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Abstract—We focus on over-the-air (OTA) Federated Learning
(FL), which has been suggested recently to reduce the communi-
cation overhead of FL due to the repeated transmissions of the
model updates by a large number of users over the wireless chan-
nel. In OTA FL, all users simultaneously transmit their updates
as analog signals over a multiple access channel, and the server
receives a superposition of the analog transmitted signals. However,
this approach results in the channel noise directly affecting the
optimization procedure, which may degrade the accuracy of the
trained model. We develop a Convergent OTA FL (COTAF) algo-
rithm which enhances the common local stochastic gradient descent
(SGD) FL algorithm, introducing precoding at the users and scaling
at the server, which gradually mitigates the effect of noise. We
analyze the convergence of COTAF to the loss minimizing model
and quantify the effect of a statistically heterogeneous setup, i.e.
when the training data of each user obeys a different distribution.
Our analysis reveals the ability of COTAF to achieve a convergence
rate similar to that achievable over error-free channels. Our sim-
ulations demonstrate the improved convergence of COTAF over
vanilla OTA local SGD for training using non-synthetic datasets.
Furthermore, we numerically show that the precoding induced by
COTAF notably improves the convergence rate and the accuracy
of models trained via OTA FL.

Index Terms—Machine learning, optimization, gradient
methods, wireless communication.

I. INTRODUCTION

R ECENT years have witnessed unprecedented success of
machine learning methods in a broad range of applica-

tions [2]. These systems utilize highly parameterized models,
such as deep neural networks (DNNs), trained using massive
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data sets. In many applications, samples are available at remote
users, e.g. smartphones, and the common strategy is to gather
these samples at a computationally powerful server, where the
model is trained [3]. Often, data sets contain private information,
and thus the user may not be willing to share them with the
server. Furthermore, sharing massive data sets can result in
a substantial burden on the communication links between the
users and the server. To allow centralized training without data
sharing, federated learning (FL) was proposed in [4] as a method
combining distributed training with central aggregation, and is
the focus of growing research attention [5], [6]. FL exploits the
increased computational capabilities of modern edge devices to
train a model on the users’ side, having the server periodically
synchronize these local models into a global one.

Two of the main challenges associated with FL are the het-
erogeneous nature of the data and the communication overhead
induced by its training procedure [5]. Statistical heterogeneity
arises when the data generating distributions vary between dif-
ferent sets of users [7]. This is typically the case in FL, as the data
available at each user device is likely to be personalized towards
the specific user. As an example, consider the task of sentence
completion from text messages. Since users of different ages and
backgrounds are likely to use different wording and sentence
structures, the data sets from different users will be imbalanced.
When training several instances of a model on multiple edge
devices using heterogeneous data, each instance can be adapted
to operate under a different statistical relationship, which may
limit the inference accuracy of the global model [7]–[9].

The communication load of FL stems from the need to repeat-
edly convey a massive amount of model parameters between the
server and a large number of users over wireless channels [9].
This is particularly relevant in uplink communications, which
are typically more limited as compared to their downlink coun-
terparts [10]. A common strategy to tackle this challenge is to
reduce the amount of data exchanges between the users and the
server, either by reducing the number of participating users [11],
[12], or by compressing the model parameters via quantiza-
tion [13], [14] or sparsification [15], [16]. All these methods
treat the wireless channel as a set of independent error-free
bit-limited links between the users and the server. As wireless
channels are shared and noisy [17], a common way to achieve
such communications is to divide the channel resources among
users, e.g., by using frequency division multiplexing (FDM),
and have the users utilize channel codes to overcome the noise.
Such protocols are often utilized in wireless communication
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standards, as they mitigate the interference between the users
and thus facilitate recovery of the individual messages sent by
each user. This, however, results in each user being assigned
a dedicated band whose width decreases with the number of
users, which in turn increases the energy consumption required
to meet a desirable communication rate and decreases the overall
throughput and training speed.

An alternative FL approach is to allow the users to simulta-
neously utilize the complete temporal and spectral resources of
the uplink channel in a non-orthogonal manner. This method,
referred to as over-the-air (OTA) FL [18]–[22], exploits the fact
that the server in FL requires the individual model updates as
an intermediate step in aggregating them into a global model.
Therefore, while the presence of interference makes recovery
of each individual message more challenging compared to or-
thogonal transmissions, OTA FL directly recovers the federated
averaged model, exploiting the inherent aggregation carried out
by the shared channel as a form of OTA computation [23].
OTA FL builds upon the fact that when the participating users
operate over the same wireless network, uplink transmissions
are carried out over a mulitple access channel (MAC). Model-
dependent inference over MACs is relatively well-studied in the
sensor network literature, where methods for model-dependent
inference over MACs and theoretical performance guarantees
have been established under a wide class of problem settings
(see [24], [25] and references therein). These studies focused
on statistical-model-based parameter estimation or detection,
in which the task is to recover a parameter of interest based
on knowledge of an underlying statistical model by utilizing
observations from different users in a wireless network. Such
model-based inference is fundamentally different from machine
learning paradigms, such as FL.

In the context of FL with OTA computations, the works [18],
[19] considered scenarios where the model updates are sparse
with an identical sparsity pattern, using this pattern to reduce
communication overhead. However, these assumptions are not
likely to hold when the data is heterogeneous. Additional related
recent works on OTA FL, including [20], [22], [26], considered
the distributed application of full gradient descent optimization
over noisy channels. Energy management in OTA FL with
gradient transmissions was studied in [27], [28], and OTA FL in
MACs aided by reconfigurable intelligent surfaces was consid-
ered in [29]. Distributed learning based on full gradient descent
admits a simplified and analytically tractable analysis [20],
[22]. However, it requires each user to compute and repeatedly
transmit the gradients over the complete data set. Consequently,
it is less communication and computation efficient compared
to methods which involve gradient computation over subsets of
the data and multiple local iterations prior to transmission, such
as local stochastic gradient descent (SGD) which is the dom-
inant optimization scheme used in FL [4], [5]. Consequently,
OTA FL schemes proposed in these previous works and the
corresponding convergence analysis may not reflect the common
application of FL, i.e., distributed training with heterogeneous
data via local SGD.

The main advantage of OTA FL is that it enables users to
transmit at increased throughput, being allowed to utilize the

complete available bandwidth regardless of the number of par-
ticipating users. However, a major drawback of existing OTA
FL methods, e.g., [18]–[22], follows from the fact that using
uncoded analog signalling results in the noise induced by the
channels not being handled by channel coding. Consequently,
the presence of noise affects the training procedure. In par-
ticular, the accuracy of learning algorithms such as SGD is
known to be sensitive to noisy observations. For instance, while
gradient-based optimization converges to the optimal solution
for convex loss measures, in the presence of noise with sub-
Gaussian tails, the model can only be shown to converge to
some environment of the optimal solution [30]. This sensitivity
of gradient-based optimization to noisy observations adds to
the limited accuracy due to statistical heterogeneity of FL [31].
This implies that conventional FL algorithms, such as local
SGD [32], exhibit degraded performance when combined with
noise-inducing OTA computations. As a result, OTA FL is
typically unable to converge to the optimal weights for convex
loss measures. In this paper we overcome this drawback by
introducing time-varying precoding that gradually mitigates the
contribution of the channel noise over time.

A. Main Contributions

Specifically, we study OTA FL while accounting for the effect
of channel noise as well as the heterogeneity of the data. Our
main contributions are summarized as follows:

1) Algorithm development: We develop a joint computation
and transmission scheme, named convergent OTA FL
(COTAF). We introduce time-varying precoding to the
transmitted signals, which accounts for the fact that the
expected difference in each set of SGD iterations is grad-
ually decreasing over time, while guaranteeing energy-
bounded transmissions. COTAF results in an equivalent
model where the effect of the noise induced by the channel
is mitigated over time, thus facilitating high throughput
FL over wireless channels, while preserving the accuracy
and convergence properties of local SGD for distributed
learning. By conveying the model updates over the uplink
MAC, COTAF overcomes the need to divide the channel
resources among users. In contrast to previous OTA FL
works, e.g., [18]–[20], [22], [26], COTAF does not assume
that the users compute a single full gradient step or that
the models share a similar sparsity pattern, making it
applicable to FL based on local SGD optimization with
heterogeneous data.

2) Performance analysis: We analytically show that machine
learning models trained by COTAF converge to the min-
imal achievable loss function in the presence of hetero-
geneous data. We provide three convergence bounds: The
first two bounds consider FL over non-fading channels,
characterizing the convergence of a weighted average of
past models as in [32] and the convergence of the instan-
taneous model [12]. We then extend COTAF to fading
channels and characterize the corresponding convergence
of the instantaneous model.
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Fig. 1. An illustration of the distributed optimization setup. In this example, the data consists of images, where those of user 1 are biased towards car images,
while those of user N contain a large portion of ship images, resulting in a heterogeneous setup.

3) Experimental study: We evaluate COTAF in two scenarios
involving non-synthetic data sets: First, we train a linear
estimator, for which the objective function is strongly
convex, with the Million Song Dataset [33]. We demon-
strate that COTAF approaches the accuracy of noise-free
local SGD, while notably outperforming previous OTA FL
strategies. Then, we train a convolutional neural network
(CNN) over the CIFAR-10 dataset, representing a deep
FL setup with a non-convex objective, for which a minor
level of noise is known to contribute to convergence as
means of avoiding local minima [34]. We demonstrate that
COTAF improves the accuracy of trained models when
using both i.i.d and heterogeneous data, outperforming
not only conventional OTA FL, but also noise-free local
SGD.

The rest of this paper is organized as follows: Section II
briefly reviews the local SGD algorithm and presents the system
model of OTA FL. Section III presents the COTAF scheme along
with its theoretical convergence analysis. Numerical results are
detailed in Section IV. Finally, Section V provides concluding
remarks. Detailed proofs of our main results are given in the
appendix.

Throughout the paper, we use boldface lower-case letters
for vectors, e.g., x. The �2 norm, stochastic expectation, and
Gaussian distribution are denoted by ‖ · ‖, E[·], and N (·, ·)
respectively. Finally, In is the n× n identity matrix, and R
is the set of real numbers.

II. SYSTEM MODEL

In this section we detail the system model for which COTAF is
derived in the following section. We first formulate the objective
of FL in Subsection II-A. Then, Subsection II-B presents the
communication channel model over which FL is carried out.
We briefly discuss the local SGD method, which is the common
FL algorithm, in Subsection II-C, and formulate the problem in
Subsection II-D.

A. Federated Learning

We consider a central server which trains a model consisting
of d parameters, represented by the vector θ ∈ Θ ⊂ Rd, using
data available atN users, indexed by the setN = {1, 2, . . ., N},
as illustrated in Fig. 1. Each user of index n ∈ N has access to a
data set of Dn entities, denoted by {sni }Dn

i=1, sampled in an i.i.d.
fashion from a local distributionXn. The users can communicate
with the central server over a wireless channel formulated in
Subsection II-B, but are not allowed to share their data with the
server.

To define the learning objective, we use l(·, θ) to denote the
loss function of a model parameterized by θ. The empirical loss
of the nth user is defined by

fn(θ) �
1

Dn

Dn∑
i=1

l(sni ; θ). (1)

FL aims at minimizing the average loss:

θ� � arg min
θ∈Θ

F (θ), F (θ) � 1

N

N∑
n=1

fn(θ). (2)

When the data is homogeneous, i.e., the local distributions
{Xn} are identical, the local loss functions converge to the same
expected loss measure on the horizon of a large number of sam-
plesDn → ∞. However, the statistical heterogeneity of FL, i.e.,
the fact that each user observes data from a different distribution,
implies that the parameter vectors which minimize the local loss
vary between different users. This property generally affects the
behavior of the learning method used in FL, such as the common
local SGD algorithm, detailed in Subsection II-C.

B. Communication Channel Model

FL is often carried out over wireless channels. We consider FL
setups in which the N users communicate with the server using
the same wireless network, either directly or via some wireless
access point. As uplink communications, i.e., from the users to
the server, is typically notably more constrained as compared
to its downlink counterpart in terms of throughput [10], we
focus on uplink transmissions over MAC. The downlink channel
is modeled as supporting reliable communications at arbitrary
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rates, as commonly assumed in FL studies [13]–[16], [18]–[20],
[35].

We next formulate the uplink channel model. Wireless chan-
nels are inherently a shared and noisy media, hence the channel
output received by the server at time instance t when each user
transmits a d× 1 vector xn

t is given by

yt =

N∑
n=1

xn
t + w̃t, (3)

where w̃t ∼ N (0, σ2
wId) is d× 1 vector of additive noise.

While we model the noise as Gaussian, being the common noise
model in wireless communications, our analysis of FL in the
sequel is invariant to the marginal distribution of the noise signal.
The channel input is subject to an average power constraint

E
[‖xn

t ‖2
] ≤ P, (4)

where P > 0 represents the available transmission power. The
channel in (3) represents an additive noise MAC, whose main
resources are its spectral band, denoted B, and its temporal
blocklength τ , namely, yt is obtained by observing the channel
output over the bandwidth B for a duration of τ time instances.

The common approach in wireless communication protocols
and in FL research is to overcome the mutual interference in-
duced in the shared wireless channels by dividing the bandwidth
into multiple orthogonal channels. This can be achieved by, e.g.,
FDM, where the bandwidth is divided into N distinct bands, or
via time division multiplexing (TDM), in which the temporal
block is divided into N slots which are allocated among the
users. In such cases, the server has access to a distinct channel
output for each user, of the form

yn
t = xn

t + w̃n
t , n ∈ N . (5)

Orthogonalization of the channels in (5) facilitates recovery of
eachxn

t individually. However, the fact that each user has access
only to 1/N of the channel resources implies that its throughput,
i.e., the volume of data that can be conveyed reliably, is reduced
accordingly [17, Ch. 4]. In order to facilitate high throughput
FL, we do not restrict the users to orthogonal communication
channels, and thus the server has access to the shared channel
output (3) rather than the set of individual channel outputs in
(5).

We derive our OTA FL scheme and analyze its performance
assuming that the users communicate with the server of the noisy
MAC (3). However, in practice wireless channels often induce
fading in addition to noise. Each user of index n experiences at
time t a block fading channel h̃n

t = hn
t e

jφn
t , where hn

t > 0 and
φn
t ∈ [−π, π] are its magnitude and phase, respectively. In such

cases, the channel input-output relationship is given by

yt =
N∑

n=1

h̃n
t x

n
t + w̃t. (6)

Therefore, we show how the proposed COTAF algorithm can be
extended to fading MACs of the form (6). In our extension,
we assume that the participating entities have channel state
information (CSI), i.e., knowledge of the fading coefficients.
Such knowledge can be obtained by letting the users sense

their channels, or alternatively by having the access point/server
periodically estimate these coefficients and convey them to the
users.

C. Local SGD

Local SGD, also referred to as federated averaging [4], is a
distributed learning algorithm aimed at recovering (2), without
having the users share their local data. This is achieved by
carrying out multiple training rounds, each consisting of the
following three phases:

1) The server shares its current model at time instance t,
denoted by θt, with the users.

2) Each user sets its local model θn
t to θt, and trains it using

its local data set over H SGD steps, namely,

θn
t+1 = θn

t − ηt∇fint (θ
n
t ), (7)

where fint (θ) � l(snint ; θ) is the loss evaluated at a single

data sample, drawn uniformly from {sni }Dn
i=1, and ηt is the

SGD step size. The update rule (7) is repeated H steps to
yield θn

t+H .
3) Each user conveys its trained local model θn

t+H (or al-
ternatively, the updates in its trained model θn

t+H − θn
t )

to the central server, which averages them into a global
model via1 θt+H = 1

N

∑N
n=1 θ

n
t+H , and sends the new

model to the users for another round.
The uplink transmission in this algorithm is typically executed

over an error-free channel with limited throughput, where chan-
nel noise and fading are assumed to be eliminated [12], [32],
[36]. The local SGD algorithm is known to result in a model θt
whose objective functionF (θt) converges toF � � F (θ�) as the
number of rounds grows for various families of loss measures
under homogeneous data [32]. When the data is heterogeneous,
convergence is affected by an additional term encapsulating
the degree of heterogeneity, defined as Γ � F � − 1

N

∑N
n=1 f

�
n,

where f�
n � minθ fn(θ) [12]. In particular, for convex objec-

tives, convergence of the global model to (2) can be still guar-
anteed, though at slower rates compared to homogeneous se-
tups [12]. To the best of our knowledge, the convergence of local
SGD with heterogeneous data (e.g. non-i.i.d data distribution
between users) carried out over noisy fading wireless channels
has not been studied to date.

D. Problem Formulation

We consider FL carried out over shared wireless channels
using local SGD optimization, as detailed in Subsection II-C.
Each round of local SGD consists of two communication phases:
downlink transmission of the global model θt from the server
to the users, and uplink transmissions of the updated local
models {θn

t+H} from each user to the server. An illustration
of a single round of local SGD carried out over a wireless
MAC of the form (3) is depicted in Fig. 2. This involves the
repetitive communication of a large amount of parameters over

1While we focus here on conventional averaging of the local models, our
framework can be naturally extended to weighted averages.
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Fig. 2. An illustration of FL over wireless MAC.

wireless channels. This increased communication overhead is
considered one of the main challenges of FL [5], [9]. The
conventional strategy in the FL literature is to treat the uplink
channel as an error-free bit-constrained pipeline, and thus the
focus is on deriving methods for compressing and sparsifying
the conveyed model updates, such that convergence of θt to θ�

is preserved [13], [14], [16]. However, the model of error-free
channels, which are only constrained in terms of throughput,
requires the bandwidth of the wireless channel to be divided
between the users and have each user utilize coding schemes
with a rate small enough to guarantee accurate recovery. This
severely limits the volume of data which can be conveyed as
compared to utilizing the full bandwidth.

The task of the server on every communication round in FL is
not to recover each model update individually, but to aggregate
them into a global model θt. This motivates having each of
the users exploit the complete spectral and temporal resources
by avoiding conventional orthogonality-based strategies and
utilizing the wireless MAC (3) on uplink transmissions. The
inherent aggregation carried out by the MAC can in fact facilitate
FL at high communication rate via OTA computations [23],
as was also proposed in the context of distributed learning
in [18]–[20]. However, the fact that the channel outputs are
corrupted by additive noise is known to degrade the ability
of SGD-based algorithms to converge to the desired θ� for
convex objectives [30], adding to the inherent degradation due
to statistical heterogeneity. For non-convex objectives, noise can
contribute to the overall convergence as it reduces the probability
of getting trapped in local minima [34], [37]. However, for the
learning algorithm to benefit from such additive noise, the level
of noise should be limited. It is preferable to have a gradual
decay of the noise over time to allow convergence when in the
proximity of the desired optimum point, which is not the case
when communicating over noisy MACs.

Our objective is to design a communication strategy for FL
over wireless channels based on the optimization problem (2).
This involves determining a mapping, referred to as precoding,
from θnt into xn

t at each user, as well as a transformation of
yt into θt on the server side. To tackle the challenges de-
scribed above, the algorithm is required to: 1) Mitigate the

limited convergence of noisy SGD for convex objectives by
properly precoding the model updates into the channel inputs
{xn

t }; 2) benefit from the presence of noise when trained using
non-convex objectives; and 3) allow achieving FL performance
which approaches that of FL over noise-free orthogonal channels
for convex objectives, while utilizing the complete spectral and
temporal resources of the wireless channel. This is achieved by
introducing time-varying precoding mapping θnt 
→ xn

t at the
users’ side, and scaling laws are introduced at the server side
for accurate transformation of the received signal to a global
model. These rules gradually mitigate the effect of noise on the
resulting global model, as detailed in the following section.

III. THE CONVERGENT OVER-THE-AIR FEDERATED LEARNING

(COTAF) ALGORITHM

We now propose the COTAF algorithm. We first describe the
COTAF transmission and aggregation protocol in Subsection III-
A. Then, we analyze its convergence in Subsection III-B, proving
its ability to converge to the loss-minimizing network weights
under strongly convex objectives. In Subsection III-C we extend
COTAF to fading channels, and discuss its pros and cons in
Subsection III-D.

A. Precoding and Reception Algorithm

In COTAF, all users transmit their corresponding signals{xn
t }

over a shared channel to the server. The transmitted signals are
aggregated over the wireless MAC and are received at the server
as a sum, together with additive noise. As in [18], [20], [24],
we utilize analog signalling, namely, each vector xn

t consists of
continuous-amplitude quantities, rather than a set of discrete
symbols or bits, as common in digital communications. On
each communication round, the server recovers the global model
directly from the channel output yt, and feedbacks the updated
model to the users as in conventional local SGD.

COTAF implements local SGD while communicating over an
uplink wireless MAC. As a result, its performance is not mea-
sured in its ability to recover the model parameters at the server
side, as in conventional OTA computation, but rather in terms
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of the accuracy of the learning algorithm, for a given number of
iteration, i.e., the expected objective achieved after T iterations.
Let H be the set of time instances in which transmissions occur,
i.e., the integer multiples of H . In order to convey the local
trained model after H local SGD steps, i.e., at time instance
t ∈ H, the nth user precodes its model update θn

t − θn
t−H into

the MAC channel input xn
t via

xn
t =

√
αt

(
θn
t − θn

t−H

)
, (8)

whereαt is a precoding factor set to gradually amplify the model
updates as tprogresses, while satisfying the power constraint (4).
The precoder αt is given by

αt �
P

maxn E
[||θnt − θnt−H ||2] . (9)

The precoding parameter αt depends on the distribution of the
updated model, which depends on the distribution of the data. It
can thus be computed by performing offline simulations with
smaller data sets and distributing the numerically computed
coefficients among the users, as we do in our numerical study in
Section IV. Alternatively, when the loss function has bounded
gradients, this term can be replaced with a coefficient that is
determined by the bound on the norm of the gradients, as we
discuss in Subsection III-D.

The channel output (3) is thus given by

yt =
N∑

n=1

√
αt

(
θn
t − θn

t−H

)
+ w̃t. (10)

In order to recover the aggregated global model θt from yt, the
server sets

θt =
yt

N
√
αt

+ θt−H , (11)

for t ∈ H, where θ0 is the initial parameter estimate. The global
update rule (11) can be equivalently written as

θt =
1

N

N∑
n=1

θn
t +wt, (12)

where wt � w̃t

N
√
αt

is the equivalent additive noise term dis-

tributed via wt ∼ N (0, σ2
w

N2αt
Id). The resulting OTA FL algo-

rithm with R communication rounds is summarized below in
Algorithm 1. Here, the local model available at the nth user at
time t can be written as:

θnt+1=

⎧⎨
⎩
θnt − ηt∇fint (θ

n
t ), t+1 /∈ H,

1
N

N∑
n=1

(
θnt −ηt∇fint (θ

n
t )
)
+wt, t+1 ∈ H.

(13)

B. Performance Analysis

In this section, we analyze the performance of COTAF. Our
analysis is carried out under the following assumptions:

AS1 The objective function F (·) is L-smooth, namely,
for all v1,v2 it holds that F (v1)− F (v2) ≤ (v1 −
v2)

T∇F (v2) +
1
2L‖v1 − v2‖2.

AS2 The objective function F (·) is μ-strongly convex,
namely, for all v1,v2 it holds that F (v1)− F (v2) ≥
(v1 − v2)

T∇F (v2) +
1
2μ‖v1 − v2‖2.

AS3 The stochastic gradients ∇fint (θ) satisfy
E[‖∇fint (θ)‖2] ≤ G2 and E[‖∇fint (θ)−∇fn(θ)‖2] ≤ M2

n for some fixed G2 > 0 and M2
n > 0,

for each θ ∈ Θ and n ∈ N .
Assumptions AS1–AS3 imply that the model is trained in a fed-

erated manner to optimize a smooth strongly-convex objective
with bounded gradients. In particular, AS1–AS2 hold for objec-
tive functions such as those encountered in �2-norm regularized
linear regression and logistic regression [12]. These assump-
tions are commonly used when studying the convergence of FL
schemes, see, e.g., [12], [22], [32]. As a result, analyzing COTAF
under AS1–AS3 facilitates the comparison of its convergence
profile to local SGD carried out over noise-free interference-free
links, as in [12]. These assumptions are required to maintain an
analytically tractable convergence analysis. However, COTAF
can be applied for arbitrary learning tasks for which AS1–AS3 do
not necessarily hold, as numerically demonstrated in Section IV.

After T = RH iterations of updating the global model via
COTAF, the server utilizes its learned global model for infer-
ence. This can be achieved by setting the global model weights
according to the instantaneous parameters vector available at
this time instance, i.e., θT . An alternative approach is to utilize
the fact that the server also has access to previous aggregated
models, i.e., {θr} for each r ∈ H such that r ≤ T . In this case,
the server can infer using a model whose parameters are obtained
as a weighted average of its previous learned model parameters,
denoted by θ̂T , which can be optimized to reduce the model
variance [38] and thus improve the convergence rate.

The error (or the excess risk) of gradient descent type algo-
rithms is commonly defined as the loss in the objective value at
iteration t with respect to the optimal value:

E[F (θt)]− F (θ�). (14)

We next establish a finite-sample bound on the error, given by the
expected loss (14) at iteration T , for both the weighted average
model θ̂T and instantaneous weights θT . We begin with the
bound relevant for the average model, stated in the following
theorem:
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Theorem 1: Let {θn
t }Nn=1 be the model parameters generated

by COTAF according to (7), and (12) over R rounds, i.e., t ∈
{0, 1, . . . T − 1} with T = RH . Then, when AS1–AS3 hold and
the step sizes are set to ηt =

4
μ(a+t) with shift parameter a >

max{16L
μ , H}, and the precoder is set as in (9), it holds that

E[F (θ̂T )]− F � ≤ 4(T +R)

3μSR
(2a+H +R− 1)B

+
16 dTHG2σ2

w

3μPN2SR
(2a+T+H)+

μa3

6SR
||θ0−θ�||2, (15)

where θ̂T = 1
SR

∑R
r=1 βrθrH , for βt = (a+ t)2, SR =∑R

r=1 βrH ≥ 1
3HT 3, and B=8H2 G2+ 1

N2

∑N
n=1 M

2
n+6LΓ.

Proof: The proof is given in Appendix A. �
The weighted average in θ̂T is taken over the models known

to the server, i.e., {θr} with r ∈ H. For comparison, in previous
convergence studies of local SGD and its variants [32], [36], the
weighted average is computed over every past model, including
those available only to users and not to the server. In such cases,
the resulting bound does not necessarily correspond to an actual
model used for inference, since the weighted average is not
attainable. Comparing Theorem 1 to the corresponding result
in [32], which considered i.i.d data and noise-free channels, we
observe that COTAF achieves the same convergence rate, with
an additional term which depends on the noise-to-signal ratio
σ2
w/P , and decays as 1/T (see corollary 1). When σ2

w/P = 0,
Theorem 1 specializes into [32, Thm 2.2].

In the next theorem, we establish a finite sample bound on the
error for the instantaneous weights θT rather than the weighted
average θ̂T :

Theorem 2: Let {θn
t }Nn=1 be the model parameters generated

by COTAF according to (7) and (12) over R rounds, i.e., t ∈
{0, 1, . . . T − 1} with T = RH . Then, when AS1–AS3 hold and
the step sizes are set to ηt =

2
μ(γ+t) , for γ ≥ max(8Lρ

μ , H), it
holds that:

E[F (θT )]− F (θ∗) ≤ 2Lmax
(
4C, μ2γδ0

)
μ2(T + γ)

. (16)

where C = B + 4dH2 G2σ2
w

PN2 , and δ0 = ‖θ0 − θ�‖2 is the initial
guess accuracy.

Proof: The proof is given in Appendix B. �
The proofs for both Theorems 1–2 follow the same first steps.

Yet in the derivation of Theorem 2 an additional relaxation was
applied, implying that the bound in (16) is less tight than (15).
For the noise-free case, i.e., σ2

w/P = 0, Theorem 2 coincides
with [12, Thm. 1].

Theorems 1 and 2 characterize of the effect of three sources of
error on the rate of convergence: The accuracy of the initial guess
‖θ0 − θ�‖2; the effect of statistical heterogeneity encapsulated
in Γ, which is linear in B and C; and the noise-to-signal ratio
σ2
w/P induced by the wireless channel. In particular, in (16)

all of these quantities, which potentially degrade the accuracy
of the learned global model, contribute to the error bound in
a manner proportional to 1/(T + γ), i.e., which decays as the
number of rounds grows. The same observation also holds for
(15), in which the aforementioned terms contribute in a manner

that decays at an order proportional to 1/T . The fact that the
error due to the noise, encapsulated in σ2

w/P , decays with the
number of iterations, indicates the ability of COTAF to mitigate
the harmful effect of the MAC noise, as discussed next.

Comparing (16) to the corresponding bound for local SGD
with heterogeneous data and without communication constraints
in [12, Thm. 1], i.e., over orthogonal channels as in (5) without
noise, we observe that the bound takes a similar form as that
in [12, Eq. (5)]. The main difference is in the additional term
that depends on the noise-to-signal ratio σ2

w/P in the con-
stant C, which does not appear in the noiseless case in [12].
Consequently, the fact that COTAF communicates over a noisy
channel induces an additional term that can be written as σ2

w/P
times some factor which, as the number of FL rounds R grows,
is dominated by H2

N2(T+γ) . This implies that the time-varying
precoding and aggregation strategy implemented by COTAF
results in a gradual decay of the noise effect, and allows its
contribution to be further mitigated by increasing the number of
users N . Furthermore, Theorems 1–2 yield the same asymptotic
convergence rate to that observed for noiseless local SGD in [12],
as stated in the following corollary:

Corollary 1: COTAF achieves an asymptotic convergence
rate of O( 1

T ).
Proof: The corollary follows directly from (15) and (16) by

letting T grow arbitrarily large while keeping the number of
SGD iterations per round H fixed. �

Corollary 1 implies that COTAF allows OTA FL to achieve the
same asymptotic convergence rate as local SGD with a strongly
convex objective and without communication constraints [12],
[32]. This advantage of COTAF adds to its ability to exploit the
temporal and spectral resources of the wireless channel, allowing
communication at higher throughput compared to conventional
designs based on orthogonal communications, as discussed in
Subsection III-D.

C. Extension to Fading Channels

We next show how COTAF can be extended to fading MACs
of the form (6), while preserving its proven convergence. As
detailed in Subsection II-B, we focus on scenarios in which the
participating entities have CSI.

In fading MACs, the signal transmitted by each user under-
goes a fading coefficient denoted hn

t e
jφn

t (6). Following the
scheme proposed in [19] for conveying sparse model updates,
each user can utilize its CSI to cancel the fading effect by
amplifying the signal by its inverse channel coefficient. How-
ever, weak channels might cause an arbitrarily high amplifica-
tion, possibly violating the transmission power constraint (4).
Therefore, a threshold hmin is set, and users observing fading
coefficients of a lesser magnitude than hmin do not transmit in
that communication round. As channels typically attenuate their
signals, it holds that hmin < 1. Under this extension of COTAF,
(8) becomes

xn
t =

{√
αthmin

hn
t

e−jφn
t

(
θn
t − θn

t−H

)
, hn

t > hmin,

0, hn
t ≤ hmin.

(17)
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Here, e−jφn
t is a phase correction term as in [20]. Note that the

energy constraint (4) is preserved as E[‖xn
t ‖2] ≤ P .

To formulate the server aggregation, we letKt ⊂ N be the set
of user indices whose corresponding channel at time t satisfies
hn
t > hmin. As the server has CSI, it knows Kt, and can thus

recover the aggregated model θt in a similar manner as in (11)–
(12) via θt =

yt

|Kt|√αthmin
+ θt−H , i.e.,

θt =
1

|Kt|
∑
n∈Kt

θnt +
N

|Kt|hmin
wt. (18)

Comparing (18) to the corresponding equivalent formulation in
(12), we note that the proposed extension of COTAF results
in two main differences from the fading-free scenario: 1) the
presence of fading is translated into an increase in the noise
power, encapsulated in the constant N

|Kt|hmin
> 1; and 2) less

models are aggregated in each round as |Kt| ≤ N . The set of
participating users Kt depends on the distribution of the fading
coefficients. Thus, in order to analytically characterize how the
convergence is affected by fading compared to the scenario
analyzed in Subsection III-B, we introduce the following as-
sumption:

AS4 At each communication round, the participating users
set Kt contains K ≤ N users and is uniformly dis-
tributed over all the subsets of N of cardinality K.

Note that Assumption AS4 can be imposed by a simple dis-
tributed mechanism using an opportunistic carrier sensing [39].
Specifically, each user maps its hn

t to a backoff time bnt based on
a predetermined common function f(h), which is a decreasing
function with h (truncated at hmin). Then, each user with
hn
t ≥ hmin listens to the channel and transmits a low-power

beacon when its backoff time expires, which can be sensed
by other users. If K transmissions have been identified, the
corresponding K users transmit their data signal to the server.
Otherwise, the users wait (which occurs with a small probability
as N increases, and hmin decreases) to the next time step. This
mechanism guarantees |Kt| = K at each update. We point out
that Assumption AS4 is needed for theoretical analysis only.

Next, we characterize the convergence of the instantaneous
global model, as stated in the following theorem:

Theorem 3: Let {θn
t }Nn=1 be the model parameters gener-

ated by the extension of COTAF to fading channels over R
rounds, i.e., t ∈ {0, 1, . . . T − 1} with T = RH . Then, when
AS1–AS4 hold and the step sizes are set to ηt =

2
μ(γ+t) , for

γ ≥ max( 8Lρ
μ , H), it holds that:

E[F (θT )]− F (θ∗) ≤
2Lmax

(
4(C̃ +D), μ2γδ0

)
μ2(T + γ)

. (19)

where C̃ = B + 4dH2 G2σ2
w

PK2h2
min

and D = 4(N−K)
K(N−1)H

2 G2.
Proof: The proof is given in Appendix C. �
Comparing Theorem 3 to the corresponding convergence

bound for fading-free channels in Theorem 3 reveals that the
extension of COTAF allows the trained model to maintain its
asymptotic convergence rate of O( 1

T ) also in the presence of

fading channel conditions. However, the aforementioned differ-
ences in the equivalent global model due to fading are translated
here into additive terms increasing the bound on the distance
between the expected instantaneous objective E[F (θT )] and its
desired optimal value. In particular, the fact that not all users
participate in each round induces the additional positive term
D in (19), which equals zero when K = N and grows as K
decreases. Furthermore, the increased equivalent noise results in
the additive term C̃ being larger than the corresponding symbol
C in (16) due to the increased equivalent noise-to-signal ratio
which stems from the scaling by hmin at the precoder and
the corresponding aggregation at the server side. Despite the
degradation due to the presence of fading, COTAF is still capable
of guaranteeing convergence and approach the performance of
fading and noise-free local SGD when training in light of a
smooth convex objective in a federated manner, as also numer-
ically observed in our simulation study in Section IV.

D. Discussion

COTAF is designed to allow FL systems operating over
shared wireless channels to exploit the full spectral and tem-
poral resources of the media. This is achieved by accounting
for the task of aggregating the local models into a global
one as a form of OTA computation [23]. Unlike conventional
orthogonality-based transmissions, such as FDM and TDM, in
OTA FL the available band and/or transmission time of each
user does not decrease with the number of users N , allowing the
simultaneous participation of a large number of users without
limiting the throughput of each user. Compared to previous
strategies for OTA FL, COTAF allows the implementation of
local SGD, which is arguably the most widely used FL scheme,
over wireless MACs with proven convergence. This is achieved
without having to restrict the model updates to be sparse with
an identical sparsity pattern shared among all users [18], [19],
or requiring the users to repeatedly compute the gradients over
the full data set as in [20].

A major challenge in implementing SGD as an OTA computa-
tion stems from the presence of the additive channel noise, whose
contribution does not decay over time [30]. Under strongly
convex objectives, noisy distributed learning can be typically
shown to asymptotically converge to some distance from the
minimal achievable loss, unlike noise-free local SGD which is
known to converge to desired F � at a rate of O( 1

T ) [32]. COTAF
involves additional precoding and scaling steps which result in
an effective decay of the noise contribution, thus allowing to
achieve convergence results similar to noise-free local SGD with
strongly convex objectives while operating over shared noisy
wireless channels. The fact that COTAF mitigates the effect of
noise in a gradual manner allows benefiting from the advantages
of such noise profiles under non-convex objectives, where a
controllable noise level was shown to facilitate convergence
by reducing the probability of the learning procedure being
trapped in local minima [34], [37]. This behavior is numerically
demonstrated in Section IV.
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COTAF consists of an addition of simple precoding and scal-
ing stages to local SGD. This precoding stage is necessary for as-
suring a steady convergence rate, while keeping power consump-
tion under control. Implementing the time-varying precoding in
(9) implies that every user has to knowmaxn E[||θnt − θnt−H ||2],
for each communication round t ∈ H. When operating with a
decaying step size, as is commonly required in FL, and when AS3
holds, this term is upper bounded by H2η2t−H G2 (see Lemma
A.2 in Appendix A), and the upper bound can be used instead in
(9), while maintaining the convergence guarantees of Theorems
1–2. Alternatively, sinceαt should be proportional to the inverse
of the maximal difference of consecutively transmitted models,
one can numerically estimate these values by performing offline
simulation over a smaller, global data set. Such data can be
either obtained from server-side data, or from some level of
initial sharing of non-private data [31]. Once these values are
numerically computed, the server can distribute them to the users
over the downlink channel. Finally, one can also have the users
convey their instantaneous model updates norm ||θnt − θnt−H ||2
to the server before each communication round, as proposed
in [40] for user selection. Doing so allows the server to distribute
maxn ||θnt − θnt−H ||2 to the users, to be used for setting αt,
while inducing only a minor communication overhead since the
exchanged quantities are positive scalars.

COTAF involves analog transmissions over MAC, which
allows the superposition carried out by the MAC to aggregate
the parameters as required in FL. As a result, COTAF is subject
to the challenges associated with such signalling, e.g., the need
for accurate synchronization among all users. Finally, OTA FL
schemes such as COTAF require the participating users to share
the same wireless channel, i.e., reside in the same geographical
area, while FL systems can be trained using data aggregated from
various locations. We conjecture that COTAF can be combined
in multi-stage FL, such as clustered FL [8]. We leave this for
future study.

IV. NUMERICAL EVALUATIONS

In this section, we provide numerical examples to illustrate the
performance of COTAF in two different settings. We begin with
a scenario of learning a linear predictor of the release year of a
song from audio features in Subsection IV-A. In this setup, the
objective is strongly convex, and the model assumptions under
which COTAF is analyzed hold. In the second setting detailed in
Subsection IV-B, we consider a more involved setup, in which
the loss surface with respect to the learned weights is not convex.
Specifically, we train a CNN for classification on the CIFAR-10
dataset.

A. Linear Predictor Using the Million Song Dataset

We start by examining COTAF for learning how to predict the
release year of a song from audio features in an FL manner. We
use the Million Song Dataset [33], that contains songs which
are mostly western, commercial tracks ranging from 1922 to
2011. Each song is associated with a release year and 90 audio
attributes. Consequently, each data sample s takes the form s =
{ss, sy}, where ss is the audio attributes vector and sy is the
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Fig. 3. Linear predictor, Million Song dataset, H = 40, N = 50.

year. The system task is to train a linear estimator θ with d = 90
entries in an FL manner using data available at N users, where
each user has access to Dn = 9200 samples. The predictor is
trained using the regularized linear least-squares loss, given by:

f(θ, {ss, sy}) = 1

2
(sTs θ − sy)

2 +
λ

2
||θ||2, (20)

where we used λ = 0.5. We note that the loss measure (20) is
strongly convex and has a Lipschitz gradient, and thus satisfies
the conditions of Theorem 1. In every FL round, each user per-
forms H SGD steps (7) where the step size is set via Theorem 1.
In particular, the parameters L and μ are numerically evaluated
before transmitting the model update to the server over the MAC.
The precoding coefficientαt is computed via (9) using numerical
averaging, i.e., we carried out an offline simulation of local SGD
without noise and with 20% of the data samples, and computed
the averaged norm of the resulting model updates.

We numerically evaluate the gap from the achieved expected
objective and the loss-minimizing one, i.e., E[F (θt)]− F �.
Using this performance measure, we compare COTAF to the fol-
lowing FL methods: (i) Local SGD, in which every user conveys
its model updates over a noiseless individual channel; (ii) Non-
precoded OTA FL, where every user transmits its model updates
over the MAC without time-varying precoding (9) and with a
constant amplification as in [20], i.e., xn

t = P (θnt − θnt−H). The
stochastic expectation is evaluated by averaging over 50 Monte
Carlo trials, where in each trial the initial θ0 is randomized from
zero-mean Gaussian distribution with covariance 5Id.

We simulate MACs with signal-to-noise ratios (SNRs) of
P/σ2

w = −6 dB and P/σ2
w = 6 dB. In Fig. 3, we present the

performance evaluation when the number of users is set to
N = 50 and the number of SGD steps is H = 40. It can be
seen in Fig. 3 that COTAF achieves performance within a minor
gap of 5.8 · 10−4 and 3.2 · 10−3 in the objective function for
SNRs 6 and −6, respectively, from that of local SGD carried out
over ideal orthogonal noiseless channels. For comparison, the
performance of non-precoded OTA FL is within a much larger

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 29,2021 at 09:55:20 UTC from IEEE Xplore.  Restrictions apply. 



SERY et al.: OVER-THE-AIR FEDERATED LEARNING FROM HETEROGENEOUS DATA 3805

0 100 200 300 400 500 600 700 800

Number of Iterations

10-4

10-2

100

102

104

COTAF-SNR = -6
COTAF-SNR = 6
Local SGD

No Precoding-SNR = -6
No Precoding-SNR = 6

Fig. 4. Linear predictor, Million Song dataset, H = 40, N = 200.
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Fig. 5. Linear predictor, Million Song dataset, H = 80, N = 50.

gap of 0.2 for SNR of 6 dB, and 11.5 for SNR of −6 dB. This
improved performance of COTAF is achieved without requiring
the users to divide the spectral and temporal channel resources
among each other, thus to communicate at higher throughput
uplink communications as compared to the local SGD. This is
due to the precoding scheme of COTAF, which allows gradually
mitigating the effect of channel noise, while OTA FL without
such time-varying precoding results in a dominant error floor
due to presence of non-vanishing noise.

Next, we repeat the simulation study of Fig. 3 while in-
creasing the number of users to be N = 200 in Fig. 4, and
with setting the number of SGD steps to H = 80 in Fig. 5.
The number of gradient computations T = RH and the overall
number of training samples NDn is kept constant throughout
the simulations. Figs. 4–5 thus demonstrate the dependence
of COTAF performance on two key system parameters: The
number of users, N , and the number of SGD steps, H , between
communication rounds.

Observing Fig. 4 and comparing it to Fig. 3, we note that
increasing the number of users improves the performance of both

OTA FL schemes, despite the fact that each user holds less train-
ing samples. In particular, COTAF effectively coincides with
the performance of noise-free local SGD here, while the non-
precoded OTA FL achieves improved performance compared
to the setting with N = 50, yet it is still notably outperformed
by COTAF. The gain in increasing the number of users follows
from the fact that averaging over a larger number of users at the
server side mitigates the contribution of the channel noise, as
theoretically established for COTAF in Subsection III-B. When
using orthogonal transmissions, as implicitly assumed in con-
ventional local SGD, increasing the number of users implies that
the channel resources must be shared among more users, hence
the throughput of each users decreases. However, in OTA FL the
throughput is invariant of the number of users. Comparing Fig. 5
to Fig. 3 reveals that increasing the SGD steps H can improve
the performance of OTA FL as the channel noise is induced less
frequently. Nonetheless, the gains here are far less dominant
than those achievable by allowing more users to participate in
the FL procedure, as observed in Fig. 4. The results depicted
in Figs. 3–5 demonstrate the benefits of COTAF, as an OTA
FL scheme which accounts for both the convergence properties
of local SGD as well as the unique characteristics of wireless
communication channels.

Next, we simulate the effect of fading channels on COTAF.
In particular, we apply the extension of COTAF to fading
channels detailed in Subsection III-C and compare the results
with ECESA-DSGD and GBMA, which are OTA FL schemes
for fading MACs proposed in [19] and [20], respectively. In
particular, both ECESA-DSGD and GBMA are designed for a
single gradient transmission, i.e.,H = 1, where ECESA-DSGD
incorporates an error accumulation technique to retain the ac-
curacy of local stochastic gradients, while GBMA transmits
the non-stochastic gradients computed over the complete local
dataset. To guarantee fair comparison with COTAF, which is
based on local SGD optimization, we simulate a variant of these
methods, which transmits the local models at each transmission
round of H local iterations.

The MAC input-output relationship is given by (6), and block
fading channel coefficients {hn

t } are sampled from a Rayleigh
distribution in an i.i.d. fashion, while the remaining parameters
are the same as those used in the scenario simulated in Fig. 3.
The threshold hmin in (17) is set such that on average 40 out
of the N = 50 users participate in each communication round.
For fairness, the same conditions are applied in the no precoding
setting, i.e., the users utilize their CSI to cancel the effect of the
channel as in [19]. This comparison illustrates the significance
of the dedicated precoding introduced by COTAF.

The results, depicted in Fig. 6, demonstrate that COTAF
maintains its ability to approach the performance of noise-free
local SGD, observed in Figs. 3–5 for additive noise MACs.
We also note that the error accumulation incorporated by
ECESA-DSGD allows it to achieve an accuracy which is only
slightly improved compared to OTA FL with no precoding. The
gain of GBMA, which computes full gradients at the users with
increased computational complexity, over non-precoded local
SGD, is more dominant compared to that of ECESA-DSGD.
Nonetheless, both previously proposed OTA FL schemes are
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Fig. 6. Linear predictor, Million Song dataset, H = 40, N = 50, Rayleigh
fading channels.

notably outperformed by COTAF, illustrating the importance
of the time-varying precoder in handling the effect of channel
noise.

B. CNN Classifier Using the CIFAR-10 Dataset

Next, we consider an image classification problem, based
on the CIFAR-10 dataset, which contains train and test images
from ten different categories. The classifier model is the DNN
architecture detailed in [41], which consists of three conven-
tional layers and two fully-connected layers. When trained in
a centralized setting, this architecture achieves an accuracy of
roughly 70% [41]. Here, we train this network to minimize the
empirical cross-entropy loss in an FL manner, where the data
set is distributed among N = 10 users. Each user holds 5000
images, and carries out its local training with a minibatch size
of 60 images, while aggregation is done everyH = 84 iterations
over a MAC with SNR of −4 dB. We consider two divisions of
the training data among the users: i.i.d. data, where we split the
data between the users in an i.i.d fashion, i.e. each user holds
the same amount of figures from each class; and heterogeneous
data, where approximately 20% of the training data of each
user is associated with a single label, which differs among
the different users, the remaining 80% of the training data is
uniformly distributed between all labels. This division causes
heterogeneity between the users, as each user holds more images
from a unique class. Under both divisions, an image can only be
assigned to a single user, i.e., the data is private and not shared
between users and the server. The model accuracy versus the
transmission round achieved for the considered FL schemes is
depicted in Figs. 7–8 for the i.i.d. case and the heterogeneous
case, respectively.

Observing Figs. 7 and 8, we note that the global model trained
using COTAF converges to an accuracy of approximately 73%
and 69% respectively. This implies that training under an i.i.d
distribution achieves a model whose accuracy is larger by 4%
compared to being trained using non-i.i.d local data sets. This
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Fig. 7. CNN, CIFAR-10 dataset, i.i.d. data.
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Fig. 8. CNN, CIFAR-10 dataset, heterogeneous data.

is achieved while allowing each user to fully utilize its available
temporal and spectral channel resources, thus communicating
at higher throughput as compared to orthogonal transmissions.
Furthermore, we point out the following advantages of COTAF
when applied to CIFAR-10:

1) COTAF Achieves the Desired Sublinear Convergence
Rate: While the objective in training the CNN to minimize the
cross-entropy loss is not a convex function of the weights, we
observe the same rate of convergence for COTAF as that of
noise-free local SGD. This result suggests a generalization of the
theoretical analysis for the convex case and indicates that even
in cases in which assumptions AS1–AS3 do not hold, COTAF is
still able to converge in a sub-linear rate. We deduce that COTAF
can be applied in settings less restrictive than the analyzed case
introduced in Subsection III-B and still achieve good results, as
numerically illustrated in the current study.

2) COTAF Benefits From the Presence of Noise: The sim-
ulation results indicate that the additive noise caused by the
channel improves the convergence rate and generalization of
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the CNN model. The fact that COTAF gradually mitigates the
effective noise allows it to benefit from its presence in non-
convex settings, while notably outperforming direct OTA FL
with no time-varying precoding operating in the same channel.
Here, COTAF not only demonstrates an improved learning curve
compared to local OTA FL without precoding and local SGD, but
also results in an improved model once convergence is achieved.
Specifically, we observe that after 30 transmission rounds,
COTAF allows to train a model with accuracy of 70% and 65%
for the i.i.d. and heterogeneous data divisions, respectively. The
corresponding accuracy of OTA FL without such precoding are
66% and 60%, and local SGD achieves 65% and 60% after 30
transmission rounds. The resulting gains of COTAF are thus
consistently around 5% in accuracy over both competing FL
approaches. These gains follow from the fact that the presence
of noise whose level gradually decreases when training DNNs
is known to have positive effects such as reducing overfitting
and avoiding local minima [34], [37], [42]. Furthermore, for the
heterogeneous data case in Fig. 8, the gap between COTAF and
local SGD is increased as compared to the i.i.d case in Fig. 7.
This indicates that the noise has a smoothing effect as well. It
allows better generalizations in the non-i.i.d setting, which are
exploited by COTAF in a manner that contributes to its accuracy
more effectively as compared to OTA FL with no precoding.

V. CONCLUSIONS

In this work we proposed the COTAF algorithm for imple-
menting FL over wireless MACs. COTAF maintains the conver-
gence properties of local SGD with heterogeneous data across
users, with convex objectives carried out over ideal channels,
without requiring the users to divide the channel resources. This
is achieved by introducing a time-varying precoding and scaling
scheme which facilitates the aggregation and gradually mitigates
the noise effect. We prove that for convex objectives, models
trained using COTAF with heterogeneous data converge to the
loss minimizing model with the same asymptotic convergence
rate of local SGD over orthogonal channels, thus theoretically
guaranteeing the effectiveness of COTAF. Our numerical study
demonstrates the ability of COTAF to learn accurate models over
wireless channels using non-synthetic datasets. Furthermore, the
simulation results empirically demonstrate the effectiveness of
COTAF by showing that it converges in non-convex settings in
a sub-linear rate, and outperforms not only OTA FL without
precoding, but also the local SGD algorithm in carried out in an
orthogonal fashion without errors induced by the channel.

APPENDIX

A. Proof of Theorem 1

In the following, we detail the proof of Theorem 1, introduced
in Subsection III-B. The intermediate derivations detailed below
are used in proving Theorem 2 in Appendix B as well. The out-
line of the proof is as follows: First, we define a virtual sequence
{θ̄t} that represents the averaged parameters over all users at
every iteration in (A.1), i.e. as if the local SGD framework is
replaced with mini-batch SGD. While θ̄t can not be explicitly

computed at each time instance by any of the users or the server,
it facilitates utilizing bounds established for mini-batch SGD, as
was done in [12], [32]. Next, we provide in Lemma A.1 a single
step recursive bound for the error E[||θ̄t − θ�||2]. The bound
consists of four terms, in Lemmas A.2 and A.3 we upper bound
these quantities. Finally, we obtain a non-recursive bound from
the recursive expression in Lemma A.4, with which we prove
Theorem 1.

Recursive error formulation: Following the steps used in the
corresponding convergence analysis of FL without communica-
tion constraints [12], [32], we first define the virtual sequence
{θ̄t}t≥0. Broadly speaking, {θ̄t} represents the weights obtained
when the weights trained by the users are aggregated and aver-
aged over the true channel on each H SGD steps, and over a
virtual noiseless channel on the remaining SGD iterations. This
virtual sequence is given by

θ̄t �
1

N

N∑
n=1

θnt +
1√
αtN

w̃t1t∈H, (A.1)

where 1(·) is the indicator function. Rearranging (A.1) to fit our
transmission scheme yields:

θ̄t = θ̄t−H+
1√
αtN

N∑
n=1

√
αt

(
θnt −θ̄t−H

)
+wt1t∈H, (A.2)

with θ̄t � θ0 for t ≤ 0. The scaled noise wt =
1√
αtN

w̃t, and

the sequence {θnt }t≥0 are defined in Subsection III-A.
Notice that {θ̄t} is not computed explicitly, and that θ̄t = θnt

for each n ∈ N whenever t ∈ H. We also define

gt �
1

N

N∑
n=1

∇fint (θ
n
t ), ḡt �

1

N

N∑
n=1

∇F (θnt ). (A.3)

Since the indices int used in each SGD iteration are uni-
formly distributed, it follows that E[gt] = ḡt. By writing w̄t �
wt+11t+1∈H −wt1t∈H, we have that

θ̄t+1 = θ̄t − ηtgt + w̄t. (A.4)

The equivalent noise vector w̄t is zero-mean and satisfies

E[‖w̄t‖2] ≤ dσ2
w

N2 min(αt, αt+1)
It, (A.5)

where It � 1(t∈H)∪(t+1∈H). Theorem 1 is obtained from defini-
tions (A.1) and (A.3) via the following lemma:

Lemma A.1: Let {θnt } and {θ̄t} be as defined in (13) and
(A.1), respectively. Then, when AS1–AS2 are satisfied and the
SGD step size satisfies ηt ≤ 1

4L , it holds that

E
[||θ̄t+1 − θ�||2] ≤ (1− μηt)E

[||θ̄t − θ�||2]
+ η2tE

[∥∥gt − ḡt +
w̄t

ηt

∥∥2]−3

2
ηtE

[
F (θ̄t)− F �

]

+
2

N

N∑
n=1

E
[||θ̄t − θnt ||2

]
+ 6Lη2tΓ. (A.6)
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Proof: Using the update rule we have:

||θ̄t+1 − θ�||2 = ‖θ̄t − ηtḡt − θ�‖2 + η2t

∥∥∥∥ḡt − gt +
w̄t

ηt

∥∥∥∥
2

+ 2ηt

〈
θ̄t − θ� − ηtḡt, ḡt − gt +

w̄t

ηt

〉
. (A.7)

Observe that E[〈θ̄t − θ� − ηtḡt, ḡt − gt +
w̄t

ηt
〉] = 0. Follow-

ing the proof steps in [12, Lemma 1], we obtain ||θ̄t−ηtḡt−
θ�||2 ≤ (1−μηt)||θ̄t−θ�||2+ 1

N

∑N
n=1 ||θ̄t−θtn||2+A, with

A � 4Lη2
t

N

∑N
n=1(fn(θ

n
t )−f�

n)− 2ηt

N

∑N
n=1fn(θ

n
t )−fn(θ

�).
The Value of A satisfies:

A = (4Lη2t − 2ηt)
1

N

N∑
n=1

(fn(θ
n
t )− F �) + 4Lη2tΓ, (A.8)

where we used the definitions of F � and Γ. Notice that 4Lη2t −
2ηt ≤ ηt − 2ηt ≤ −ηt.

Next, we use the following inequality obtained
in [12] 1

N

∑N
n=1(fn(θ

n
t )− F �) ≥ (F (θ̄t)− F �)−

1
N

∑N
n=1[ηtL(fn(θ̄t)−f�

n)+
1

2ηt
||θnt −θ̄t||2]. Substituting

this into (A.8) and using the fact that ηtL− 1 ≤ − 3
4 , (2)

2ηt − 4Lη2t ≤ 2ηt yields

A≤6Lη2tΓ−
3ηt
2

(F (θ̄t)−F �)+
1

N

N∑
n=1

||θnt −θ̄t||2. (A.9)

Consequently, we have that:

||θ̄t − θ� − ηtḡt||2 ≤ (1− μηt)||θ̄t − θ�||2

+
2

N

N∑
n=1

||θ̄t−θnt ||2+6Lη2tΓ−
3ηt
2

(F (θ̄t)−F �). (A.10)

Finally, by taking the expected value of both sides of (A.7) and
using (A.10) we complete the proof. �

Upper bounds on the additive terms: Next, we prove the
theorem by bounding the summands constituting the right hand
side of (A.6). First, we bound E[||gt − ḡt +

w̄t

ηt
||2], as stated in

the following lemma:
Lemma A.2: When the step size sequence {ηt} consists of

decreasing positive numbers satisfying ηt ≤ 2ηt+H for all t ≥ 0
and AS3 holds, then

E

[∥∥gt − ḡt +
w̄t

ηt

∥∥2] ≤ 1

N2

N∑
n=1

M2
n +

4 dH2 G2σ2
w

PN2
It.

Proof: The lemma follows since the noise term w̄t is
zero-mean and independent of the stochastic gradients, hence
E[
∥∥ḡt−gt+

w̄t

ηt

∥∥2]≤ 1
N2

∑N
n=1 M

2
n+E[

∥∥ w̄t

ηt

∥∥2], by AS3. From
(A.5) we obtain

E

[∥∥w̄t

ηt

∥∥2] ≤ dσ2
wIt

η2t N
2 min(αt, αt+1)

. (A.11)

Next, we bound 1
αt

= 1
P maxn E[||θnt − θnt−H ||2] via:

1

αt

(a)

≤ 1

P
max
n

(
Hηt−H

t−1∑
t′=t−H

E
[
||∇fikh(θ̄

n
t′ )||2

])

(b)

≤ 1

P
H2η2t−H G2

(c)

≤ 1

P
4H2η2t G

2, (A.12)

where (a) follows from (7), using the inequality
‖∑t

t′=t−H rt‖2 ≤ H
∑t

t′=t−H ‖rt‖2, which holds for any
multivariate sequence {rt}, while noting that the step size is
monotonically non-increasing; (b) holds by AS3; and (c) holds
as ηt ≤ 2ηt+H for all t ≥ 0. Finally, notice that

1

min(αt, αt+1)
≤ 1

P
4H2η2t G

2, (A.13)

as {ηt} is monotonically decreasing. Substituting (A.13) into
(A.11) completes the proof. �

In the next lemma, we bound 1
N

∑N
n=1 E[||θ̄t − θnt ||2]:

Lemma A.3: When the step size sequence {ηt} consists of
decreasing positive numbers satisfying ηt ≤ 2ηt+H for all t ≥ 0
and AS3 holds, then E[||θ̄t − θnt ||2] ≤ 4η2t G

2H2.
Proof: The lemma follows directly from [32, Lem. 3.3]. �
Obtaining a non-recursive convergence bound: Combining

Lemmas A.1–A.3 yields a recursive relationship which allows
us to characterize the convergence of COTAF. To complete
the proof, we next establish the convergence bound from the
recursive equations, based on the following lemma:

Lemma A.4: Let {δt}t≥0 and {et}t≥0 be two positive se-
quences satisfying

δt+1 ≤ (1− μηt)δt − ηtetA+ η2tB + η2tDt, (A.14)

for ηt = 4
μ(a+t) with constants A > 0, B,C ≥ 0, μ > 0, a > 1

and Dt = D1t∈H. Then, for any positive integer R it holds
that A

SR

∑R
r=1 βrHerH ≤ μa3

4SR
δ0 +

2R(H+1)
μSR

B(2a+H +R−
1) + 2R

μSR
D(2a+HR+H), for βt = (a+ t)2, T = RH and

SR =
∑R

r=1 βrH ≥ 1
3HT 3 = 1

3T
2R.

Proof: To prove the lemma, we first note that by [36,
Eqn.(45)], it holds that (1− μηt)

βt

ηt
≤ μ(a+t−1)3

4 = βt−1

ηt−1
.

Therefore, multiplying (A.14) by βt

ηt
yields

δt+1
βt

ηt
≤ (1−μηt)

βt

ηt
δt−βtetA+βtηtB+βtηtDt. (A.15)

Next, we extract the relations between two sequential rounds,
i.e. δt, δt+H . Note that in each round a singleDt is activated, i.e.,
only a single entry in the set {Dτ}t+H

τ=t is non-zero. Therefore,
by repeating the recursion (A.15) over H time instances, we get

δt+H
βt+H−1

ηt+H−1
≤ (1− μηt)

βt

ηt
δt+

2B

μ
(H+1)(H+2t+2a)

− βtetA+ βt0ηt0D, (A.16)

where t0 is the only time instance in the interval [t, t+H)
such that t0 ∈ H. In the last inequality we used the fact
that Aβtet > 0. Recursively applying (A.16) R times
yields: δR

βR

ηR
≤ (1− μη0)

β0

η0
δ0 −

∑R
r=1 βrHerHA+∑R

r=1 βrHηrHD +
∑R

r=1
2B
μ (H + 1)(H + 2rH + 2a). As

δt
βt

ηt
> 0 for each t, this implies that A

∑R
r=1 βrHerH ≤

β0

η0
δ0 +

2B(H+1)
μ

∑R
r=1(H + 2rH + 2a) +

∑R
r=1 βrHηrHD.
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Next, recalling that βtηt =
4(a+t)

μ , we obtain:

R∑
r=1

βrHηrHD =
4

μ
D

(
aR+

HR

2
+

HR2

2

)
. (A.17)

For the current setting of βt and ηt it holds that β0

η0
= μa3

4 . Fur-

ther,
∑R

r=1(H + 2rH + 2a) = R(2a+ T + 2H). Substituting
this and (A.17) into the above inequality proves the lemma. �

We complete the proof of the theorem by combining Lemmas
A.1–A.4 as follows: By defining δt � E[||θ̄t − θ�||2], it follows
from Lemma A.1 combined with the bounds stated in Lemmas
A.2–A.3 that:

δt+1 ≤ (1− μηt)δt + η2t

(
1

N2

N∑
n=1

M2
n +

4 dH2 G2σ2
w

PN2
It

)

− 3

2
ηtE[F (θ̄t)− F �] + 8η2tH

2 G2 + 6Lη2tΓ. (A.18)

In the non-trivial case where H > 1, at most one element of
{t0 + 1, t0} can be in H for any t0. Therefore, without loss of
generality, we reduce the set over which the indicator function
in (A.18) is defined to be {t ∈ H}. By defining

A � 3

2
; B � 8H2 G2 +

1

N2

N∑
n=1

M2
n + 6LΓ;

et � E
[
F (θ̄t)− F �

]
; Dt �

4 dH2 G2σ2
w

PN2
1t∈H,

and plugging these notations into Lemma A.4, we
obtain 1

SR

∑R
r=1 βrHE[F (θ̄rH)− F �] ≤ μa3

6SR
||θ0 − θ�||2 +

4(T+R)
3μSR

(2a+H+R−1)B+ 16dTHG2σ2
w

3μPN2SR
(2a+T+H). Finally,

by the convexity of the objective function, it holds that
E[F (θ̂T )− F �] ≤ 1

SR

∑R
r=1 βrHE[F (θ̄rH)− F �], thus

proving Theorem 1. �

B. Proof of Theorem 2

The proof of Theorem 2 utilizes Lemmas A.1–A.3, stated
in Appendix A, while formulating an alternative non-recursive
bound compared to that used in Appendix A. To obtain the
convergence bound in (16), we first recall the definition δt �
E{‖θ̄t+1 − θ∗‖2}. When t ∈ H, the term δt represents the �2
norm of the error in the weights of the global model. We
can upper bound (A.18) and formulate the following recursive
relationship on the weights error

δt+1 ≤ (1− ηtμ)δt + η2t C, (B.1)

where C = B + 4dH2 G2σ2
w

PN2 . The inequality is obtained from
(A.18) since −ηtetE[F (θ̄t)− F ∗] ≤ 0 and as D1t∈H ≤ D, for
D ≥ 0. The convergence bound is achieved by properly setting
the step-size and the FL systems parameters in (B.1) to bound δt,
and combining the resulting bound with the strong convexity of
the objective. In particular, we set the step size ηt to take the form
ηt =

ρ
t+γ for some ρ > 1

μ and γ ≥ max(4Lρ,H), for which

ηt ≤ 1
4L and ηt ≤ 2ηt+H , implying that Lemmas A.2–A.3 hold.

Under such settings, we show that there exists a finite ν such
that δt ≤ ν

t+γ for all integer l ≥ 0. We prove this by induction,

noting that setting ν ≥ γδ0 guarantees that it holds for t = 0. We
next show that if δt ≤ ν

t+γ , then δt+1 ≤ ν
t+1+γ . It follows from

(B.1) that δt+1 ≤ 1
t+γ ((1− ρ

t+γμ)ν + ρ2

t+γC). Consequently,
δt+1 ≤ ν

t+1+γ holds when

(
1− ρ

t+ γ
μ

)
ν +

ρ2

t+ γ
C ≤ t+ γ

t+ 1 + γ
ν. (B.2)

By setting ν ≥ ρ2 C
ρμ−1 , the left hand side of (B.2) satisfies (1−

ρ
t+γμ)ν+

ρ2

t+γC≤ t−1+γ
t+γ ν since ν ≥ ρ2 C

ρμ−1 . As this bound is not
larger than that of (B.2), it follows that (B.2) holds for the current
setting, proving that δt+1 ≤ ν

t+1+γ . Finally, the smoothness of
the objective implies that

E{F (θt)} − F (θ∗) ≤ L

2
δt ≤ Lν

2(t+ γ)
, (B.3)

which, in light of the above setting, holds for ν =

max( ρ2 C
ρμ−1 , γδ0), γ ≥ max(H, 4ρL), and ρ > 0. In partic-

ular, setting ρ = 2
μ results in γ = max(H, 8L/μ), ν =

max( 4C
μ2 , γδ0) andE[F (θt)]− F (θ∗) ≤ 2Lmax(4C,μ2γδ0)

μ2(t+γ) , thus
concluding the proof of Theorem 2. �

C. Proof of Theorem 3

First, as done in Appendix A, we the virtual sequence {θ̄t},
which here is given by

θ̄t+1=

⎧⎨
⎩

1
N

∑N
n=1 θ

n
t , t+1 /∈ H,

1
K

∑
n∈Kt

θnt +
N

Khmin
wt, t+1 ∈ H. (C.1)

Let v̄t � 1
N

∑N
n=1 θ

n
t + N

Khmin
wt1t∈H be the virtual sequence

of the averaged model over all users. Therefore v̄t = θ̄t when
t /∈ H. Under this notation, Theorem 2 characterizes the con-
vergence of E[F (v̄t)]− F (θ�). We use the following lemmas,
proved in [12, Appendix B.4].

Lemma C.1: Under assumption AS4 θ̄t is an unbiased esti-
mation of v̄t, i.e. EKt

[θ̄t] = v̄t.
Lemma C.2: The expected difference between θ̄t and v̄t is

bounded by: EKt
[‖v̄t − θ̄t‖2] ≤ 4(N−K)

(N−1)K η2tH
2 G2.

We next use these lemmas to prove the theorem, as
‖θ̄t+1 − θ�‖2 = A1 +A2 +A3 with A1 � ‖θ̄t+1 − v̄t+1‖2,
A2 � ‖v̄t+1 − θ�‖2, and A3 � 2〈θ̄t+1 − v̄t+1, v̄t+1 − θ�〉.
The term EKt

[A3] = 0 since θ̄t is unbiased by Lemma C.1.
Further, using Lemma C.2, Theorem 2, and the equivalent global
model in (18) to bound A1 and A2 respectively:

E[‖θ̄t+1 − θ�‖2] ≤ (1− ηtμ)E[‖θ̄t − θ�‖2] + η2t (C̃ +D)
(C.2)

whereD = 4(N−K)
K(N−1)H

2 G2. Notice the difference between equa-
tions (B.1) and (C.2) is in the additional constant D, and the
scaling of the noise-to-signal ratio in C̃ compared to C in
Theorem 2. The same arguments used in proving Theorem 2
can now be applied to (C.2) to prove the theorem. �
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