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Learned Factor Graphs for Inference From
Stationary Time Sequences
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Abstract—The design of methods for inference from time se-
quences has traditionally relied on statistical models that describe
the relation between a latent desired sequence and the observed
one. A broad family of model-based algorithms have been derived
to carry out inference at controllable complexity using recursive
computations over the factor graph representing the underlying
distribution. An alternative model-agnostic approach utilizes ma-
chine learning (ML) methods. Here we propose a framework that
combines model-based algorithms and data-driven ML tools for
stationary time sequences. In the proposed approach, neural net-
works are developed to separately learn specific components of
a factor graph describing the distribution of the time sequence,
rather than the complete inference task. By exploiting station-
ary properties of this distribution, the resulting approach can
be applied to sequences of varying temporal duration. Learned
factor graphs can be realized using compact neural networks that
are trainable using small training sets, or alternatively, be used
to improve upon existing deep inference systems. We present an
inference algorithm based on learned stationary factor graphs,
which learns to implement the sum-product scheme from labeled
data, and can be applied to sequences of different lengths. Our ex-
perimental results demonstrate the ability of the proposed learned
factor graphs to learn from small training sets to carry out accurate
inference for sleep stage detection using the Sleep-EDF dataset,
as well as for symbol detection in digital communications with
unknown channels.

Index Terms—Factor graphs, deep learning, time sequences.
I. INTRODUCTION

AMULTITUDE of practical problems involve inference
from time sequences. The need to accurately estimate a
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hidden time series from a measured signal is frequently encoun-
tered in signal processing, communications, control, finance,
and various other fields. Traditional algorithms, such as those
based on the maximum a-posteriori probability (MAP) rule,
are model-based, namely, they carry out inference based on
complete knowledge of the underlying statistical model relat-
ing the desired time series and the observed one. The joint
distribution of a large family of time sequences encountered in
practice can be factorized, which facilitates inference at reduced
complexity by representing their distribution as a Forney-style
factor graph [1], [2], referred to henceforth as a factor graph
for brevity. In factor graphs, variables are represented as edges
connected to function nodes forming a graphical representation
of joint distribution measures. When this graph is cycle-free,
it can be used to evaluate marginal distributions in an efficient
manner, i.e., with complexity that only grows linearly with the
number of variables. As a result, many important model-based
algorithms, such as the Viterbi algorithm [3], the sum-product
(SP) method [4] also known as belief propagation (BP) [5],
the BCJR detector [6], the Baum-Welch scheme for estimating
the parameters of hidden Markov models (HMMs) [7], and the
Kalman filter [8, Ch. 7], all process time sequences via recursive
computations over a factor graph [9].

Often in practice, the underlying statistical model relating
the observations and the desired time series is highly complex
or poorly understood. In such cases, model-based algorithms,
which are typically sensitive to inaccurate knowledge of the
underlying statistics, cannot be reliably applied, and model-
agnostic data-driven schemes are preferable. Consequently, re-
cent years have witnessed extensive interest in the application
of machine learning (ML), and particularly of deep neural
networks (DNNs), for time sequence inference, with various
architectures proposed to exploit the presence of temporal cor-
relation [10]–[12]. However, training these deep architectures
typically requires a massive amount of labeled data, which may
not always be available. Furthermore, applying inference using
highly parameterized DNNs may not be feasible on devices with
limited hardware capabilities.

The individual challenges of model-based signal processing
and model-agnostic ML has given rise to various hybrid systems
combining ML and model-based algorithms [13]. Such hybrid
model-based/data-driven attempt to benefit from the best of both
worlds. These include the usage of DNNs to learn a possibly
analytically intractable regularization in compressed sensing
applications [14], [15], as well as the use of deep denoisers in
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regularized optimization via plug-and-play networks [16], [17].
A systematic strategy to combine model-based algorithms and
ML is based on deep unfolding or unrolling [18]–[21]. Deep
unfolding sets the layers of a DNN in light of the iterations of
some iterative optimization algorithm, while using the resulting
unfolded network for the complete inference task. Deep unfold-
ing typically requires knowledge of the underlying model, up
to perhaps some unknown parameters, in order to unfold the
optimization method. Unfolding commonly results in a highly
parameterized DNN utilized for the complete inference task,
whose architecture is inspired by a model-based algorithm.

In this work, we propose an alternative strategy that combines
model-based signal processing algorithms based on factor graph
computations with data-driven ML tools. Here, instead of using
DNNs for inference, they are utilized to learn only the function
nodes of the factor graph, which in turn is used for inference via
conventional factor graph methods, such as the SP algorithm.
This approach builds upon the fact that the statistical behavior
of time sequences can often be approximated using stationary
factorizable distributions, which allows incorporating domain
knowledge in the structure of the graph while learning its nodes
from data. This results in a hybrid model-based/data-driven
inference scheme that only requires prior knowledge of the
factorization of the underlying distribution. This is in contrast
to deep unfolding where the distribution in parametric form is
typically required. Moreover, the hybrid scheme can also incor-
porate additional domain knowledge in its learned nodes. As
opposed to previous works that used highly-parameterized deep
architectures to represent messages along a factor graph, and
trained the overall system in an end-to-end manner [22]–[29],
our strategy learns the function nodes separately from the task,
exploiting stationarity by reusing a DNN for multiple function
nodes. Consequently, this approach can use relatively compact
networks that are trained with small training sets and employed
on hardware-limited devices, as well as to improve upon existing
DNN architectures by utilizing them for learning the factor graph
instead of for inference. Furthermore, the same learned factor
graph may be used for sequences of varying length, as well as
combined with multiple inference algorithms.

In particular, we present a data-driven inference scheme
based on learned factor graphs that learns to implement the
SP method over factor graphs of stationary Markovian time
sequences from labeled data. While the SP scheme requires
accurate knowledge of the underlying statistical model, its data-
driven implementation allows this algorithm to be utilized in
scenarios involving time sequences with complex and possibly
analytically intractable distributions. We detail how such hybrid
model-based/data-driven inference is derived from the SP algo-
rithm by learning the underlying factor graph. We also show
that, by assuming stationarity, the complete factor graph can
be learned using a single relatively compact neural network.
We discuss how ViterbiNet, proposed in [30] for real-time
data-driven symbol detection in digital communications, can
be obtained as a special case of our framework, and in fact be
implemented using the same learned factor graph as that used
for SP-based inference. We then discuss how the ability to learn
factor graphs of stationary distributions from small training sets
may be exploited to facilitate adaptation to blockwise statistical

variations when some future indication on the inference correct-
ness is available, as in, e.g., coded communications setups.

We evaluate the usage of learned factor graphs for sleep
pattern prediction as well as in a digital communications setup
with unknown channel settings. For sleep pattern prediction, we
use the Sleep-EDF dataset [31], and show how using a neural pre-
dictor as a learned node in the SP method improves the accuracy
by 4% compared with using it for inference. We also demonstrate
how this facilitates the usage of compact networks trainable with
small data sets, enabling training using only part of the data
of a single patient, while achieving accurate inference on its
remaining data. For the communications setup, we demonstrate
that inference over learned factor graphs is capable of approach-
ing the performance of the MAP detector, which requires full
knowledge of the underlying statistical model, while achieving
improved robustness to model uncertainty compared with the
conventional SP algorithm. Furthermore, we demonstrate that by
utilizing compact networks that are trainable with small training
sets, learned factor graphs can be tuned to accurately track
temporal variations in the statistical model via online training.

The rest of this paper is organized as follows: In Section II, we
detail the problem of inference over stationary time sequences,
and briefly review model-based factor graph methods. Section III
details the proposed framework for inference over learned factor
graphs by deriving it from the SP algorithm applied to Marko-
vian signals. Experimental results are presented in Section IV.
Finally, Section V provides concluding remarks.

Throughout the paper, we use upper-case letters for random
variables (RVs), e.g. X . Boldface lower-case letters denote
vectors, e.g., x is a deterministic vector, and X is a random
vector; the ith element of x is written as xi. The probability
measure of an RV X evaluated at x is denoted PX(x), while
N (·, ·) represents the Gaussian distribution. We use caligraphic
letters for sets, e.g., X , where |X | is the cardinality of a finite
set X , while R denotes the set of real numbers. Finally, for a
sequence {xi} and integers i1 < i2 we use xi2

i1
to denote the

stacking [xi1 , xi1+1, . . . , xi2 ]
T while xi2 � xi2

1 .

II. SYSTEM MODEL

In this section, we present the system model for which we
propose the concept of data-driven factor graphs in Section III.
We begin by formulating the considered time series inference
problem in Section II-A. We then discuss the model-based
approach for the problem at hand in Section II-B, after which we
briefly review conventional model-based factor graph methods
in Section II-C.

A. Problem Formulation

We consider the problem of recovering a desired time series
{Si} taking values in a set S from an observed sequence {Yi}
taking values in a set Y . The subscript i denotes the time index.
The joint distribution of {Si} and {Yi} obeys an lth-order
Markovian stationary model,

PYi,Si|{Yj ,Sj}j<i
(yi, si|{yj , sj}j<i)

= PYi|Si
i−l

(
yi|sii−l

)
PSi|Si−1

i−l

(
si|si−1i−l

)
, (1)
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for some integer l ≥ 1, representing the memory of the se-
quences. Consequently, when the initial state S0

−l is given, the
joint distribution of Y t and St satisfies

PY t,St(y, s)=

t∏
i=1

PYi|Si
i−l

(
yi|sii−l

)
PSi|Si−1

i−l

(
si|si−1i−l

)
, (2)

for any fixed sequence length t > 0. The joint distribution in
(2) is a special case of an lth order Markov model, where given
Si

i−l, the observed sequence Yi does not depend on the past
observations Y i−1

i−l . In principle, the lth order Markov model in
(2) can be expressed as an order-one Markov model by replacing
Si with the multivariate {Si

i−l+1}ti=1. However, since we focus
on the recovery of the sample Si from Y t (rather than the
stacking of l samples Si

i−l+1), we keep the above formulation
without limiting our attention to the case where l = 1.

In general, the above statistical relationship can change over
time. Here, we assume that the marginal distribution of the
desired sequence {Si} remains static over time, i.e., PSi|Si−1

i−l
(·)

does not depend on i. We allow the conditional probability
density function (PDF) in (2) to evolve over time in the following
manners:
� Stationary sequence - the conditional PDF in (2) remains

invariant over time, i.e., PYi|Si
(·) does not depend on the

time index i.
� Blockwise stationary - the conditional PDF PYi|Si

(·)
changes every tb time instances.

The stationarity assumption implies that within a given block
of tb time instances, (2) represents the joint distribution as the
product of the same function with different arguments.

The statistical relationship in (2) accurately represents a broad
range of problems encountered in practice, including inference
from bio-medical signals [32], [33] as well as symbol detection
in digital communications [34, Ch. 3]. The common aspect of
these problems is the presence of temporal correlation, implying
that information regarding a state variable Si is contained not
only in its corresponding observationYi, but also in its preceding
and subsequent measurements.

Our goal is to design a system that learns to reliably infer
a block of desired variables St from its corresponding obser-
vations Y t for arbitrary blocklength t. The system learns its
inference mapping using a data set comprised of a sequence
of nt labeled samples denoted {sk, yk}nt

k=1, as well as prior
knowledge that the joint distribution obeys the factorization in
(2). Nonetheless, it is emphasized that distribution functions in
(2), e.g., PYi|Si

i−l
, are unknown and may not be analytically

tractable. The presence of data as well as partial domain knowl-
edge motivates the design of hybrid model-based/data-driven
schemes.

B. Model-Based Inference

When the joint distribution ofSt andY t is a-priori known and
can be computed, the inference rule that minimizes the symbol
error probability for each time instance is the MAP detector,

ŝi
(
yt
)
= argmax

s∈S
PSi|Y t(s|yt), (3)

for each i ∈ {1, . . . , t} � T . This rule can be efficiently evalu-
ated for finite-memory distributions using the SP algorithm [4].
An alternative common inference rule is the maximum likeli-
hood sequence detector, given by

ŝt
(
yt
)
� argmax

st∈St
PY t|St

(
yt|st

)
. (4)

Unlike (3), the maximum likelihood sequence detector (4) has no
optimality guarantee in general. However, similarly to (3), the in-
ference rule in (4) is amenable to efficient iterative computation.
In particular, for sequences obeying the structure (2), the detector
(4) can be computed efficiently using the Viterbi algorithm [4],
[35]. Viterbi detection allows real-time inference, i.e., it operates
in a sequential manner and uses the partial vectoryi+l−1, instead
of the complete observations yt, when recovering Si.

Both the SP method and the Viterbi scheme are model-based
algorithms that employ recursive computations over the under-
lying factor graph encapsulating the joint distribution of St and
Y t. Consequently, to design a system capable of learning from
data how to carry out such inference, we first review factor graph
methods in the following subsection.

C. Factor Graphs Methods

In the following we provide a brief introduction to factor
graphs. We then review the SP algorithm for computing marginal
distributions as a representative method for efficient inference
over factor graphs [5].

A Forney-style factor graph, referred to henceforth as factor
graph, is a graphical representation of the factorization of a
function of several variables [9], commonly a joint distribution
measure. Its main advantage over alternative graphical models of
joint distributions, such as Bayesian (belief) networks [36] and
junction graphs [37], stems from its suitability to hierarchical
models and its resulting simple formulation of the SP message
passing algorithm [2]. To present the concept of factor graphs
and their usage, consider a t× 1 random vector X ∈ X t where
X is a finite set, i.e., the entries of X , denoted {Xi}, are
discrete RVs. The joint distribution of X , PX(x), is factor-
izable if it can be represented as the product of m functions
{fk(·)}mk=1, i.e., there exist some partition variables {Vk}mk=1,
Vk ⊂ {x1, . . . , xt}, which are not subsets of one another, such
that

PX(x) =
m∏

k=1

fk(Vk). (5)

In order to represent (5) as a factor graph, the functions
{fk(·)}mk=1 should be set such that each variablexi appears in no
more than two partitions1 {Vk}mk=1. Subject to this assumption,
the distributionPX(x) can be described as a factor graph withm
nodes, which are the functions {fk(·)}mk=1, while the variables
{xi}ti=1 represent edges or half-edges. In the sequel we focus
on partitions in which the resulting graphical representation is
cycle-free.

1A factorization in which a variable appears in more than two factors can
always be modified to meet the above constraint by introducing additional
variables and identity factors, see [2].
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A major motivation for representing joint distributions via
factor graphs is that they allow some statistical computations
to be carried out with reduced complexity. One of the most
common methods to exploit factorization via factor graphs for
reduced complexity inference is the SP algorithm, that evaluates
a marginal distribution from a factor graph representation of
a joint probability measure [4]. To formulate the SP method,
consider for simplicity a factorized distribution in which the
ordering of the partitions {Vi} corresponds to the order of the
variables {xi}, e.g., V1 = {x1, x2}, V2 = {x2, x3, x4}, V3 =
{x4, x5}, etc. Furthermore, as noted above, assume that the
factor graph does not contain cycles.2 In this case, the marginal
distribution of an RV Xi whose corresponding variable appears
in the partitions Vj and Vj+1 can be computed from the joint
distribution PX via

PXi
(xi) =

∑
{x/xi}

PX(x)

=

⎛
⎝ ∑
{x1,...,xi−1}

j∏
k=1

fk(Vk)

⎞
⎠

︸ ︷︷ ︸
�−→μXi

(xi)

⎛
⎝ ∑
{xi+1,...,xt}

m∏
k=j+1

fk(Vk)

⎞
⎠

︸ ︷︷ ︸
�←−μXi

(xi)

.

(6)

The factorization of the joint distribution implies that the
marginal distribution, whose computation typically requires
summation over |X |t−1 variables, can now be evaluated as the
product of two terms, −→μXi

(xi) and←−μXi
(xi). These terms may

be viewed as messages propagating forward and backward along
the factor graph, e.g., −→μXi

(xi) represents a forward message
conveyed to edge xi. In particular, these messages can be com-
puted recursively. WritingVj = {xi−τ , . . . , xi} for some τ ≥ 1,
the SP rule [2] implies that

−→μXi
(xi) =

∑
{xi−τ ,...,xi−1}

fj(Vj)
∑

{x1,...,xi−τ−1}

j−1∏
k=1

fi(Vi)

=
∑

{xi−τ ,...,xi−1}
fj(Vj)−→μXi−τ (xi−τ ), (7)

where the last equality follows from the fact that xi−τ here is
the variable with the largest index in Vj−1. The computation of
message terms in a recursive manner over a graphical model, as
done in (7), is referred to as message passing. In particular, the
method of computing marginals in (6) using message passing
over factor graphs is referred to as the SP algorithm [4].

III. INFERENCE VIA LEARNED FACTOR GRAPHS

In this section we present our proposed system for ML-based
inference applied to stationary time sequences. We begin by
reviewing the application of the SP method to stationary sig-
nals in Section III-A. We next introduce the hybrid model-
based/data-driven implementation of the SP algorithm in Section

2In the presence of cycles in the graph, the SP algorithm does not compute
the MAP rule, but can approximate it iteratively [38]. Here, we focus on the
standard application for cycle-free graphs [2], [9].

Fig. 1. Factor graph of a Markovian time sequence.

III-B through the concept of learned factor graphs, which is
followed by a discussion of this proposed method in Section
III-C. Then, in Section III-D we show how the learned factor
graph can be used to carry out Viterbi detection, detailing how
the architecture proposed in [30] for receiver design in digital
communications can be obtained as a special case of a learned
factor graph. Finally, we present training of learned factor graphs
in the presence of blockwise stationary distributions based on
some future correctness indication in Section III-E.

A. SP Inference for Stationary Markovian Time Sequences

The SP algorithm computes the MAP rule in (3) for the
signal model detailed in Section II by recursive message passing.
To formulate this application of the SP scheme, define the
vector variable si � sii−l+1 ∈ Sl (similarly, the random vector
Si � Si

i−l+1 ∈ Sl). We can now represent the factorizable joint
distribution PY t,St(·) (2) as the factor graph illustrated in Fig. 1
(see [3, Fig. 15]), where the function nodes are

fi(yi, si, si, si−1) � PYi|Si
i−l

(
yi|sii−l

)
PSi|Si−1

i−l

(
si|si−1i−l

)
.

Consequently, for the considered Markovian model, the
partition sets {Vk} defined in Section II-C satisfy Vk =
{yk.sk, sk, sk−1}. Due to the stationarity of the model, it holds
that the mapping fi(·) does not depend on the index i, and since
si is an element of the vector si, we can write the function nodes
as

fi(yi, si, si, si−1) = PYi|Si,Si−1 (yi|si, si−1)
× PSi|Si−1 (si|si−1)

� f (yi, si, si−1) . (8)

In the special case where it holds that
PYi|Si,Si−1(yi|si, si−1) = PYi|Si,(yi|si) in (8), the statistical
model and the corresponding factor graph coincides with that of
a hidden Markov model. Note that when si is a shifted version
of si−1, (8) coincides with PYi|Si

i−l
(yi|sii−l)PSi|Si−1(si|si−1i−l ),

otherwise it equals zero. The fact that the distribution is
stationary implies that the function node mapping f(·)
is invariant to the time index i. Using its factor graph
representation, one can compute the joint distribution of
St and Y t by recursive message passing along its factor graph.
In particular,

PSk,Sk+1,Y
t(sk, sk+1,y

t) =

−→μSk
(sk)f(yk+1, sk+1, sk)

←−μSk+1
(sk+1), (9)
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Fig. 2. Message passing over the factor graph of a Markovian stationary time
sequence.

where for i = 1, . . . , k, the forward messages satisfy

−→μSi
(si) =

∑
si−1

f(yi, si, si−1)
−→μSi−1(si−1). (10)

Similarly, for i = k + 1, . . . , t− 1, the backward messages are

←−μSi
(si) =

∑
si+1

f(yi+1, si+1, si)
←−μSi+1

(si+1). (11)

This message passing is illustrated in Fig. 2.
The ability to compute the joint distribution in (9) via message

passing leads to computation of the MAP detector in (3) with
complexity that grows linearly with t; without this message
passing the computation grows exponentially with the block
size. This reduction in complexity is achieved by noting that
the MAP estimate satisfies

ŝi
(
yt
)
=argmax

si∈S

∑
si−1∈Sl

−→μSi−1(si−1)f(yi, [si−l+1, . . . , si], si−1)

×←−μSi
([si−l+1, . . . , si]), (12)

for each i ∈ T , where the summands can be computed recur-
sively. When t is large, the messages may tend to zero. Hence,
the messages are commonly scaled [2], e.g.,←−μSi

(s) is replaced
with γi

←−μSi
(s) for some scale factor that does not depend on s,

and thus does not affect the MAP rule. This instantiation of the
SP algorithm is summarized in Algorithm 1 below.

B. Learned Factor Graphs

Here, we propose a hybrid model-based/data-driven imple-
mentation of the SP scheme in Algorithm 1, which learns to im-
plement MAP detection of stationary Markovian time sequences

Fig. 3. SP inference over a learned stationary factor graph.

from labeled data. Our framework builds upon the fact that in
order to implement Algorithm 1, one must be able to specify the
factor graph representing the underlying distribution. In particu-
lar, the stationarity assumption implies that the complete factor
graph is encapsulated in the single function f(·) (8) regardless
of the block size t. The Markovian nature of the signals implies
that the structure of the graph is known to be of the form detailed
in the previous subsection and illustrated in Fig. 2, regardless
of the actual values of its function nodes. Building upon this
insight, we utilize DNNs to learn the mapping carried out at
the function node separately from the inference task. By doing
so, one can train a system to learn an underlying factor graph,
which can then be utilized for inference using conventional
factor graph methods, such as the SP algorithm. The resulting
learned stationary factor graph is then used to recover {Si} by
message passing, as illustrated in Fig. 3.

In order to learn a stationary factor graph from samples, one
must only learn its function node, which boils down to learning
PYi|Si

i−l
(·) and PSi|Si−1

i−l
(·) by (8). Specifically, for stationary

sequences, only a single function node must be learned, as the
mapping f(·) does not depend on the time index i. This implies
that one can utilize a single learned mapping, denoted f̂(·), to
carry out SP-based inference over an arbitrary blocklength t, as
illustrated in Fig. 3. When {Si} take values in a finite set, i.e., S
is finite, the transition probability PSi|Si−1

i−l
(·) can be learned via

a histogram, as we do in our numerical study. For learning the
distribution PYi|Si

i−l
(·) we consider two architectures, based on

classification and density estimation networks, respectively.
1) Function Nodes as Classification Networks: Since yi

is given and may take continuous values while the desired
variables take discrete values, a natural approach to evaluate
PYi|Si

i−l
(yi|s) for each s ∈ Sl+1 is to estimate PSi

i−l|Yi
(s|yi),

from which PYi|Si
i−l
(·) is obtained using Bayes rule as

PYi|Si
i−l
(yi|s) = PSi

i−l|Yi
(s|yi)PYi

(yi)
(
PSi

i−l
(s)
)−1

. (13)

A parametric estimate of PSi
i−l|Yi

(s|yi), denoted P̂θ(s|yi), is

obtained for each s ∈ Sl+1 by training classification networks
with softmax output layers to minimize the cross entropy loss.

In general, the marginal PDF of Yi can be estimated from
the training data using mixture density estimation via, e.g.,
expectation maximization [40, Ch. 2], or any other finite mixture
model fitting method. However, while the joint distribution in
(2) depends on the marginal PDF ofYi, the MAP rule is invariant
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Fig. 4. Learned function node architectures for evaluating f̂(·) based on (a)
classification DNNs. (b) Conditional density estimation networks.

of it. This follows since PYi
(yi) does not depend on the variable

s, and thus (12) can be written as

ŝi
(
yt
)
= argmax

si∈S

∑
si−1∈Sl

−→μSi−1(si−1)
f(yi, [si−l+1, . . . , si], si−1)

PYi
(yi)

×←−μSi
([si−l+1, . . . , si]). (14)

Consequently, one can use a surrogate factor graph in which the
function nodes are computed as f(yi,si],si−1)

PYi
(yi)

instead of using (8)
without altering the predictions of the SP algorithm. The sur-
rogate function nodes, which differ from (8) yet yield the same
inference rule, are equivalently computed by settingPYi

(yi) ≡ 1
in (13). The resulting structure in which the parametric estimates
are combined into a learned function node f̂(·), scaled by some
constant γi = 1

PYi
(yi)

, is illustrated in the upper part of Fig. 4.
2) Function Nodes as Conditional Density Networks: An

additional strategy is to directly estimate the conditional
PYi|Si

i−l
(yi|s) from data. This can be achieved using conditional

density estimation networks [40], [41] that are specifically de-
signed to learn such PDFs. Alternatively, normalizing flow net-
works [42] can be used; these architectures which are typically
used in the context of generative models, are capable of explicitly
learning complex densities [43]. For example, mixture density
networks [40] model the conditional PDF PYi|Si

i−l
(yi|s) as a

mixture of K Gaussians, and train a DNN to learn a parametric
estimate of its mixing parameters, mean values, and covariances,
denoted wk,θ(s), µk,θ(s) and Σk,θ(s), respectively, by maxi-
mizing the likelihood of

P̂θ (yi|s) =
K∑

k=1

wk,θ(s)N
(
yi|µk,θ(s),Σk,θ(s)

)
, (15)

as illustrated in the lower part of Fig. 4.

Both of the above architectures can be used for learning the
conditional distribution PYi|Si

i−l
(·) utilized by the learned sta-

tionary factor graph. To provide guidelines for choosing between
these architectures, we note that whenY is high-dimensional, di-
rectly learning the conditional density is difficult and likely to be
inaccurate. In such cases, the classification-based architecture,
which avoids the need to explicitly learn the density by account-
ing for the invariance of Algorithm 1 to message scaling, may be
preferable. When the state cardinality |S|l+1 is large, conditional
density networks are expected to be more reliable. However, the
SP algorithm, which computes the messages for each possible
state, becomes computationally infeasible when |S|l+1 grows,
making the application of the SP algorithm over learned factor
graphs non-suitable for such setups. Consequently, in our nu-
merical study we use the classification network architecture for
learning the function nodes.

C. Using Learned Factor Graphs for Inference

The proposed approach of inference over learned factor
graphs has several key advantages: First, as learning a single
function node is expected to be a simpler task compared with
learning the overall inference method for recovering St from
Y t, this approach uses relatively compact DNNs, which can
be learned from a relatively small set of labeled data. Further-
more, the learned function node describes the factor graph for
different values of t, implying that the same architecture can be
used for inference from sequences with different lengths. When
the learned function node is an accurate estimate of the true
one, message passing over it effectively implements the MAP
detection rule (3), and thus approaches the minimal probability
of error for each time instance.

Learned factor graphs rely on prior knowledge of the graph
structure, which directly follows from the Markovian and sta-
tionarity assumptions. As such, it incorporates this limited level
of domain knowledge in the structure of the factor graph, but
does not impose any assumptions on the function nodes. These
properties allow the representation of complex and possibly an-
alytically intractable joint distributions as learned factor graphs,
as long as they obey the Markovian stationary structure. The
mapping of the function nodes is learned in a model-invariant
manner from labeled data comprised of realizations of the ob-
served sequence along with the corresponding realizations of
the hidden state. In practice, the latter can be obtained from
measurements or based on human annotations, as in the nu-
merical study detailed in Section IV-A. If additional domain
knowledge is present, it can be incorporated via imposing some
parametric model on the function nodes {f̂(·)}, which follows
from our understanding of the behavior of the setup at hand.
Moreover, partial domain knowledge can be exploited to facili-
tate unsupervised training of the learned modules, thus relieving
the dependence on known realizations of the state sequence,
as recently proposed for DNN-aided tracking based in [44].
The operation of the proposed learned SP inference is invariant
of whether its DNN-based function nodes were trained in a
supervised or in an unsupervised manner. Nonetheless, we leave
the study of unsupervised training of the learned function nodes
for future investigation.
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The proposed strategy significantly simplifies inference for
scenarios represented by cycle-free factor graphs, such as the
considered Markovian setup, compared with previously pro-
posed DNNs whose structure imitates the message passing
operation trained end-to-end, such as factor graph neural net-
works [26], [29]. In particular, this approach enables the usage
of compact DNNs which can be trained using small data sets
and achieve improved performance over factor graph neural
networks for cycle-free factor graphs, as numerically demon-
strated in Section IV. Furthermore, the learned factor graph can
be applied to stationary time sequences of different lengths,
without having to change its architecture and train anew, as
well as be utilized with different message passing mecha-
nisms, as we show in Section III-D. For blockwise stationary
sequences, one only needs to learn a different function node
for each block, as discussed in Section III-E. Factor graph
neural networks are expected to be advantageous for scenarios
characterized by loopy factor graphs, i.e., setups not obeying
the system model detailed in Section II-A, where SP inference
does not coincide with the MAP rule, and thus training end-
to-end with sufficient data can lead to an improved inference
rule.

The proposed approach of inference over learned factor
graphs bears some similarity to previous works on the optimiza-
tion of information bounds for communication channels with
memory [45], [46]. In particular, the channel model considered
in [45] specializes to the stationary Markovian setup of (2) under
the additional constraint that the observations take values in a
finite set. The main similarity to our work follows from the
optimization over an auxiliary observations model, which [45]
uses for formulating tight bounds on the information rates. Here,
we use DNNs to capture the subtleties of this model from data
such that the data-driven model can be integrated into factor
graph based inference. Despite the similarity in the model and
the approach, our work is somewhat different from these prior
works on information rate bounds in the considered task as well
as the usage of deep learning tools combined with principled
model-based algorithms.

The proposed approach for using learned factor graphs trains
the function nodes separately from the inference algorithm
which utilizes the factor graph. Consequently, the factor graph
learned can be processed using various message passing al-
gorithms other than the SP scheme, e.g., the max-product
method [2] and the Viterbi algorithm [3]. In particular, in
the following subsection we show that the function nodes of
learned factor graphs assuming equiprobable {Si} produce the
same learned quantities as that used by ViterbiNet, proposed
in [30] for symbol detection in finite-memory communication
channels. Furthermore, the rationale of inference over learned
factor graphs can be combined with alternative factor graph
structures and message passing mechanisms, such as those used
for joint channel estimation and iterative detection in [47]–[50].
Finally, we expect the same design to be applicable when training
in an end-to-end manner, i.e., by backpropating through the
message passing algorithm, as was done in [51] for image
segmentation problems. We leave these extensions for future
research.

D. Application as the Viterbi Algorithm

SP inference over learned factor graphs detailed in Section
III-B is based on the ability to learn a parametric estimate
of the function node mapping for factor graphs of stationary
time sequences. However, once the factor graph is learned from
data, it can also be used by factor graph inference algorithms
other than the SP method. One such alternative designed for
Markovian observations is the Viterbi scheme [3], originally
proposed for decoding convolutional channel codes in digital
communications. While the Viterbi algorithm can be applied
with both forward and backward recursions over the underlying
factor graph, we focus here on its implementation with a single
forward recursive computation, following the description of the
Viterbi scheme in [52, Ch. 3.4] and [34, Ch. 8.3].

1) The Viterbi Algorithm: The Viterbi detector aims at re-
covering the maximum likelihood sequence estimator in (4) via

ŝt
(
yt
)
= argmin

st∈St
− logPY t|St

(
yt|st

)

= argmin
st∈St

t∑
i=1

− logPYi|Si
(yi|si) , (16)

where in (16) we use the abbreviated term Si defined in Section
III-A, i.e., Si = Si

i−l+1. The optimization problem (16) can be
solved recursively using dynamic programming, by iteratively
updating a path cost ci(s) for each state s ∈ Sl. The resulting
scheme, known as the Viterbi algorithm, is given below as
Algorithm 2.

Algorithm 2 outputs its estimate of the complete unknown
sequence, i.e., ŝt, at time instance t. However, its output can
also be approximated in real-time, since all paths at time i+ l,
{pi+l(s)}s∈Sl typically include the same states corresponding
to time instances not larger then i [35], [53]. Consequently, the
output of Algorithm 2 can be approached by estimating ŝi when
processing yi+l, and thus produce its estimates with a constant
delay of l time instances. It is emphasized though that while this
implementation typically comes at a negligible performance loss
compared to Algorithm 2, it is no longer guaranteed to recover
the maximum likelihood sequence estimator.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 25,2022 at 09:14:27 UTC from IEEE Xplore.  Restrictions apply. 



SHLEZINGER et al.: LEARNED FACTOR GRAPHS FOR INFERENCE FROM STATIONARY TIME SEQUENCES 373

2) Viterbi Detection Over Learned Factor Graphs: To see
that the learned factor graph detailed in Section III-B can also
be applied for Viterbi detection, we focus on the case where
the conditional distribution of Si given Si−1 is uniform, as is
commonly the case in digital communications systems for which
Algorithm 2 was originally derived.

In such cases the shortest path (17) can be written as

us = argmin
u∈Sl

(
ci−1 (u)−logPYi|Si

(yi|s)−logPSi|Si−1(s|u)
)

= argmin
u∈Sl

(ci−1 (u)− log fi (yi, s,u)) , (19)

where fi(·) is defined in (8).
Similarly, the cost update (18) can be replaced with

ci (s) = ci−1 (us)− log fi (yi, s,us) , (20)

without affecting the resulting inference rule. Furthermore, scal-
ing the function nodes fi(·) by some γi that is independent of
the state does not affect the Viterbi algorithm due to the argmin
statements in Algorithm 2. This implies that the same learned
factor graph proposed in Section III-B for SP inference, which
trains parametric estimates of fi(·), can be utilized to also carry
out Viterbi detection in a data-driven manner. In fact, carrying
out the Viterbi algorithm (rather than the SP method) over the
learned factor graphs coincides with ViterbiNet, proposed in [30]
for symbol detection in finite-memory communications. The
application of the model-based SP algorithm in such scenarios,
i.e., symbol detection in finite-memory channels, specializes to
the BCJR algorithm [6]. Thus SP inference over learned factor
graphs of the joint input-output distribution of finite memory
communications implements BCJR detection from data.

3) Discussion: Learned factor graphs can thus be applied,
once trained, to carry out multiple inference algorithms, in-
cluding the SP scheme (as proposed in Section III-B) as well
as the Viterbi algorithm (via ViterbiNet). Furthermore, while
Algorithm 2 considers the combination of learned factor graphs
with Viterbi detection to produce hard decisions, where the
output is the vector ŝt ∈ St, similar computations can be used
to output soft decisions by utilizing the soft-output Viterbi
algorithm over the learned factor factor graph. Once the factor
graph encapsulating the underlying distribution is learned, one
can decide which inference algorithm to apply to a learned factor
graph. The preference of one method over the other is invariant
of the learned factor graph, and follows from the differences
between model-based message passing schemes, e.g., the dif-
ferences between the SP algorithm and the Viterbi algorithm.
The main advantages of Algorithm 2 over Algorithm 1, and thus
of using a learned factor graph as part of ViterbiNet over SP
inference, are its reduced complexity and the fact that it can
be approached using a real-time operation. In particular, while
the complexity of both algorithms grows linearly with the block
size t, the Viterbi scheme as detailed in Algorithm 2 computes
only a forward recursion and can thus provide its estimations in
real time within a given delay from each incoming observation,
while the SP scheme implements both forward and backward
recursions, and can thus infer only once the complete block is
observed. One can also implement the SP method using only

the forward messages, and thus share the real-time operation
and reduced complexity of Algorithm 2, at the cost of reduced
accuracy and deviation from the MAP rule.

The main advantage of Algorithm 1 over Algorithm 2, i.e., of
using the learned factor graphs for SP inference with forward
and backward recursions rather than as part of the ViterbiNet
system, stems from the fact that it implements the MAP rule
(3), which minimizes the symbol error probability. The maxi-
mum likelihood sequence detector (4) computed by the Viterbi
algorithm, requires the states to be equiprobable in order to be
able to approach the performance of the MAP rule. In digital
communications, where the Viterbi algorithm originates, the
states correspond to transmitted symbols, which are commonly
equiprobable, and thus the Viterbi detector is far more popular
and widely used compared with the SP scheme. However, in
many other problems involving inference from time sequences,
such as sleep pattern detection considered in Section IV-A, the
states do not obey a uniform distribution, making the com-
bination of learned factor graphs with SP inference the more
attractive and natural data-driven method for such tasks.

E. Application for Blockwise-Stationary Statistical Variations

In the previous subsections we discussed how one can learn
to infer from time sequences by using DNNs for estimating the
function nodes in factor graphs with known structures, rather
than using these networks for the complete end-to-end inference
task. As a result, inference over learned factor graphs can be car-
ried out using relatively compact networks which are trainable
with a small number of training samples, as we also numerically
demonstrate in our experimental study detailed in Section IV.
This property of learned factor graphs facilitates their operation
in the presence of blockwise stationary distributions.

As detailed in Section II-A, under a blockwise stationary
distribution, the conditional PDF PYi|Si

(·), which is the map-
ping produced by a neural network in learned factor graphs,
changes every tb time instances. Such scenarios correspond to,
e.g., communication over block-fading channels. In general, one
can tackle these time variations by joint learning [54], [55], i.e.,
training the function nodes using labeled data corresponding to
a broad set of expected distributions. However, this approach
requires a large data set, and the resulting mapping may be
inaccurate for each of the observed PYi|Si

(·). Alternatively,
one can train in advance a different network for each statistical
block via ensemble models [56]. Such a strategy is feasible
when one has prior access to training data corresponding to each
statistical relationship as well as knowledge regarding the order
in which these statistical models are observed during inference.
An additional approach involves the usage of meta-learning
tools as in [57], [58] for tuning the architecture and training
hyperparameters of the data-driven function node architecture
such that it can be rapidly re-trained to accurately represent a
given family of expected distributions.

Finally, when some future indication on the inference cor-
rectness is available, the ability to train data-driven function
nodes individually using a small number of labeled samples
can be exploited to track temporal variations in the underlying
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statistics, without requiring prior knowledge of these variations.
This is achieved by using the future indication to re-train the
network in a self-supervised manner. For example, in a digital
communications setup, the desiredSt represents the transmitted
symbols, while the observed Y t is the output of the channel
used for recovering these symbols. Such communications are
typically protected using error correction coding, implying that
even when some of the symbols are inaccurately estimated, the
conveyed message is still recoverable, as long as the number of
errors does not exceed the code distance [34, Ch. 8]. In such
cases, the recovered message can be re-encoded, generating the
postulated transmitted symbols, which in turn can be used along
with corresponding observations for re-training the learned pa-
rameters, as proposed in [30], [59], [60]. When this network
can be effectively adapted using a small training set of the order
of a communication codeword, the resulting data-driven digital
communication receiver is capable of tracking the variations of
the underlying statistical model, thereby avoiding errors caused
by these variations. We numerically demonstrate the gains of
this approach for adapting learned factor graphs to track block-
wise variations in the context of digital communications in our
experimental study described in Section IV-B.

IV. EXPERIMENTAL RESULTS

We next numerically evaluate inference over learned factor
graphs in an experimental study. First, we consider the problem
of sleep pattern detection, using the PhysioNet Sleep-EDF Ex-
panded database [31]. Then, we focus on symbol detection in
communication over finite-memory channels, using simulated
data of common channel models. We conclude the section with
an evaluation of the computational complexity associated with
inference via learned factor graphs. Throughout this section,
we use the classification network architecture (upper part of
Fig. 4), trained with the Adam optimizer [61] to minimize
the cross-entropy loss for learning the function nodes.3 The
state transition probability is estimated from the training data
provided in each experiment via a histogram, i.e., for nt labeled
training samples {sk, yk}nt

k=1, it is computed as

P̂ (si|si−1)=
∑nt

k=l+1 1
(
[sTi−1, si]=[sk−l, . . . , sk]

)∑nt

k=l+1 1
(
sTi−1 = [sk−l, . . . , sk−1]

) , (21)

where 1(·) is the indicator function.
We utilize relatively compact networks which require only

several minutes to train on a standard CPU. The specific archi-
tectures used for each setup are detailed in the description of the
corresponding scenarios below.

A. Sleep Pattern Detection

Here, we consider the problem of sleep pattern detection
from EEG signals. We use the PhysioNet Sleep-EDF Expanded
database [31], which consists of 197 whole-night PolySomno-
Graphic sleep recordings, containing EEG, EOG, chin EMG,

3The source code used in this section is available online at https://github.com/
nirshlezinger1/LearnedFactorGraphs

Fig. 5. The 5 FC network used for learning the function nodes.

and event markers. Similar to many prior works in this area [62]–
[64], we use 20 patients from one of the two studies in this dataset
that investigates the age effect in healthy subjects, known as the
Sleep Cassette (SC) dataset. We focus on using a single EEG
channel recording (the EEG channel Fpz-Cz) to classify five
stages of sleep: awake (AWA), REM, and non-REM sleep stages
(N1-N3), i.e., |S| = 5. In particular, every 30 seconds of record-
ing (i.e., 3000 EEG samples at 100 Hz), which is called an epoch,
is labeled by human experts. For some of our experiments, we
apply the feature extraction method proposed in [33] to extract
150 features in each epoch, used as the observation Yi.

The task here is to identify the sleep states from the ob-
served EEG signal. The common strategy is to train highly-
parameterized DNNs to predict Si from Yi, based on convolu-
tional layers [62], [64] or bidirectional recurrent neural networks
(RNNs) [63]. Our goal here is to show that by using the compact
networks associated with learned factor graphs, one can achieve
comparable performance to previously proposed deep detectors.
These compact networks can be trained using smaller data
sets and are simpler to implement compared with previously
proposed DNNs. We also show that the learned factor graph
framework can be used to improve upon existing architectures,
using their predictors for learning the function nodes instead of
for directly recovering the desired {Si}.

We learn the factor graph assuming that the sleep states follow
a first-order Markov chain model, i.e., l = 1, and the joint distri-
bution of states and measurements is stationary. In particular, we
utilize a five layer fully-connected (FC) network (referred to as 5
FC) consisting of: 150× 1200 FC layer with sigmoid activation;
1200× 600, 600× 300, and 300× 150 FC layers with ReLU
activations; and 150× 5 FC layer with softmax output layer.
An illustration of this network is depicted in Fig. 5. Here we
use the 150 features extracted from EEG signals at each epoch
as the network input. We also use a 34 layer residual network
(referred to as 34 ResNet) proposed in [64], where the network
input is the raw EEG signals during each epoch. For both of
these networks, we compare the accuracy of the trained network
directly applied for sleep pattern detection with that achieved
when used as learned function nodes for SP inference.

First, we apply leave-one-out (LOO) cross-validation, where
the data from one patient is left out for evaluation, while the data
from the 19 other patients is used for training the models. The
average accuracy of the algorithms for each patient is shown in
Fig. 6(a), while the confusion matrices achieved using learned
factor graphs when using the 5 FC network and with 34 ResNet
are shown in Fig. 7(a)–(b), respectively. Here, the 5 FC network
is trained with an initial learning rate of 0.001 over 50 epochs
with a mini-batch size of 60 samples. Directly applying 5 FC

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 25,2022 at 09:14:27 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/nirshlezinger1/LearnedFactorGraphs
https://github.com/nirshlezinger1/LearnedFactorGraphs


SHLEZINGER et al.: LEARNED FACTOR GRAPHS FOR INFERENCE FROM STATIONARY TIME SEQUENCES 375

Fig. 6. Sleep pattern detection numerical results.

TABLE I
LOO OVERALL ACCURACY

achieves an average accuracy of 79.2%, while using it to learn the
factor graph in SP inference achieves an improvement of 3.6%,
resulting in an accuracy of 82.8%. Similarly, the 34 ResNet
achieves an accuracy of 82.3% while applying it to learn the
factor graph achieves an average improvement of about 2%, re-
sulting in an accuracy of 84.2%. As summarized by Table I, when
using either the 5 FC network or the 34 ResNet classifier to learn
the factor graph, our algorithm outperforms the state-of-the-art
deep learning algorithms applied to this dataset [62], [63].

We also observe in Fig. 6(a) that for some patients, such as
patient 12, the samples appear to obey a considerably different

statistical model from that of the remaining patients. This
degrades the classification accuracy of the compact network,
which in turn leads to an inaccurate estimate of the function
nodes, resulting in accuracy below 75%. This motivates us to
evaluate learned factor graphs when trained and tested using
samples from the same patient, exploiting the compact networks
of then learned factor graphs, which facilitates training from
small data sets. We thus compute the accuracy when, for each
patient, the networks are trained using its first 1000 samples
and tested using the remaining samples, except for patient 14
for which less than 1000 samples are available.

The average accuracy for each patient is depicted in Fig. 6(b),
and the confusion matrix achieved by learned factor graphs using
the 5 FC network for learning the function nodes is shown in
Fig. 7(c). Here, directly applying the 5 FC network as a classifier
achieves an accuracy of 76%, as the DNN is trained using only
1000 samples, using it to form a learned factor graph improves
the accuracy to 81%. 34 ResNet achieves only 60% accuracy due
to its inability to properly train its highly parameterized network
using small datasets. Building upon the ability of the relatively
compact network to adapt with few samples, learned factor
graphs achieve improved accuracy when applied to patients
whose measurements obey a unique statistical model. For ex-
ample, the SP method over the learned factor graph achieves an
accuracy of 92% when applied to patient 12, improving by over
8% compared with using the network as predictor, and by 25%,
compared with its performance when trained over the remaining
19 patients in Fig. 6(a). These results demonstrate the potential
of combining neural networks for learning the function nodes
rather than to carry out the complete classification tasks, as well
as the advantages of this approach in allowing the usage of com-
pact networks, which can be trained with small training sets, for
accurate inference from time sequences with non-synthetic data.

B. Symbol Detection in Digital Communications

Next, we apply learned factor graphs for detection in a finite-
memory communication setup. We use simulated data based
on common channel models, which allows us to compare the
performance of the SP method over learned factor graphs with
that of the model-based SP algorithm, as well as to that of
existing deep detectors. Here, a transmitter sends a sequence of
symbols Si ∈ S , i ∈ T , and a receiver uses the channel output
Yi ∈ R to recover the symbols. Each Yi is affected only by the
last l transmitted symbols, where l is the memory length.

We consider two channels with memory length l = 4: A
Gaussian channel and a Poisson channel. Let h(γ) ∈ Rl be a
vector whose entries obey an exponentially decaying profile
hτ (γ) � e−γ(τ−1) for γ > 0 and τ ∈ {1, . . . , l}. For the Gaus-
sian channel, the symbols take values in the set S = {−1, 1},
representing a binary phase shift keying constellation, and the
channel output is generated via

Yi|St ∼ N
(
√
ρ ·

l∑
τ=1

hτ (γ)Si−τ+1, 1

)
, (22)

where ρ > 0 represents the signal-to-noise ratio (SNR). For the
Poisson channel, the channel input represents on-off keying, i.e.,
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Fig. 7. Sleep pattern detection confusion matrices of SP inference over learned factor graphs.

Fig. 8. The 3 FC network used for learning the function nodes.

S = {0, 1}, and the channel output Yi obeys

Yi|St ∼ P
(
√
ρ ·

l∑
τ=1

hτ (γ)Si−τ+1 + 1

)
, (23)

where P(·) is the Poisson distribution. Namely, for each re-
alization St = st, the channel output for every time instance
is generated independently, where the output at corresponding
to the ith time instance is generated from a Poisson distribution
with parameter which equals

√
ρ ·
∑l

τ=1 hτ (γ)si−τ+1 + 1 [65].
We implement the classification network with three FC layers:

1× 100,100× 50, and50× 16 layers, using sigmoid and ReLU
activation functions, respectively. The network is trained using
5000 samples, which is the order of a typical preamble sequence
in wireless networks [66], with learning rate 0.01. The training
is carried out over 100 epochs with mini-batch size of 27. Using
these training samples to compute the transition probability via
(21) yields an estimate with normalized mean-squared error of
merely 1.01 · 10−4 with respect to the true transition probability
which equals 1

|S| =
1
2 here. The DNN architecture is depicted in

Fig. 8.
For each channel, we compute the symbol error rate (SER)

achieved using learned factor graphs for different values of the
SNR ρ, and the DNN-aided function node is trained anew for
each value of ρ. For every SNR, the SER values are averaged
over 20 different channel vectors h(γ), obtained by letting γ
vary in the range [0.1, 2]. For comparison, we evaluate the
SER of the model-based SP algorithm, as well as that of the
data-driven sliding bidirectional RNN (SBRNN) deep detector
proposed in [65] and the factor graph neural network of [26],
for which we use the same architecture as that utilized in the
numerical study in [26, Sec. 4.1]. We consider two cases: The
first is perfect channel state information (CSI), in which the SP
method knows the exact h(γ), while the data-driven systems
are trained using data consisting of samples generated with the
same h(γ) used for the test data. The second setup considered,

referred to as CSI uncertainty, considers the scenario in which
the SP algorithm is implemented using an estimate of h(γ)
corrupted by Gaussian noise with variance which equals 10%
and 8% of the magnitude of the channel tap for the Gaussian
and Poisson channels, respectively. Using the considered setup
for CSI uncertainty represents the operation of the model-based
SP algorithm in scenarios where the underlying model is not
accurately known, in a manner that is invariant of how this
uncertainty is obtained. For the DNN-aided systems, the training
data is generated with the noisy h(γ), allowing us to study
resiliency to inaccurate training. In all cases, the information
symbols are uniformly randomized in an i.i.d. fashion from S ,
and the test samples are generated from their corresponding
channel with the true vector h(γ).

The SER values, averaged over 50000 Monte Carlo simula-
tions, are depicted in Fig. 9(a)–(b) for the Gaussian and Poisson
channels, respectively. We observe in Fig. 9(a)–(b) that the SER
achieved using learned factor graphs approaches that of the SP
algorithm from which it originates, while the latter requires
accurate prior knowledge of the underlying distribution. In the
presence of CSI uncertainty, carrying out SP inference over a
learned factor graph significantly outperforms applying it over
the inaccurate model-based factor graphs. When the function
nodes are trained with a variety of different channels, learned
factor graphs achieve relatively good SER when inferring under
each of the channels for which it is trained, while the perfor-
mance of the conventional SP method is significantly degraded
due to imperfect CSI. We also observe that the SBRNN receiver,
shown in [65] to approach the performance of the MAP rule
when sufficient training is provided, is outperformed by SP in-
ference over learned factor graphs here due to the small training
set. A similar observation is noted for the factor graph neural
network of [26], whose SER performance is within a notable
gap from by the proposed approach of learned factor graphs for
the considered scenario. These results demonstrate the ability of
learned factor graphs to enable accurate implementation of the
SP method while requiring small training sets and improving
robustness to uncertainty.

Next, we consider blockwise stationary channels, showing
how the approach discussed in Section III-E can exploit coded
communications for channel tracking. Here, transmission
consists of multiple codewords of length tb = 2040, each
representing 1784 bits encoded using a Reed-Solomon
(RS) [255, 223] channel code, and protected with a cyclic
redundency check (CRC) for error detection. We simulate the
Gaussian and Poisson channels in (22)–(23), respectively. To
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Fig. 9. Symbol detection accuracy of the SP algorithm over learned factor
graphs compared the data-driven SBRNN detector [65] and the purely model-
based SP method.

simulate block-wise temporal variations, we let the entries
of h(γ) vary between codewords. As in [30], for the jth
codeword, we use hτ (γ) � e−γ(τ−1) · (0.8 + 0.2 cos( 2π·jpτ

))

for each τ ∈ {1, . . . , l}, with a fixed exponential decay
parameter γ = 0.2, and withp = [51, 39, 33, 21]T , representing
block-wise periodic variations in the channel coefficients.

Before the first block is transmitted, a factor graph repre-
senting a stationary distribution is learned using 5000 training
samples taken using the initial channel coefficients. In order to
track channel variations via online training, we use successful
decoding to re-train the function nodes in a decision-directed

manner [30], [59]. In particular, each recovered block Ŝ
tb

is
decoded to its corresponding 1784 bits using an RS decoder,
and validated using a CRC check. If the CRC check passes, the
bits are re-encoded using an RS encoder into a postulated symbol

block S̃
tb , which is used along with its corresponding observed

Y tb to retrain the learned function node using 50 epochs with
an initial learning rate of 0.002.

In addition to evaluating learned factor graphs with online
training, we also compute the coded bit error rate (BER) when
the function node is trained only once using the 5000 training
samples representing the initial channel, referred to as initial
training, as well as when trained once using 5000 training
samples corresponding to the channels observed at blocks j ∈
3 · {1, . . . , 10}, referred to as joint training. The coded BER

Fig. 10. BER for blockwise stationary channels.

of SP inference over learned factor graphs is compared with
that of the SP detector with full instantaneous CSI as well as to
that with knowledge of only the initial channel conditions. The
coded BER results, averaged over 200 consecutive blocks, are
depicted in Fig. 10(a)–(b) for the Gaussian and Poisson channels,
respectively.

Observing Fig. 10(a)–(b), we note that for both channels, as
the SNR increases, learned factor graphs with online training
approaches the performance of the model-based SP detector
with instantaneous CSI, which implements MAP detection here.
The latter require accurate knowledge of the complete input-
output statistical relationship for each block. For low SNRs,
the performance of SP inference over the online-trained factor
graph is only slightly improved compared with training only
using the initial channel. This can be explained by noting that
for high SNR values, the number of symbol detection errors
does not grow above the code distance as the channel changes
between block, and thus the proposed online training scheme is
capable of generating reliable labels. The online-trained factor
graphs can accurately track the channel, allowing inference
with optimal-approaching performance. However, for low SNR
values, the RS decoder frequently fails to correctly decode the
bits, and the online training methods does not frequently update
its neural network, thus achieving only a minor improvement
over using only the initial training data set. The ability to track
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channel variations in a decision-directed manner can be poten-
tially improved by utilizing syndrome decoders, as proposed
in [59]. We leave this study for future work.

We also observe in Fig. 10(a)–(b) that the (offline) joint
training approach allows inference over learned factor graphs
to achieve improved BER performance compared with using
only initial training. This follows since the resulting decoder
is capable of operating in a broader range of different channel
conditions. Still, joint training is notably outperformed by the
SP detector with instantaneous CSI, whose BER performance is
approached only when using online training at high SNRs.

The results reported in Fig. 10(a)–(b) indicate that in order
to reliably cope with non-stationary conditions, learned factor
graphs designed for stationary setups should be combined with
additional mechanisms for tracking the statistical variations,
such as the online training mechanism discussed in Section III-E.
Nonetheless, one can also design learned factor graphs to cope
with non-stationarity by learning different function nodes for
different time instances, at the cost of requiring larger datasets
for training and possible limitations on the duration of the time
sequences. We leave this extension of learned factor graphs for
future study.

C. Inference Computational Complexity

We conclude this section by comparing the computational
complexity of inference over learned factor graphs with that of
end-to-end deep learning models. Specifically, we focus on the
symbol detection setup detailed in Section IV-B and consider the
SBRNN algorithm as the end-to-end deep learning model, as this
architecture is shown to achieve the best performance among the
end-to-end deep learning models evaluated in Fig. 9(a)–(b).

Recall that t is the length of the sequence, S is the symbol
set, and l is the memory length of the channel. Let Nf be the
computational complexity of the learned factor node in the
factor graph, i.e., the number of operations required to map
a single observation yi and state vector si−1 into an estimate
of the function node {f̂(yi, si, si−1)}si∈S . For instance, using
the classification DNN architecture illustrated in Fig. 4(a),
this operation involves passing the value yi through a fully-
connected DNN, which using the DNN in Fig. 8 is comprised
of approximately 6 · 103 multiplications, and computing |S|
transition estimates from si using a look-up table. Once the
messages are computed for each state and for each time instance
i, i.e., |S|l · t times, inference is carried out by computing the
forward and backward messages via (10)–(11), resulting in an
overall computational burden of the order of O(Nf · |S|l · t).
For comparison, letting Nr be the computational complexity
of the RNN block corresponding to one time-step in the
SBRNN architecture, the computational complexity of the
SBRNN is on the order of O(Nr · l · t). Generally, we
expect Nr 
 Nf ; For example, in the scenario reported in
Section IV-B computing the function nodes is done using
Nf ≈ 6 · 103 multiplications, while the SBRNN architecture
requires Nr ≈ 1.3 · 105 multiplications per time instance.
Therefore, for the symbol detection scenario, SP over learned
factor graphs does not only train with less data compared with
the SBRNN system, but also infers at reduced computational
complexity.

When the state cardinality |S|l+1 is large, SP inference, and
thus also its application over learned factor graphs, may be com-
putationally prohibitive. In these regimes, one can still utilize
learned factor graphs for inference at controllable computational
burden by utilizing alternative inference methods based on,
e.g., state reduction [67]. This indicates that it is possible to
have learned factor graphs that are efficient both in terms of
sample efficiency during training, and in terms of computational
complexity during inference. Nonetheless, we leave the detailed
study of the combination of learned factor graphs with such
reduced complexity inference methods for future work.

V. CONCLUSION

In this work we proposed a framework for inference from
stationary time sequences via learned factor graphs, combining
the model-based SP algorithm with data-driven ML tools. By
exploiting domain knowledge of a stationary and Markovian
characteristics, encountered in many applications in signal pro-
cessing and communications, the factor graph encapsulating
the underlying distribution can be learned separately from the
overall inference task. This results in a hybrid model-based/data-
driven system based on compact neural networks which can
be trained with relatively small training sets. The resulting
algorithm carries out inference over the learned factor graph
in a manner which is not restricted to a specific number of
input samples. The integration of DNNs for learning the function
nodes combined with domain knowledge which determines the
structure of the graph results in a system which learns from
data to carry out MAP-approaching detection in complex setups.
Furthermore, a learned factor graph can be used with different
message passing based inference algorithms, other than the
SP method. Our numerical evaluations demonstrate the ability
of learned factor graphs to facilitate accurate inference and
improve upon existing classifiers for sleep pattern detection and
symbol recovery. We also show that its ability to train with small
training sets enables personalized learning as well as tracking
of blockwise temporal variations in the statistical model, which
are both extremely challenging to carry out using conventional
highly-parameterized DNNs.
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