising performances of piecewise-constant graph signals under
Gaussian noise. Similar to smooth graph signals, we see that (i)
the proposed two graph unrolling networks still significantly
outperform all the other competitive methods; ii) among the
conventional graph signal denoising algorithms, graph trend fil-
tering achieves the best performances as its graph regularization
promotes piecewise-constant graph signals; and (iii) MLP fails
with few training samples.

Piecewise-smooth graph signals. We simulate piecewise-
smooth graph signals on a random geometric graph. Similar
to piecewise-constant signals, we first partition the graph into
mutually exclusive subgraphs. Within each subgraph we gen-
erate smoothing signals based on the first-/ eigenvectors of
the subgraph’s Laplacian matrix, using the same approach as
generating smooth graph signals. The combined signal over the
whole graph is piecewise-smooth.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

3710

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

TABLE II
DENOISING ERROR OF REAL-WORLD DATA WITH MIXTURE NOISE (GAUSSIAN AND LAPLACE)

TEMPERATURE TRAFFIC CORA

METRIC NMSE NMSE ERROR RATE F1 SCORE

METHOD 1 365 1 24 1 7 1 7
BASELINE 0.34 0.377 0.392 0.377 0.095 0.099 | 0.829 0.695
GLD 0.045 0.024 0.248 0.255 0.055 0.032 | 0.609 0.793
GTF 0.079 0.036 0.202 0.176 0.06 0.039 | 0.484 0.532
GFT 0.065 0.053 0.257 0.231 0.079 0.053 | 0.459 0.489
SGWT 0.069 0.11 0.184 0.162 0.074 0.073 | 0.551 0.569
QMF 0.26 0.31 0.18 0.185 0.087 0.087 0.51 0.512
CSFB 0.07 0.061 0.344 0.36 0.129 0.143 0.43 0.437
MLP 0.142 0.027 0.31 0.169 0.095 0.072 | 0.829 0.695
GCN 0.041 0.033 0.293 0.279 0.042 0.025 | 0.903 0.901
GAT 0.044 0.031 0.267 0.264 0.041 0.032 | 0.909 0.873
GUSC 0.037 0.016 || 0.324 0.178 0.04 0.024 | 091 0.906
GUTF 0.053 0.019 0.266 0.158 || 0.041 0.03 0.906 0.885

Columns 10 — 12 in Table I compare the denoising per-
formances of piecewise-smooth graph signals under Gaussian
noise. Similar to smooth graph signals, we see that (i) the
proposed two graph unrolling networks still significantly out-
perform all the other competitive methods; ii) among the con-
ventional graph signal denoising algorithms, graph trend filter-
ing achieves the best performances as its graph regularization
promotes piecewise-constant graph signals; and (iii) MLP fails
with few training samples.

C. Real-World Examples

U.S. temperature data. We consider 150 weather stations
in the United States that record their local temperatures [45].
Each weather station has 365 days of recordings (one record-
ing per day), for a total of 54 750 measurements. The graph
representing these weather stations is obtained by measuring
the geodesic distance between each pair of weather stations.
The vertices are represented by an 8-nearest neighbor graph,
in which vertices represent weather stations, and each station
is connected to the eight closest weather stations. Each graph
signal is the daily temperature values recorded in each weather
station. We have 365 graph signals in total. Those graph sig-
nals are dependent, yet different: they are smooth over the
underlying graph as neighboring weather stations record similar
temperatures.

We denoise two different numbers of graph signals: 1 and 365.
Columns 2 — 3 in Table IT compare the denoising performances
under the mixture noise. We see that i) the proposed GUSC
significantly outperforms all the other competitive methods in
terms of NMSE; ii) the proposed GUTF does not work well for a
single graph signal, but performs well when more training data is
given; and iii) The graph Laplacian denoising achieves the best
performance among the conventional graph signal denoising
methods. The reason behind that is that the temperature data is
smooth over the sensor network and the graph Laplacian-based
prior nicely captures the smooth signal prior.

NYC traffic data. We consider the taxi-pickup activity in
Manhattan on January 1th, 2014. This is the Manhattan street

network with 2552 intersections and 3153 road segments. We
model each intersection as a vertex and each road segment as an
edge. We model the taxi-pickup positions as signals supported on
the Manhattan street network. We project each taxi-pickup to its
nearest intersection, and then count the number of taxi-pickups
at each intersection. Each graph signal is the hourly number
of taxi-pickups recorded in each intersection. We consider 24
graph signals for one day in total. Compared to temperature data,
the graph signals here are much more complicated. Even two
adjacent intersections might not have correlations and exhibit
different traffic behaviors.

We denoise two different numbers of graph signals: 1 and
24. Columns 4 — 5 in Table II compare the denoising perfor-
mances under the mixture noise. All the denoising algorithms
fail to achieve fine performances. The reason might be that this
traffic data is too complicated for a mathematically-designed
graph filter to precisely reflect a graph signal prior. In this
situation, we see that when more training data is available, the
proposed two graph unrolling networks get better performance,
reflecting the powerful learning ability to capture complicated
priors.

Cora. We finally consider a citation network dataset, called
Cora [8]. The datasets contain sparse bag-of-words feature
vectors for each document and a list of citation links between
documents. We treat each citation link as an undirected edge
and each document as a class label. The citation network has
2708 nodes and 5429 edges and 7 class labels. We consider 7
class labels as graph signals. We introduce Bernoulli noise and
randomly flip 10% of the binary values.

We denoise two different numbers of graph signals: 1 and 7.
Columns 6 — 9 in Table II compare the denoising performances
under Bernoulli noise with two evaluation metrics. For error
rates, lower values mean better performances; for F1 scores,
higher values mean better performances. We see that i) the
proposed GUSC achieves the best performances in terms of
both error rates and F1 scores; 2) since zeros appear much
more frequently than ones in graph signals, most conventional
methods tend to generate zero values everywhere, leading to
good error rates, but bad F1 scores.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

1 10 100 1000 1 10 100 1000
number of signals number of signals

(a) Smooth signals. (b) Piecewise-constant signals.

Fig.3. Normalized mean square errors of graph unrolling trend filtering with
various configurations. The blue bar considers two standard learnable graph
convolution; the red bar considers one edge-weight-sharing graph convolutions
(EWS-GC) for B and one standard learnable graph convolution for C; and
the yellow bar considers two edge-weight-sharing graph convolutions. We see
that the proposed edge-weight-sharing graph convolution works better than the
standard learnable graph convolution [8].

D. Ablation Study

Effect of edge-weight-sharing graph convolutions. Here we
validate the contribution of each individual edge-weight-sharing
graph convolution in graph unrolling trend filtering. Figs. 3
(a) and (b) show the normalized mean square errors of graph
unrolling trend filtering with various configurations on smooth
and piecewise-constant graph signals, respectively. In the im-
plementation of graph unrolling trend filtering, there are two
edge-weight-sharing graph convolutions (EWS-GCs), including
B and C; see Section IV.C. In each plot, we consider three con-
figurations for graph unrolling trend filtering: (i) implementing
B and C by two standard learnable graph convolution proposed
in [8] (blue bar); (ii) implementing B by the edge-weight-sharing
graph convolution and C by the standard learnable graph con-
volution (red bar); and (iii) implementing both B and C by
the edge-weight-sharing graph convolutions (yellow bar). The
experimental results show that both edge-weight-sharing graph
convolutions bring significant benefits. For the smooth graph
signals, B and C have similar effects; for the piecewise-smooth
graph signals, C makes more impact than B. This makes sense
because the term C #, (AT Y~V involves the graph incident
matrix and implicitly carries the graph regularization term || A||;
in the original formulation of graph trend filtering, which is
known to favor piecewise-constant graphs signals [14], [15].

To summarize, (i) the proposed edge-weight-sharing graph
convolution works better than the standard learnable graph
convolution; and (2) the impact of each edge-weight-sharing
graph convolution highly depends on the specific properties of
graph signals.

Effect of unrolling architecture. To understand the gain from
the unrolling architecture, we consider the empirical comparison
between the standard graph convolutional network (GCN) and
the proposed graph unrolling trend filtering (GUTF). In the
standard graph convolutional network, we replace the standard
learnable graph convolution (GC) by the proposed edge-weight-
sharing graph convolution (EWS-GC). In this setting, we could
make two comparisons: (i) the GCN architecture with GC vs. the
GCN architecture with EWS-GC; and (ii) the GCN architecture
with EWS-GC vs. the GUTF architecture with EWS-GC. The
first comparison shows the impact of the proposed EWS-GC

3711

NMSE

[mGCN (EWS-GC * 0)
[mGCN (EWS-GC * 1)
[EGCN (EWS-GC * 2
[mGUTF (EWS-GC * 2)

[mGCN (EWS-GC * 0) o
[mGCN (EWS-GC * 1

[BIGCN (EWS-GC * 2) 0.05
[mGUTF (EWS-GC * 2

1 10 100 1000 1 10 100 1000
number of signals number of signals

(a) Smooth signals. (b) Piecewise-constant signals.

Fig. 4. Normalized mean square errors of graph unrolling trend filtering with
various configurations. The blue bar considers the graph convolutional network
architecture with two standard learnable graph convolutions; the red bar consid-
ers the graph convolutional network architecture with one edge-weight-sharing
graph convolutions (EWS-GC) and one standard learnable graph convolutions;
the yellow bar considers the graph convolutional network architecture with two
edge-weight-sharing graph convolutions (EWS-GC); the purple bar considers
the graph unrolling trend filtering architecture with two edge-weight-sharing
graph convolutions (EWS-GC). We see that both the proposed unrolling archi-
tecture and the proposed edge-weight-sharing graph convolution bring distinct
benefits.

NMSE NMSE

igraph [mgraph
identity [Bidentity
0.05 Erandom 0.05 [Erandom

1 10 100 1000 1 10 100 1000
number of signals number of signals

(a) Smooth signals. (b) Piecewise-constant signals.

Fig. 5. Normalized mean square errors of the proposed graph unrolling trend
filtering with various graph configurations. The blue bar shows the original graph
adjacency matrix; the red bar shows the identity matrix and the yellow bar shows
the random matrix. The graph does influence the result.

in the GCN architecture and the second comparison shows the
impact of the proposed unrolling architecture.

Figs. 4(a) and (b) show the normalized mean square errors
of various graph neural networks on smooth and piecewise-
constant graph signals, respectively. We consider four settings:
the GCN architecture with two standard GC (blue bar), the GCN
architecture with one EWS-GC and one standard GC (red bar),
the GCN architecture with two EWS-GC (red bar), the GUTF
architecture with two EWS-GC (purple bar). We see that (i)
given the same GCN architecture, more EWS-GCs lead to better
performances; and (ii) given the same number of EWS-GCs, the
GUTEF architecture works better than the GCN architecture.

Therefore, we conclude that both the proposed unrolling
architecture and the proposed edge-weight-sharing graph con-
volution bring distinct benefits.

Effect of graph structure. Figs. 5(a) and (b) show the normal-
ized mean square errors of the proposed graph unrolling trend
filtering with various graph configurations. We consider three
graph configurations: original graph adjacency matrix (blue),
identity matrix (red) and the random matrix (yellow). We see that
the original graph adjacency matrix leads to significantly better
performances than the other two configurations, indicating that
the graph does influence the performance of the graph unrolling
network.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

3712

VI. CONCLUSION

We propose graph unrolling networks, which is an inter-
pretable neural network framework to denoise single or mul-
tiple noisy graph signals. The proposed graph unrolling net-
works expand algorithm unrolling to the graph domain. As a
core component of graph unrolling networks, we propose an
edge-weight-sharing graph convolution operation, which pa-
rameterizes each edge weight by a trainable kernel function
where the trainable parameters are shared by all the edges. This
convolution is permutation-equivariant and can flexibly adjust
the edge weights to various graph signals. We then consider
two specific networks, graph unrolling sparse coding and graph
unrolling trend filtering, by unrolling sparse coding and trend
filtering, respectively. Through extensive experiments, we show
that the suggested methods produce smaller denoising errors
than both conventional denoising algorithms and state-of-the-art
graph neural networks. Even for denoising a single graph signal,
the normalized mean square error of the proposed networks is
around 40% and 60% lower than that of graph Laplacian denois-
ing and graph wavelets, respectively, reflecting the advantages
of learning from only a few training samples.

REFERENCES

[1] A.Ortega, P. Frossard, J. Kovacevic¢, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808-828, May 2018.

[2] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30,
pp. 129-150, Mar. 2011.

[3] D. I. Shuman, M. Javad Faraji, and P. Vandergheynst, “A multiscale
pyramid transform for graph signals,” IEEE Trans. Signal Process., vol. 64,
no. 8, pp. 2119-2134, Apr. 2016.

[4] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevi¢, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510-6523, Dec. 2015.

[5] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.
Signal Process., vol. 64, pp. 3775-3789, Jul. 2016.

[6] X.Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from
data: A signal representation perspective,” IEEE Signal Process. Mag.,
vol. 36, no. 3, pp. 44-63, May 2019.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 1842, Jul. 2017.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations,
Toulon, France, 2017, pp. 24-26

[9] Y. Wang, Y. Sun,Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,

“Dynamic graph CNN for learning on point clouds,” ACM Trans. Graph.,

vol. 38, no. 5, pp. 146:1-146:12, 2019.

M. Li, S. Chen, Y. Zhao, Y. Zhang, Y. Wang, and Q. Tian, “Dynamic

multiscale graph neural networks for 3D skeleton-based human motion

prediction,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2020,

pp. 211-220.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,

“The emerging field of signal processing on graphs: Extending high-

dimensional data analysis to networks and other irregular domains,” IEEE

Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevi¢, “Signal

denoising on graphs via graph filtering,” Proc. IEEE Global Conf. Signal

Inf. Process., Dec. 2014, pp. 872-876.

M. Vetterli, J. Kovacevic¢, and V. K. Goyal, Foundations of Signal Process-

ing. Cambridge, U.K.:, Cambridge Univ. Press, 2014.

Y-X. Wang, J. Sharpnack, A.J. Smola, and R. J. Tibshirani, “Trend filtering

on graphs,” J. Mach. Learn. Res., vol. 17, pp. 105:1-105:41, 2016.

R. Varma, H. Lee, J. Kovacevi¢, and Y. Chi, “Vector-valued graph trend

filtering with non-convex penalties,” IEEE Trans. Signal Inf. Process.

Netw.,vol. 6, pp. 48-62, Dec. 062019, doi: 10.1109/TSIPN.2019.2957717

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1-4,
pp. 259-268, Nov. 1992.

A. Chambolle, “An algorithm for total variation minimization and appli-
cations,” J. Math. Imag. Vis., vol. 20, no. 1/2, pp. 89-97, 2004.

F.R. K. Chung, Spectral Graph Theory CBMS Regional Conference Series
in Mathematics, vol. 92, 1997.

S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevi¢, “Signal
recovery on graphs: Variation minimization,” I[EEE Trans. Signal Process.,
vol. 63, no. 17, pp. 4609-4624, Sep. 2015.

R. Shafipour, A. Khodabakhsh, and G. Mateos, “A windowed digraph
fourier transform,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Brighton, U.K., 12-17, 2019, pp. 7525-7529.

D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst,
“Spectrum-adapted tight graph wavelet and vertex-frequency frames,”
IEEE Trans. Signal Process., vol. 63, no. 16, pp.4223-4235,
Aug. 2015.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applica-
tions. Cambridge, U. K.: Cambridge Univ. Press, 2012.

Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. Cambridge,
U.K.: Cambridge Univ. Press, 2015.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet
filter banks for graph structured data,” IEEE Trans. Signal Process., vol. 60,
no. 6, pp. 27862799, Jun. 2012.

A. Sakiyama, K. Watanabe, Y. Tanaka, and A. Ortega, “Two-channel
critically sampled graph filter banks with spectral domain sampling,” IEEE
Trans. Signal Process., vol. 67, no. 6, pp. 1447-1460, Mar. 2019.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph
networks,” 2018, arXiv:1806.01261.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in Proc. 2nd Int. Conf. Learn.
Representations, Banff, AB, Canada, 2014, pp. 14-16

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Adv. Neural
Inf. Process. Syst. 29th: Annu. Conf. Neural Inf. Process. Syst., Barcelona,
Spain, 2016, pp. 3837-3845.

P. Veli¢kovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proc. 6th Int. Conf. Learn. Representations,
Vancouver, BC, Canada, 2018.

P. Velickovic, W. Fedus, W. L. Hamilton, P. Lid, Y. Bengio, and
R. Devon Hjelm, “Deep graph infomax,” in Proc. 7th Int. Conf. Learn.
Representations, New Orleans, LA, USA, May 2019, pp. 6-9.

F. Wu, A. H. Souza Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in Proc. 36th Int. Conf.
Mach. Learn., 9-15 Jun. 2019, Long Beach, California, USA, vol. 97,
pp. 6861-6871.

H. Gao and S. Ji, “Graph u-nets,” in Proc. 36th Int. Conf. Mach. Learn.,
9-15 Jun. 2019, Long Beach, California, USA, vol. 97, pp. 2083-2092.
M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learn-
ing architecture for graph classification,” in Proc. 32nd AAAI Conf. Artif.
Intell., New Orleans, Louisiana, USA, Feb. 2-7, 2018, pp. 4438—-4445.

O. Solomon et al., “Deep unfolded robust PCA with application to clutter
suppression in ultrasound,” IEEE Trans. Med. Imag., vol. 39, no. 4,
pp. 1051-1063, Apr. 2020.

G. Wang, G. B. Giannakis, and J. Chen, “Learning ReLU networks on
linearly separable data: Algorithm, optimality, and generalization,” IEEE
Trans. Signal Process., vol. 67, no. 9, pp. 2357-2370, May 2019.

M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Proc. Adv. Neural Inf. Process. Syst. 31st: Annu. Conf. Neural Inf.
Process. Syst., Montréal, Canada, 2018, pp. 5171-5181.

V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18—44, Mar. 2021.

K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,”
in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, 2010, pp. 399-406.
L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system state
estimation and forecasting via deep unrolled neural networks,” /IEEE
Trans. Signal Process., vol. 67, no. 15, pp. 4069—4077, Aug. 2019.

Y. Li, M. Tofighi, V. Monga, and Y. C. Eldar, “An algorithm unrolling ap-
proach to deep image deblurring,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Brighton, United Kingdom, 12—-17, 2019, pp. 7675-7679.
Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C Eldar, “Efficient and
interpretable deep blind image deblurring via algorithm unrolling,” JEEE
Trans. Computational Imaging, vol. 6, pp. 666—-681, Jan. 2020.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSIPN.2019.2957717

CHEN et al.: GRAPH UNROLLING NETWORKS: INTERPRETABLE NEURAL NETWORKS FOR GRAPH SIGNAL DENOISING

[43] A. H. Al-Shabili, H. Mansour, and P. T. Boufounos, “Learning plug-and-
play proximal quasi-newton denoisers,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2020, pp. 8896-8900.

Y. C. Eldar and G. Dardikman-Yoffe, “Learned SPARCOM: Unfolded
deep super-resolution microscopy,” Opt. Exp., vol. 28, pp. 27736-27763,
2020.

A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644—-1656, Apr. 2013.
S. Chen, R. Varma, A. Singh, and J. Kovacevi¢, “Representations of
piecewise smooth signals on graphs,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2016, pp. 6370-6374.

X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning and
semi-supervised learning using gaussian fields and harmonic functions,”
in Proc. Int. Conf. Mach. Learn. Workshop Continuum Labeled Unlabeled
Data Mach. Learn. Data Mining, 2003, pp. 58-65.

A.Y.Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 849-856.
S. Segarra, A. G. Marques, and A. Ribeiro, “Linear network operators
using node-variant graph filters,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2016, pp. 4850-4854.

M. Coutino, E. Isufi, and G. Leus, “Distributed edge-variant graph filters,”
in Proc. IEEE 7th Int. Workshop Comput. Adv. Multi-Sensor Adaptive
Process., 2017, pp. 1-5.

E. Isufi, F. Gama, and A. Ribeiro, “Edgenets: Edge varying graph neural
networks,” 2020, arXiv:2001.07620.

F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” IEEE Trans. Signal
Process., vol. 67, no. 4, pp. 1034-1049, Feb. 2019.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, New York, NY, USA, 2014, pp. 701-710.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization
algorithm for total variation image reconstruction,” SIAM J. Imag. Sci.,
vol. 1, no. 3, pp. 248-272, 2008.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122,
Jan. 2011.

N. Tremblay and P. Borgnat, “Subgraph-based filterbanks for graph
signals,” IEEE Trans. Signal Process., vol. 64, no. 15, pp. 3827-3840,
Aug. 2016.

T. Huu Do, D. Minh Nguyen, and N. Deligiannis, “Graph auto-encoder for
graph signal denoising,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2020, pp. 3322-3326.

L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,”
in Proc. 8th Int. Conf. Learn. Representations, Addis Ababa, Ethiopia,
Apr. 2020, pp. 26-30.

S.Chen, Y. Yang, S. Zong, A. Singh, and J. Kovacevi¢, “Detecting localized
categorical attributes on graphs,” IEEE Trans. Signal Process., vol. 65,
no. 10, pp. 2725-2740, May 2017.

A. Shocher, S. Bagon, P. Isola, and M. Irani, “Ingan: Capturing and
retargeting the “dna” of a natural image,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., Seoul, Korea (South), 2019, pp. 4491-4500.

D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Deep image prior,” Int. J.
Comput. Vis., vol. 128, no. 7, pp. 1867-1888, 2020.

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

Siheng Chen (Member, IEEE) received the bache-
lor’s degree in electronics engineering from the Bei-
jing Institute of Technology, Beijing, China, in 2011,
and the two master’s degrees in electrical and com-
puter engineering and machine learning and the Doc-
torate degree in 2016 in electrical and computer engi-
neering from Carnegie Mellon University, Pittsburgh,
PA, USA. He is currently an Associate Professor
with Shanghai Jiao Tong University, Shanghai, China.
Before that, he was a Research Scientist with Mit-
subishi Electric Research Laboratories, Cambridge,
MA, USA, and an Autonomy Engineer with Uber Advanced Technologies
Group, working on the perception and prediction systems of self-driving cars.
Before joining Uber, he was a Postdoctoral Research Associate with Carnegie
Mellon University. His research interests include graph signal processing, graph
neural networks, and autonomous systems. He was the recipient of the 2018
IEEE Signal Processing Society Young Author Best Paper Award and ASME
SHM/NDE 2020 Best Journal Paper Award Runner-Up. His coauthored paper
was the recipient of the Best Student Paper Award at IEEE GlobalSIP 2018.

3713

Yonina C. Eldar (Fellow, IEEE) received the B.Sc.
degree in physics and the B.Sc. degree in electrical en-
gineering from Tel-Aviv University, Tel-Aviv, Israel,
in 1995 and 19956, respectively, and the Ph.D. degree
in electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 2002.

She is currently a Professor with the Department
of Mathematics and Computer Science, Weizmann
Institute of Science, Rehovot, Israel. She was previ-
ously a Professor with the Department of Electrical
Engineering, Technion, where she held the Edwards Chair in Engineering. She
is also a Visiting Professor with MIT, a Visiting Scientist with Broad Institute,
and an Adjunct Professor with Duke University, Durham, NC, USA, and was a
Visiting Professor with Stanford. She is author of the book Sampling Theory:
Beyond Bandlimited Systems and co-author of four other books published by
Cambridge University Press. Her research interests include statistical signal
processing, sampling theory and compressed sensing, learning and optimization
methods, and their applications to biology, medical imaging, and optics. She is a
Member of the Israel Academy of Sciences and Humanities (elected 2017) and
a EURASIP Fellow.

She was the recipient of many awards for excellence in research and teaching,
including the IEEE Signal Processing Society Technical Achievement Award
(2013), the IEEE/AESS Fred Nathanson Memorial Radar Award (2014), and
the IEEE Kiyo Tomiyasu Award (2016). She was a Horev Fellow of the Leaders
in Science and Technology Program, Technion and an Alon Fellow. She was
the recipient of the Michael Bruno Memorial Award from the Rothschild
Foundation, the Weizmann Prize for Exact Sciences, the Wolf Foundation
Krill Prize for Excellence in Scientific Research, the Henry Taub Prize for
Excellence in Research (twice), the Hershel Rich Innovation Award (three
times), the Award for Women with Distinguished Contributions, the Andre and
Bella Meyer Lectureship, the Career Development Chair at the Technion, the
Muriel David Jacknow Award for Excellence in Teaching, the Technion’s Award
for Excellence in Teaching (two times), and several best paper awards and best
demo awards together with her research students and colleagues, including the
SIAM outstanding Paper Prize, the UFFC Outstanding Paper Award, the Signal
Processing Society Best Paper Award and the IET Circuits, Devices and Systems
Premium Award, was selected as one of the 50 most influential women in Israel
and in Asia, and is a highly cited Researcher.

She was a Member of the Young Israel Academy of Science and Humanities
and the Israel Committee for Higher Education. She is the Editor-in-Chief of
the Foundations and Trends in Signal Processing, a Member of the IEEE Sensor
Array and Multichannel Technical Committee and is on several other IEEE
committees. In the past, she was a Signal Processing Society Distinguished
Lecturer, a Member of the IEEE Signal Processing Theory and Methods and Bio
Imaging Signal Processing technical committees, and was an Associate Editor
for the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the EURASIP Journal of
Signal Processing, the SIAM Journal on Matrix Analysis and Applications, and
the SIAM Journal on Imaging Sciences. She was the Co-Chair and Technical
Co-Chair of several international conferences and workshops.

7

Lingxiao Zhao received the B.E. degree in electrical
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2016, and the M.S. degree in 2018 in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, USA, where he
is currently working toward the Ph.D. degree in in-
formation system with Heinz College. His research
interests include deep learning on graphs and many
applications with graph structured data.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 19,2021 at 06:02:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

