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Abstract—Frequency agile radar (FAR) has improved anti-
jamming performance over traditional pulse-Doppler radars un-
der complex electromagnetic circumstances. To reconstruct the
range-Doppler information in FAR, many compressed sensing (CS)
methods including standard and block sparse recovery have been
applied. In this paper, we study phase transitions of range-Doppler
recovery in FAR using CS. In particular, we derive closed-form
phase transition curves associated with block sparse recovery and
complex Gaussian matrices, based on prior results of standard
sparse recovery under real Gaussian matrices. We further ap-
proximate the obtained curves with elementary functions of radar
and target parameters, facilitating practical applications of these
curves. Our results indicate that block sparse recovery outperforms
the standard counterpart when targets occupy more than one range
cell, which are often referred to as extended targets. Simulations
validate the availability of these curves and their approximations
in FAR, which benefit the design of the radar parameters.

Index Terms—Frequency agile radar, phase transition, block
sparse recovery, �2,1 norm minimization.

I. INTRODUCTION

FREQUENCY agile radar (FAR) varies its carrier frequen-
cies randomly in a pulse by pulse manner. It synthesizes a

wide bandwidth by coherently processing echoes of different
frequencies, achieving high range resolution (HRR) while
requiring only a narrow-band hence low-cost receiver [2].
This facilitates applications including synthetic aperture radar
(SAR) [3] and inverse synthetic aperture radar (ISAR) imag-
ing [4], [5]. In addition, frequency agile radar (FAR) possesses
excellent electronic counter-countermeasures performance [2],
supports spectrum sharing [6], and enhances spectrum effi-
ciency [7]. Owing to these advantages, FAR has drawn con-
siderable attention in the radar community [8], [9].
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FAR relies on signal processing algorithms to recover the
range-Doppler parameters of observed targets and clutter.
Early works [2] employed the traditional matched filtering for
range-Doppler reconstruction, which led to significant sidelobe
pedestal. As a consequence, weak targets could be covered by the
sidelobe of dominant ones or strong clutter [10]. To alleviate the
sidelobe pedestal problem, compressed sensing (CS) methods
(also known as sparse recovery [11]) have been suggested, which
exploit the inherent sparsity of the targets [10], [12]. The authors
in [13] further extended the standard sparse recovery approach
to block sparse recovery to account for the situation of extended
targets, where a target may be larger than the range resolution
and therefore can occupy more than one range cell [14]. In this
situation, the scatterers of a target share the same Doppler effect
and gather along range, leading to block sparsity [15]. When
confronted with such block sparse situations including extended
targets, block sparse recovery is considered to perform better
than the conventional sparse recovery [16], [17].

Precise conditions that guarantee reconstruction in FAR have
been considered in several papers. In [12] and [13], the au-
thors provided sufficient conditions (in terms of the num-
bers of targets K, radar pulses N and available frequencies
M ) that guarantee successful reconstruction of target scenes
with high probability using standard and block sparse recov-
ery, respectively. Nevertheless, those conditions, based on the
well-known coherence property, are generally loose and pes-
simistic [18], and are therefore not accurate enough to predict
the actual recovery performance given the radar and target
parameters.

To obtain a tighter bound, we study here the phase transition,
which emerges in many convex optimization problems [19].
In CS, phase transition means that there exist thresholds that
divide the plane of parameters, i.e., the number of observations
and the sparsity level, into regions, where recovery succeeds
and fails with high probability [20]. These thresholds are called
phase transition curves. Finding analytical expressions for these
curves is an active research area. For standard sparse recovery,
bounds on the phase transition curve of �1 norm minimization
under standard Gaussian matrices were established in [21], [22].
Generalization to block sparse recovery and for complex num-
bers were given in [23] and [24], respectively. However, these
approximate results assume the observation matrices to be large,
and have complicated form. A more concise and tight bound,
which has no requirement on the size of the observation matrix,
was given in [19] using integral geometry. Nevertheless, it is
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confined to standard sparse recovery under real-valued Gaussian
matrices.

In FAR, block sparse recovery is preferred, and measurement
matrices are complex-valued. Therefore, we first extend the
results of [19] to block sparse situations and complex Gaussian
matrices. While existing analyses are based on the Gaussian
assumption, measurement matrices in FAR are not Gaussian
but structured. Empirical experiments show that many random
matrices exhibit identical phase transition curves as Gaussian
matrices [25]. We demonstrate numerically in Section VI that
the obtained bounds derived from Gaussian matrices are tight
and accurate for FAR. Thus our results provide more precise
conditions for exact range-Doppler reconstruction, compared to
former works [12], [13].

Next, we approximate the obtained bounds, which involve
minimization over an integral function, with some elementary
functions. In particular, under relatively sparse scenes where
there are only a few extended targets, we show that the required
number of measurements when using block and standard sparse

recovery are on the order of 2MK +O(K
√

M log N
K

√
M
) and

2MK +O(KM log N
K ), respectively. The former requires less

radar measurements for exact reconstruction of extended targets,

since
√
M log N

K
√
M

< M log N
K for reasonably large N and

M . The accuracy of these approximations is validated by simu-
lations. These approximations not only simplify the calculation
of the bounds, facilitating their use in practical scenarios, but
also explicitly and quantitatively reveal the dependency of the
required number of measurements on the radar and target param-
eters. These explicit results enable theoretical performance com-
parison between block and standard sparse recovery methods,
which demonstrates the superiority of block sparse recovery.

The main contributions of this paper are as follows:
� We derive the phase transition curves under Gaussian ma-

trices for block sparse recovery, which are also numer-
ically accurate for FAR, associated with structured and
non-Gaussian matrices.

� We approximate the phase transition curves of both block
and standard sparse recovery with elementary functions,
facilitating their use in practical FAR, and demonstrating
that block sparse recovery outperforms the standard one
when reconstructing extended targets.

This paper extends [1] by providing proofs and discussions
on approximating phase transition curves.

The rest of the paper is structured as follows. Section II
introduces the signal model of FAR. In Section III, we briefly
review basic concepts of standard and block sparse recovery as
well as phase transitions for standard sparse recovery. Section IV
extends the results of phase transitions in Section III to block
sparse recovery and complex problems. Section V analyzes
phase transitions for the FAR model, which are verified by
simulations in Section VI. Section VII concludes the paper.

Throughout the paper, we use R and C to denote the real and
complex number set, respectively. For x ∈ R, �x�, represents
the largest integer no greater than x. Vectors are written as
lowercase boldface letters (e.g., a), while matrices are written

as uppercase boldface letters (e.g., A). For a vector a, ‖a‖i
denotes the �i norm of a and j :=

√−1. Given a matrix A,
[A]m,n is the (m,n)-th entry of A. The transpose operator is
(·)T and E(·) means the expectation of a random value. The real
and imaginary parts of a complex-valued argument are written
as �· and �·, respectively. We use N (0, 1) to denote standard
Gaussian distribution.

II. FAR SIGNAL MODEL

We begin by reviewing the signal model of FAR in Subsection
II-A, followed by its matrix form in Subsection II-B.

A. Radar Model

We introduce the signal model of FAR following [12] and [13].
We start with the expressions of the transmissions and the re-
ceived echoes from a single scattering point, representing target
or clutter. We then extend the echo model to the case of multiple
targets/clutter.

A FAR system changes the frequencies from pulse to pulse.
Suppose that the radar transmits N monotone pulses during a
coherent processing interval (CPI). The carrier frequency of
the n-th pulse can be written as fn = fc + CnΔf , where fc
represents the initial frequency, Δf represents the frequency
step, and Cn is the n-th random modulation code. We assume
that all the modulation codes are independently and identi-
cally distributed (i.i.d.) random variables with uniform density
on M := {0, 1, . . . ,M − 1}, i.e., Cn ∼ U(M). Then the n-th
transmitted pulse, n ∈ N := {0, 1, . . . , N − 1}, is written as

ST (n, t) = rect ((t− nTr)/Tp) e
j2πfn(t−nTr), (1)

where Tr is the pulse repetition interval (PRI), Tp is the pulse
duration, and rect(t) equals 1 when 0 ≤ t ≤ 1 and 0 otherwise.

The received echoes can be seen as delays of transmissions.
To clearly present the signal model, we assume that there exists
only one ideal scatterer with complex scattering coefficient ζ,
which has an initial range r from the radar and is moving along
the radar’s line of sight at a fixed speed of v. The time delay
between the received and the transmitted signal at time instant t
takes the form τ(t) := 2(r+vt)

c , where c is the velocity of light.
Under the stop-and-hop assumption [26], it holds that τ(t) ≈
τ(nTr) during the n-th pulse. Thus, the received echo of the
n-th transmission can be expressed as

SR(n, t) = ζST (n, t− τ(t)) ≈ ζST (n, t− τ(nTr)). (2)

After down-conversion, the received echoes become

SD(n, t) = SR(n, t)e
−j2πfn(t−nTr). (3)

Substituting (2) and (1) into (3) and rearranging, we obtain

SD(n, t) = ζrect

(
t− nTr − τ(nTr)

Tp

)
e−j2πfnτ(nTr)

= ζ̈rect

(
t− nTr − τ(nTr)

Tp

)
ej2πfrCn+j2πfvεnn, (4)
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where εn := 1 + CnΔf
fc

. The parameters ζ̈ := ζe−j4πfcr/c,

fr := − 2Δfr
c and fv := − 2fcvTr

c , representing the effective
intensity, range frequency and velocity frequency, respectively,
are unknown and need to be estimated.

The down-converted echoes are sampled at the Nyquist rate
of a single pulse, fs = 1

Tp
, at time instances, t = nTr +

ls
fs

,

ls = 0, 1, . . . , �Trfs�. Each sample corresponds to a coarse
range resolution (CRR) bin. The coarse range will be refined
by estimating fr or r from the echoes. Here, fr and r are
referred to as the HRR information. Since data from those
bins are processed identically and individually, without loss of
generality, we assume that the target is located in the ls-th CRR
bin, and that the target does not move outside the bin during
the CPI. Consequently, the rect(·) term in (4) at the ls sampling
instance equals 1, so that the sampled SD(n, t) becomes

SS(n) := SD (n, nTr + ls/fs) = ζ̈ej2πfrCn+j2πfvεnn. (5)

The model (5), derived for the case of a single scatterer, can
be extended to the setting in which K targets/clutter exist in
a CRR bin. Particularly, we denote by vk and fvk

the velocity
and velocity frequency of the k-th target (or clutter unit), respec-
tively, with k = 0, 1, . . . ,K − 1, and assume that the k-th target
is composed of Qk scatterers, moving at the same speed while
the ranges and scattering intensities are different. For the i-th
scatterer of the k-th target, ζ̈ki, rki and frki

denote the scattering
coefficient, initial range and range frequency, respectively. We
then extend (5) into a model for multiple targets as

SS(n) =

K−1∑
k=0

Qk−1∑
i=0

ζ̈kie
j2πfrki

Cn+j2πfvk εnn. (6)

Here, {ζ̈ki, frki
, fvk

} are unknown and need to be estimated
from SS(n).

In the next subsection, we arrange the signal model in matrix
form, which suggests a block sparse recovery approach for
range-Doppler reconstruction.

B. Signal Model in Matrix Form

To write (6) in matrix form, we first divide the continuous
fr and fv , representing range and Doppler parameters into grid
points. In particular, since (fr, fv) is unambiguous in the domain
[0, 1)2 and their resolutions are 1/M and 1/N , respectively, we
discretize fr and fv at the rates of 1/M and 1/N , respectively,
resulting in a series of grid points (p/M, q/N), p ∈ M, q ∈ N .

We consider a discrete model, which assumes that all scatter-
ers are situated exactly on the grid points, and use the matrix
X ∈ C

M×N to encapsulate the scattering intensities, given by

[X]p,q :=

{
ζ̈ki, ∃(k, i), s.t. (frki

, fvk
) = ( p

M , q
N ),

0, otherwise.
(7)

In practical scenes, scatterers of targets and clutter may be
continuously distributed rather than located on the discrete grid.
It is shown in [13] that radar returns of the discrete model well ap-
proximate the counterparts scattered from continuously located
scatterers. Let xq ∈ C

M denote the q-th column of X , repre-
senting the HRR profile of the target with Doppler frequency

q/N , q ∈ N . VectorizingX yieldsx := [xT
0 ,x

T
1 , . . . ,x

T
N−1] ∈

C
MN . Thus, x contains N blocks each having M entries, which

represent the HRR profile corresponding to a unique Doppler
frequency [13], and is referred to as having a block structure.
For the scenario that includes K targets, at most K blocks in x
are nonzero, and x is a so-called K block sparse vector.

Following [13], we now write (6) in matrix form as

y = Θx, (8)

where then-th entry of the measurement vectory ∈ C
N is given

by [y]n := SS(n). The observation matrix Θ ∈ C
N×MN , in

accordance with x, is separated into N blocks as

Θ := [Θ0,Θ1, . . . ,ΘN−1], (9)

where each block Θq ∈ C
N×M has (n, p)-th entry given by

[Θq]n,p = ej2π
p
M Cn+j2π q

N εnn, q, n ∈ N , p ∈ M. (10)

In some scenarios, only a random selection out of all N
pulses are transmitted (in the aim of, e.g., reducing power
consumption), or partial observations in y are abandoned and
not processed because they have a strong interferer. This will
lead to a compressive observation model, where only randomly
selected entries of y and ω, as well as the corresponding rows
of Ψ, remain.

The matrix Θ has more columns than rows, hence recovering
x from y is an under-determined problem. Generally, there are
only a small amount of targets occurring in a certain CRR,
which means that K is small, causing x to be block sparse [16].
Therefore, block sparse recovery can be utilized to recoverx and
henceforth the target parameters. We will review some basic
concepts on sparse recovery in Section III, and analyze the
recovery performance in Section IV.

Since the purpose of this paper is to identify the fundamental
limits on the recovery performance of FAR using sparse recovery
methods, in most parts of the paper we focus on the noise
free model (8), following typical approaches [19]–[24]. In the
simulation section, we will numerically discuss the recovery
performance under noisy circumstances, shown in Section VI-E.

III. PRELIMINARIES ON COMPRESSED SENSING

In this section, we briefly introduce some preliminaries on CS
and its phase transitions. In Section III-A, CS methods including
non-block and block sparse recovery are reviewed. Then in
Section III-B, we introduce the phase transition phenomenon
in sparse recovery, which serves as a theoretical tool for per-
formance analysis. To distinguish between the specific radar
parameters like N , we use lower case letters such as n to denote
the dimensions of matrices associated with a more general sparse
recovery problem. Since some variables in this section can be
either real or complex valued, and will be specified in later
discussions, we use S to represent R or C for convenience.

A. Sparse Recovery

Consider an under-determined problem y = Ψx, where y ∈
S
n, Ψ ∈ S

n×d and x ∈ S
d. Here, x has no more than s nonzero
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entries, and is called an s sparse vector. CS recovers x by
harnessing the sparsity as in the following optimization program:

x̂ = argmin
x

‖x‖0, s.t. y = Ψx. (11)

Since the ‘�0 norm’ optimization (11) is NP-hard [11], under ap-
propriate conditions, the problem can be solved more efficiently
by �1 norm minimization, i.e.,

x̂ = argmin
x

‖x‖1, s.t. y = Ψx. (12)

The standard sparse recovery problem (12) can be extended
to block sparse recovery. With some abuse of notation, we
consider a block-structured vector x ∈ S

md consisting of d
blocks where each block has m entries, denoted by x :=
[xT

0 ,x
T
1 , . . . ,x

T
d−1]

T . Here, xq ∈ S
m denotes the q-th block.

We use sB to represent the block sparsity, i.e., at most sB
blocks in x are nonzero. Similarly, we redefine Ψ ∈ S

n×md

as the measurement matrix. To solve for x from observations
y = Ψx, we exploit the block sparsity in x by considering an
�2,1 minimization problem [16]

x̂ = argmin
x

‖x‖2,1, s.t. y = Ψx. (13)

Here, the �2,1 norm, given by ‖x‖2,1 :=
∑d−1

q=0 ‖xq‖2, is defined
with respect to the block width m. When m = 1, (13) reduces
to (12).

Both standard and block sparse recovery, i.e., (12) and (13),
can be applied to FAR, and provide unique solutions with
high probability under certain conditions [12], [13]. Partic-
ularly, the recoverable number of targets K is on the or-

der of O(
√

N
log(MN) ) using �1 norm minimization [12] and

O( N
M log(MN) ) using �2,1 norm minimization [13], where we

recall that N and M are the numbers of pulses and available fre-
quencies, respectively. These obtained conditions are sufficient
yet too pessimistic, as discussed in Section VI. Consequently,
these conditions are difficult to use directly in practical FAR
systems to guide the waveform design under given parameters.
To seek appropriate conditions that guarantee exact recovery
with high probability and are tight enough to provide design
criterion for radar systems, we resort to phase transition curves,
which we introduce next.

B. Phase Transition Phenomenon

In this section, we briefly introduce the phase transition phe-
nomenon, following the ideas in [19].

Many CS works have focused on when exact recovery is
possible using (12) and how these conditions change as a
function of the problem parameters. Early works such as [21]
observed that the probability of exact recovery possesses a phase
transition with respect to the number of measurements, n, and
the sparsity of the signal, s. Here, a phase transition means a
dramatic change in the probability of exact recovery when these
parameters, n and s, vary around certain values. To illustrate the
phase transition phenomenon associated with the probability of
exact recovery, we empirically present in Fig. 1 the probabilities
of exact recovery, assuming an under-determined real-valued

Fig. 1. Probabilities that (12) exactly solves x simulated from 50 trials. Here,
d = 100,Ψ ∈ Rn×d has entries obeying i.i.d. N (0, 1), and the nonzero entries
of x are randomly 1 or -1. Exact recovery is proclaimed when the estimate x̂
satisfies ‖x̂− x‖2 ≤ 10−5. The theoretical curve is calculated analytically and
is introduced in Proposition 2.

Gaussian measurement matrix Ψ, applying (12) under different
pairs (n, s). The corresponding phase transition points (n, s)
where phase transitions happen, compose what we call the phase
transition curve. This curve precisely characterizes the required
conditions for exact recovery. While empirically calculating the
curve is usually time consuming, expressions of the theoretical
curve have been given in certain cases as we discuss next.

The paper [19] identified a theoretical phase transition curve
for a more general optimization problem of the form

x̂ = argmin
x

f(x), s.t. y = Ψx, (14)

under a real-valued Gaussian measurement matrix Ψ, based
on integral geometry techniques. Here, f(·) is restricted to
be convex and does not take the value −∞. In general, f(·)
indicates the ‘structure’ in a vector. For example, f(·) = ‖ · ‖1
characterizes the standard sparsity of a vector, and in this case
(14) reduces to (12). To calculate the number of measurements
n which causes a phase transition, two concepts are introduced,
the descent cone and the statistical dimension. The descent cone
of a proper convex function f : Rd → R at the point x ∈ Rd is
defined as

D(f,x) :=
⋃
τ>0

{y ∈ Rd : f(x+ τy) ≤ f(x)}. (15)

It depicts the conic hull of the perturbations which decrease
or maintain f around x. The number of measurements n which
causes a phase transition, representing the phase transition curve,
depends on the descent cone at the point x, given by

n = δ(D(f,x)) = E
[
dist2(g, D(f,x))

]
. (16)

Here, δ(·) is called the statistical dimension of a cone, the
expectation is taken over the random vector g ∈ Rd, obeying
the Gaussian distribution g ∼ N (0, I), and dist(x, S) denotes
the Euclidean distance from a vector x ∈ Rd to a set S ⊂ Rd

dist(x, S) := inf{‖x− y‖2 : y ∈ S}. (17)

Now, identifying the phase transition curve becomes calculating
the statistical dimension with respect to the �1 norm.

Directly calculating the statistical dimension is difficult, a
tight upper bound on it is used instead in [19]. To obtain
the bound, we first introduce the following definition. For an
appropriate convex function f : Rd → R, e.g., �1 norm of a d
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dimensional vector, the subdifferential ∂f(x) at a point x ∈ Rd

is defined as

∂f(x) := {s ∈ Rd : f(y) ≥ f(x) + 〈s,y − x〉, ∀ y ∈ Rd},
(18)

where 〈·, ·〉 denotes the dot product between two vectors. Next,
the following upper bound is derived in Proposition 4.1 of [19]:

Proposition 1 ( [19]): For x ∈ Rd and a convex function f:
Rd → R, demanding the subdifferential ∂f(x) to be compact,
nonnull, and not containing the origin, the following function

J(x, f) := inf
τ≥0

E[dist2(g, τ · ∂f(x))] (19)

upper bounds δ(D(f,x)), where the expectation in (19) is
taken over the random vector g ∈ Rd, obeying the Gaussian
distribution g ∼ N (0, I).

To apply Proposition 1, we substitute f(·) with ‖ · ‖1 in (19)
and calculate the infimum distance expectation J(x, ‖ · ‖1),
which implies the upper bound on δ(D(‖ · ‖1,x)). We then
express the upper bound as a function of the sparsity and the
dimension ofx, s and d, as claimed in the following proposition:

Proposition 2 ( [19]): Given an s sparse signal x ∈ Rd,
ϕ(s, d), defined as

ϕ(s, d):=inf
τ≥0

{
s(1 + τ2) + (d− s)

∫ ∞

τ

(u− τ)2φ(u)du

}
,

(20)
upper bounds δ(D(‖ · ‖1,x)), where φ(u) :=√

2
π exp(−u2

2 ), u ≥ 0, is the probability density function
of the folded normal distribution.

Proposition 2 offers a way to calculate the location of the phase
transitions without performing complicated simulations running
�1 norm minimization algorithms. The upper bound ϕ(s, d) in
(20) is tight, as shown in Fig. 1, denoted by ‘theoretical curve’.

IV. PHASE TRANSITIONS IN BLOCK SPARSE RECOVERY

Here we extend the result of [19] to the block sparse setting.
We present the theoretical results for real-valued Gaussian ma-
trices in Subsection IV-B, and complex Gaussian matrices in
Subsection IV-B.

A. Real-Valued Cases

Consider the model in (13) with y ∈ Rn, Ψ ∈ Rn×md and
x ∈ Rmd. We assume that Ψ is a real-valued Gaussian matrix
andx is block sparse with sparsity sB . According to Proposition
1, we let f(x) be the �2,1 norm of x with a block size m. Thus,
the phase transition curve becomes δ(D(‖ · ‖2,1,x)) and can be
achieved by calculating the term in the right hand side of (19)
with respect to f(x). Following the steps used for the derivation
of Proposition 2, we obtain the following proposition, which
provides an upper bound on δ(D(‖ · ‖2,1,x)) in terms of sB
and d.

Proposition 3: Given an sB block sparse signal x ∈ Rmd

having a block size m, the function ϕm(sB , d), defined as

ϕm(sB , d) :=

inf
τ≥0

{
sB(m+ τ2) + (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du

}
,

(21)
upper bounds δ(D(‖ · ‖2,1,x)). Here, φm(u) is the probability
density function of theχ-distribution withmdegrees of freedom,
given by

φm(u) :=

{
um−1e−u2/2

2m/2−1Γ(m
2 )

, u ≥ 0,

0, otherwise,
(22)

where Γ(·) is the gamma function.
Proof. See Appendix A. �
Proposition 3 offers a theoretical bound on the phase transition

curve in block sparse recovery, which is empirically tight as
will be shown in Section VI by experiments. It generalizes
Proposition 2, because standard �1 norm minimization can be
regarded as a special case of block sparse recovery with m = 1
and sB = s. In this case, the curveϕm(sB , d) becomes identical
to ϕ(s, d) in Proposition 2. Proposition 3 also paves the way to
discussing sparse recovery with complex-valued measurement
matrices. This is because both �1 and �2,1 norm minimization
under complex-valued measurement matrices can be expressed
by �2,1 norm minimization in real-valued formulations, as dis-
cussed in the next subsection.

B. Complex-Valued Cases

It is well known that complex-valued sparse recovery prob-
lems can be reformulated into real-valued ones [24]. We use
the same model (13) with Subsection IV-A except that vari-
ables are complex valued: y ∈ C

n, x ∈ C
md, and Ψ ∈ C

n×md

being a complex-valued Gaussian matrix. The model can be
converted into a real-valued form yr = Ψrxr by introducing

notations: yr := [�yT ,�yT ]T ∈ R2n, Ψr :=
[�Ψ −�Ψ
�Ψ �Ψ

]
∈

R2n×2md and xr := [�xT ,�xT ]T ∈ R2md. The q-th block in
x is rewritten as x̄q = [�xT

q ,�xT
q ]

T ∈ R2m. We then exchange
the entries in xr such that we obtain x̄ := [x̄T

0 , . . . , x̄
T
d−1]

T ∈
R2md. Applying the same arrangement to the columns of Ψr

yields Ψ ∈ R2n×2md, and we have yr = Ψx̄. Here, the real-
valued vector x̄ has d blocks, which each contains 2m entries.
The block sparsity of x̄ remains unchanged, sB . Define the �2,1
norm of x̄ with respect to the block size 2m, i.e., ‖x̄‖2,1 :=∑d−1

q=0 ‖x̄q‖2. Then, it can be verified that ‖x̄q‖2 = ‖xq‖2 and
hence ‖x̄‖2,1 = ‖x‖2,1, where we recall that the latter �2,1 norm
is defined with respect to the block size of m. Consequently,
the original complex-valued model (13) is equivalent to the
optimization problem

ˆ̄x = argmin
x̄

‖x̄‖2,1, s.t. yr = Ψx̄. (23)
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Since �1-norm based sparse recovery is a special case of block
sparse recovery, following the same steps, we find that complex-
valued �1 norm minimization is equivalent to a real-valued �2,1
norm minimization with block width of 2.

We now calculate the bound on δ(D(‖ · ‖2,1,x)) for the
complex-valued case, based on the real-valued representation
(23). Proposition 1 assumes that entries in the measurement
matrix are mutually independent Gaussian variables, while Ψr

orΨ has duplicate entries, which are not independent. However,
the dependence introduced by Ψr has little impact on its phase
transition curve according to the empirical results in [24], which
inspires us to apply Proposition 3, derived from Proposition 1,
for the real-valued optimization problem (23). Therefore, the
phase transitions of the optimization problem (23) emerge when
2n = ϕ2m(sB , d), where ϕm(s, d) is defined in (21). We then
denote by

ϕc
m(sB , d) := ϕ2m(sB , d)/2 (24)

an approximate bound on the phase transition curve. The ac-
curacy of (24) will be verified in Section VI. It provides the
location of phase transitions in complex-valued block sparse
recovery, which can be applied to standard sparse recovery as
well.

V. PHASE TRANSITION IN FAR

In this section, we adapt the derived phase transition curves to
FAR. We first present phase transition curves of FAR using block
sparse recovery, followed by the counterpart using standard
sparse recovery. We approximate and simplify the expressions
of these curves under certain assumptions, which facilitates the
calculation of these curves. In Subsection V-A and V-B, we show
the results of block and standard sparse recovery, respectively.
A discussion of these results is presented in Subsection V-C.

Phase transition curves of FAR are inspired by Propositions 2,
3 and (24), which however are given under Gaussian matrices.
Generally, these curves are not theoretically applicable to FAR
(10), because the measurement matrix in (10) is not Gaussian but
highly structured. Currently, there is no theoretical evidence that
Proposition 1 holds for such structured measurement matrices.
However, we will show in the next section by simulations that
(24) accurately indicates phase transitions in FAR.

In this section, we consider a FAR radar with the number of
pulses and available frequencies being N and M , respectively.
The radar illuminates K targets/clutter, of which each occupies
an average of βM HRR bins within a CRR bin. Here, β ∈ (0, 1]
is a measure of the sizes of the targets compared with CRR bins
and every CRR bin is regarded as a block of size M .

A. Block Sparse Recovery

Assuming only Nb observations out of the whole N radar
echoes are available, we use (24) to identify the required Nb

for exact target reconstruction with block sparse recovery. Sub-
stituting n = Nb, m = M , d = N and sB = K into (24), we

have

Nb=
1

2
inf
τ≥0

{
K(2M+τ2)+(N−K)

∫ ∞

τ

(u−τ)2φ2M (u)du

}
.

(25)
The curve indicated in (25) fits the phase transitions in FAR, as
numerically verified in Section VI.

The tightness of (25) makes it a powerful tool for guiding
waveform design and evaluating recovery performance of FAR.
For given system parameters M and N , as well as K, which
means that we have some prior knowledge on the number
of targets in a single CRR bin, (25) provides the minimum
requirement on the number of observations to guarantee unique
recovered targets. This is particularly useful when one aims to
reduce the number of transmitted pulsesNb out ofN , for the pur-
poses of lowering power consumption [6], facilitating spectrum
sharing between radar and communication [27], or interference
rejection [26]. For a given tuple of parameters (M,N,Nb), (25)
implies an equation with respect to K, the maximum number
of recoverable targets, evaluating the performance of radars
equipped with these parameters. This equation with respect toK
can be efficiently solved by iterative methods, e.g., the bisection
method [28], because Nb is a monotonic function with respect
to K, as stated below.

Proposition 4: The right hand side of (25) increases mono-
tonically with K.

Proof: See Appendix B. �
Numerical calculation of (25) involves complicated integra-

tion operations, and when M is a slightly large number, the
precise calculation of (25) is difficult. To avoid the computational
burden and allow real-time calculation in practical scenarios, we
approximate and simply (25) under different quantitative rela-
tions between N and K, as given in the following proposition.

Proposition 5: For largeM and different orders of magnitude
of N

K , Nb in (25) can be approximated by:
� i) when N

K � √
M ,

Nb ≈ Nb1 = 2MK − K

4
+

√
2

2

·K
√

(4M − 1) log
N −K

K
√
4M − 1

. (26)

� ii) when N
K ≈ √

M ,

Nb ≈ Nb2 = KM +
K

2
xb(τ∗), (27)

where

xb(τ∗) = 2M − 3

4
+

N

4K
− (4M − 1)K

N +K

+
(N −K)2

2Kπ(N +K)
− (

√
2 + 1)(N −K)

2(N +K)

√
4M − 1

π
.

(28)

� iii) when N
K � √

M ,

Nb ≈ Nb3 = MN − (4M − 1)(N −K)2

4N
. (29)
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Proof: See Appendix C. �
We will show in the next section that when M ≥ 4, these

approximations are quite accurate. Among these three relations
between N and K, the case of N/K � √

M is of particular
interest, representing that the observed target scene is relatively
sparse. We will compare this curve with the counterpart of
standard sparse recovery in the next subsection.

B. Standard Sparse Recovery

To compare FAR’s recovery performance between non-block
and block sparse recovery, i.e., (12) and (13), we also use (24) to
indicate the required minimum number of radar echoes, denoted
by Ns, when applying (12). In this case, the “block” size is
m = 1, and the length of x is md = d = MN . The “block”
sparsity becomes sB = βKM , because each target occupies an
average of βM HRR bins within a CRR bin, and thus leads to
βM nonzero entries in x. Substituting these variables into (24),
we obtain

Ns=
M

2
inf
τ≥0

{
βK(2+τ2)+(N−βK)

∫ ∞

τ

(u−τ)2φ2(u)du

}
.

(30)
The values in (25) and (30) are identical when M = 1 and
β = 1. As a direct corollary of Proposition 4, Ns increases
monotonically with β and K. This implies that the fewer HRR
bins the targets occupy within a CRR bin, the better performance
standard sparse recovery will have.

Similarly to Proposition 5, we have the following proposition
that presents approximations to (30).

Proposition 6: When N
βK � 1 and N

βK ≈ 1, (30) is approxi-
mated by

Ns ≈ Ns1 = 2βMK +
βMKτ2�

2
, (31)

and

Ns ≈ Ns2 = MN − πM(N − βK)2

4N
, (32)

respectively, where τ� is the solution of the following equation

log(τ2� + 1) = log
N − βK

βK
− τ2�

2
. (33)

Proof: See Appendix D. �
This proposition, like the counterpart for block sparse recov-

ery, intuitively reveals the relationship between Ns and param-
eters (M,N,K, β), facilitating the comparison between block
and standard sparse recovery.

C. Discussion

In the sequel, we discuss the obtained bounds when M is rea-
sonably large and the observed target scene is relatively sparse,
i.e., N � K, which occurs in many practical scenarios. Under
such conditions, we adopt the approximations (26) and (31).

We first note that the obtained conditions that guarantee
unique recovery are tighter than the previous counterparts pre-
sented in [12], [13]. The previous results, Kb = O( N

M log(MN) )

andKs = O( 1β

√
N

M2 log(MN) ), (the subscripts denote block and

standard sparse recovery, respectively), are based on coherence
techniques, which lead to pessimistic bounds. To facilitate the
comparison between our results and Kb, Ks, we set Nb1 = N
and Ns1 = N in (26) and (31), respectively, because the in-
tact observation models are considered in [12], [13], where
all N pulses are transmitted, received and processed. Regard-
ing (26), we have Kib ≈ N

2M+
√

2M log N

2
√
M

for intact block

sparse recovery (hence the subscript ‘ib’). Since in practice
N is usually not extremely larger than M , we have 2M ≥√

2M log N
2K

√
M

. As a consequence, Kib scales as O(N/M),

larger than O( N
M log(MN) ), indicating the tightness of Kib over

Kb. Similarly, from (31), we have Kis ≈ 1
β

N
2M+M logN for

intact standard sparse recovery (hence the subscript ‘is’), which
is simplified as Kis = O( N

βM logN ). In comparison with Ks, we
find Kis scales larger than Ks. We will show by simulations in
the next section that the approximations we derive in this section
are tight for FAR, while the previous bounds [12], [13] are quite
pessimistic.

The tightness enables these approximations to accurately
characterize the recovery performance, and facilitates the per-
formance comparison between block and standard sparse re-
covery for extended targets. In particular, from (26) and

(31), we have Nb = 2MK +O(K
√

M log N
K

√
M
) and Ns =

2βMK +O(βKM log N
K ), respectively, suggesting Nb < Ns

for β approximate to 1 and reasonably large M . This means
that for given (M,N,K), i.e., under the same system settings
and sparse target scene, block sparse recovery requires fewer
observations to guarantee unique recovery of extended targets,
implying that block sparse recovery is generally more suitable
for recovering extended targets with FAR. Meanwhile, in the
case of β ∼ O( 1√

M
), we have Ns = O(K

√
M log N

K ) less than
Nb, which means that standard sparse recovery performs better
when only a small portion of HRR bins are occupied in the
considered CRR. In Section VI-C, we compare the results of
standard and block sparse recovery with different β, which
coincide with our conclusions above.

In summary, for scenes with a few extended targets block
sparse recovery generally outperforms the standard one. The
reason is that these scenes naturally possess block sparsity,
captured well by the �2,1 norm. However, in some special cases
where only a small portion of HRR bins in the considered
CRR bin are occupied by targets (this happens, e.g., when the
extended targets have small size compared to the size of a CRR
bin), indicating sparsity within a nonzero block, standard sparse
recovery performs better than block sparse recovery.

In this paper, we mainly consider the cases where the carrier
frequencies of transmitted pulses are assumed to be evenly dis-
tributed over the set M. Empirical experiments show that when
they are not evenly distributed, there is performance degradation.
The phase transition curve in the cases of uneven distributions
is left for future work.

Grid selection will also affect the performance results since
the properties of the measurement matrices will vary with the
grid. In this paper, we select grids according to the resolu-
tion of the radar system. However, when the continuous target
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Fig. 2. Phase transitions under real and complex-valued Gaussian matrices using block and non-block sparse recovery, respectively.

parameters lie off the selected grids, the recovery performance
may degrade. It is commonly believed that selecting denser
grids is likely to relieve the off-the-grid problem [29]. Pre-
liminary empirical results demonstrate that under denser grids
there generally still exists a phase transition phenomenon and
that the performance of CS approaches can be well described
by the theoretical curves with some slight adjustments. Future
investigations are required to provide a theoretical explanation of
this phenomenon. Moreover, to address the off-the-grid problem,
some off-grid CS-methods are proposed [29]; theoretical analy-
ses of these off-grid methods are beyond the scope of this paper.

VI. SIMULATION RESULTS

In this section, simulations are conducted to verify the theoret-
ical curves derived for Gaussian matrices in Section IV and test
their application in FAR. In Section VI-A and Section VI-B, we
measure the success rates of recoveringx. Then in Section VI-C,
we examine the relationship between the number of occupied
HRR bins and the reconstruction performance. In the above three
sections, we assert that x is recovered successfully when x̂, the
estimation of x, satisfies ‖x̂− x‖2 ≤ 10−5. In Section VI-D,
we examine the proximity of our approximations to the the-
oretical results. In Section VI-E, we discuss phase transitions
in noisy settings, revealing the robustness of phase transitions
to noise. To clarify the difference, we recall that Φ and Θ
denote the Gaussian matrix and measurement matrix of FAR,
respectively.

A. Phase Transitions Under Gaussian Matrices

This subsection carriers out simulation experiments to inspect
the phase transitions on block sparse recovery and the phase
transitions in complex-valued Gaussian matrices.

The first experiment considers real-valued block sparse re-
covery described in (13), where the entries of the observation
matrix Ψ ∈ Rn×md obey i.i.d. N (0, 1). The nonzero entries
in x ∈ Rmd are 1 or -1 randomly with an identical probability
1/2. We set m = 4 and d = 32, and vary (sB , n) to calculate
the probabilities of exact recovery. In the second simulation,
we test the phase transition in complex-valued non-block sparse
recovery (12), which can be solved by real-valued block sparse
recovery as discussed in Subsection IV-B. Here, the entries of
Ψ ∈ C

n×d have their real and imaginary parts obeying i.i.d.

N (0, 1). There are s nonzero entries in x ∈ C
d, whose phases

are i.i.d. U([0, 2π]) and amplitudes equal 1. We set d = 100. In
both experiments, 50 trials are performed on each pair (sB , n)
or (s, n) to calculate the success rates. The results for these two
experiments are shown in Fig. 2 (a) and (b). The theoretical
curves in (a) and (b) are computed by (21) and (24) with
corresponding m and d, respectively.

Fig. 2 shows that the theoretical curves conform to empirical
phase transitions, which verifies Proposition 3 and (24).

B. Phase Transition in FAR Model

We next verify existence of phase transitions in FAR. Both
standard and block sparse recovery methods are tested.

To inspect the phase transition in FAR (10), we randomly
select n rows from Θ ∈ C

N×MN to form a partial measurement
matrix Θ̂ ∈ C

n×MN . The phases of nonzero entries inx are i.i.d.
U([0, 2π]) and the amplitudes equal 1. Given the observations
y = Θ̂x, we use both standard (12) and block (13) sparse re-
covery to estimate x. Recall that in standard sparse recovery, the
sparsity is βKM , and we set β = 1 here. We set the parameters
M = 4, N = 128, Δf

fc
= 0.02, and use 50 trials to calculate the

success rates. The results of (12) and (13) are shown in Fig. 3
(a) and (b), respectively. The theoretical curves are calculated
with corresponding M and N by (30) and (25), denoted by
‘Ns’ and ‘Nb,’ representing standard and block sparse recovery,
respectively. For the sake of comparison between these two
sparse recovery methods, we depict both theoretical curves in
each figure of phase transition results.

From Fig. 3, we see that both theoretical curves well match
their corresponding phase transition curves of FAR. Let Ns =
Nb = N . The predicted numbers of recoverable targets under
this setting are K = 11.1 and K = 14.7 for standard and block
sparse recovery, respectively, whose corresponding success rates
are 0.54 (K = 11, n = 128 in Fig. 3 (a)) and 0.50 (K = 14, n =
128 in Fig. 3 (b)). These rates are close to the threshold 1/2 that
divides the parameter plane into regions of success and failure,
indicating that the obtained values of K are tight. However,
the counterparts obtained from [12] and [13] are pessimistically
K = 0.4 and K = 0, respectively. We also find that the curve
of ‘Nb’ is generally lower than that of ‘Ns,’ revealing that block
sparse recovery behaves better than standard sparse recovery in
the tested cases.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on September 05,2021 at 11:58:16 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PHASE TRANSITIONS IN FREQUENCY AGILE RADAR USING COMPRESSED SENSING 4809

Fig. 3. Phase transitions in FAR using standard and block sparse recovery.

Fig. 4. Comparison of block and standard sparse recovery with different
choices of β.

C. Phase Transitions and the Number of Occupied HRR Bins

In this experiment, we choose a fully observed FAR
model Θ ∈ C

N×MN as the measurement matrix, where N =
128,M = 16, Δf

fc
= 0.02. The phases of nonzero entries in the

K block sparse vector x are i.i.d. U([0, 2π]) and the amplitudes
equal 1. Given the observations y = Θx, we use both standard
(12) and block (13) sparse recovery to estimate x. Recall that
in standard sparse recovery, the sparsity is βKM , and we
set β = 1/4, 1/2, 1 here. For different β, we use 50 trials to
calculate the success rates. The results are shown in Fig. 4.

From Fig. 4, the probabilities of exact reconstruction with
block sparse recovery (labeled with �2,1) are close, indicating
that the phase transition of block sparse recovery is not sensitive
to the value of β. In contrast, the probabilities of exact recon-
struction via standard sparse recovery decrease with increasing
β. When β = 1, block sparse recovery outperforms the standard
one. For relatively small β (e.g., 1/2 and 1/4), standard sparse
recovery performs better, because nonzero blocks of x also
possess sparsity and �1 norm minimization well harnesses such
sparsity.

D. Approximation of Phase Transition

In this subsection, we will show by simulations that our
approximations of the phase transition curves are sufficiently

close to the theoretical results, so that we can use them in
practical applications to avoid time-consuming calculation.

We compute Nb and Ns versus K with (25) and (30) to
represent the theoretical results under different N and M . Then
we calculate the values of Nb1, Nb2 and Ns1 in (26), (27) and
(31), respectively, to compare with the theoretical results. We
set the parameters (N,M) to be (128,4), (128,6), (256,10) and
(256,12), and the corresponding results are shown in Fig. 5(a)–
(d), respectively. Since Nb and Ns cannot exceed N , we restrict
their scales between 0 and N in these figures.

From Fig. 5, we see that Ns1 well approximates Ns under
all the tested scenarios. As expected in the discussions over
Proposition 5, when both M and K are small, Nb1 is closer
to Nb than Nb2, while Nb2 behaves better in fitting Nb when
either M or K increases. Fig. 5 also shows that the larger
M grows, the more block sparse recovery outperforms the
standard counterpart, which is in accordance with our analysis
in Section V-C.

E. Phase Transition Under Noisy Conditions

In noisy cases, instead of “exact recovery,” it would be
more practical to introduce some “tolerance” in both the con-
straint condition and the evaluation of the performance of CS
approaches. A noisy underdetermined system is denoted by
y = Ax + v, where v denotes the noise and x is an unknown
sparse/block sparse signal. This can be solved by the following
optimization

min
x

J(x) s.t.‖Ax − y‖ ≤ ε, (34)

where ε ∈ R+ is a constant chosen to tolerate the noise, satis-
fying ‖v‖ ≤ ε. And J(x) is the cost function, which is the �1
norm or �2,1 norm, representing the standard and block sparse
recovery, respectively.

Then we evaluate the recovery results under two different
criteria, respectively, i.e., “approximate recovery” and “robust
recovery”. Under noisy cases, the original signalx is regarded as
“approximately recovered,” if the result x̂ recovered from (34)
satisfies ‖x− x̂‖ ≤ C; x is regarded as “robustly recovered,” if
x̂ satisfies ‖x− x̂‖ ≤ C ′ε [30]. Here, C and C ′ are constants.
The difference is whether the threshold depends on noise level
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Fig. 5. Comparison between Nb, Ns, Nb1, Nb2 and Ns1.

ε. We will show the phase transition phenomena and their
relationships with the theoretical results in both criteria below.

For approximate recovery, consider a noisy intact FAR obser-
vation y = Θx+ v, where Θ ∈ C

N×MN is the measurement
matrix of FAR withM = 4,N = 128 and δf

fc
= 0.02. The noise

v ∈ C
N obeys a complex circularly-symmetric Gaussian distri-

bution with variance σ2, i.e., v ∼ CN (0, σ2I). The unknown
vector x ∈ C

MN contains K nonzero blocks, each of which
has block size M . The phases of entries in nonzero blocks of x
are i.i.d U([0, 2π]) and the amplitudes equal 1. We use (34) to
recover x by taking J(x) as ‖x‖1 and ‖x‖2,1, respectively, and
taking ε =

√
Nσ2.

For standard and block sparse recovery, We use 50 trials to cal-
cula te the probabilities of approximate recovery in the cases of
C = 1.5 and C = 2.5, versus block sparsity K. Different noise
variances σ are tested to examine the sensitivity of approximate
recovery to noises.

The results are shown in Fig. 6. From the figure, we see that
under different σ2 and C, there are phase transition phenomena.
Particularly, lower noise variances lead to better recovery per-
formance, which right shift the probability curves. Increasing
the tolerance C also improves the probabilities of approximate
recovery in all cases. For reasonably low noise variances, the
curves are close to the one under noiseless condition. We also
note that the performance gap between the empirical and the-
oretical results is significant, which indicates that the criterion
used in this figure, i.e.,‖x− x̂‖ ≤ C, does not show the intrinsic
connection between the performance of CS approaches in noisy

cases and the theoretical phase transition curve. To better char-
acterize the the behavior of CS methods, we turn to the second
criterion, “robust recovery”.

The tolerance of robust recovery, C ′ε, depends on noise level
ε. Previous work [31] proves that a (large enough) Gaussian
matrixA leading to exact recovery in noise-free cases also guar-
antees robust recovery in noisy cases using (34), indicating that
their phase transitions show certain commonalities. To validate
the phase transition of robust recovery in FAR model, we exe-
cute the same simulation as the above “approximate recovery,”
despite that we calculate the probabilities of robust recovery
of x. For standard and block sparse recovery, the constants
of robust recovery are set to C ′ = 2.2/

√
N and C ′ = 2/

√
N ,

respectively.
The results are shown in Fig. 7. For ease of comparison, the

probabilities of exact recovery under noise-free conditions are
also depicted in Fig. 7, labeled with ‘noiseless’.

From Fig. 7, in noisy cases, there is still a phase transition
phenomenon of standard and block sparse recovery in the sense
of probability of robust recovery. In addition, the phase tran-
sition points are close to their counterparts in noiseless cases,
validating the importance of phase transition theory derived from
noiseless conditions. In the results of both standard and block
sparse recovery, we find that the increase of noise variance the
sparsityK where the phase transition happens. The reason is that
we set C ′ as a constant and ε changing with noise variance. As
a result, the increase of variance makes the condition of robust
recovery, i.e., ‖x− x̂‖ ≤ C ′ε, become more tolerant, and hence
increases the sparsity K where the phase transition happens.
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Fig. 6. Probabilities of approximate recovery, i.e., ‖x− x̂‖ ≤ C, using standard and block sparse recovery under different variances of noise. The vertical dashed
lines represent the theoretical phase transition points in the noiseless cases.

Fig. 7. Probabilities of robust recovery, i.e., ‖x− x̂‖ ≤ C ′ε, using (a) standard and (b) block sparse recovery under different variances of noise. Particularly, the
curves labeled with “noiseless” correspond to the probabilities of exact recovery, i.e., ‖x− x̂‖ ≤ 10−5, in noiseless cases.

However, this does not indicate that the recovery algorithms
perform better with the increase of noise variance.

The phase transition can be different with different criteria.
The goal of this paper is not to analyse how the results varies ac-
cording to the criterion, but to show that, with suitable criterion,
the phase transition in noisy circumstance is relatively close to
the phase transition of exact recovery in noiseless circumstance.
Thereby, the theoretical phase transition curve is still instructive
in practical scenarios.

VII. CONCLUSION

In this paper, standard and block sparse recovery for FAR are
studied from the perspective of phase transitions. We generalize
the phase transitions of standard sparse recovery under real
Gaussian matrices to the cases associated with block sparse
recovery and complex-valued Gaussian matrices, which numer-
ically conform to phase transitions existing in FAR. Particularly,
this paper extends [1] by providing complete theoretical proofs
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and discussions on approximating phase transition curves, ex-
plicitly revealing the quantitative relationship between the re-
quired number of measurements and the numbers of radar pulses,
frequencies and targets, as well as facilitating the calculation of
these curves. These approximations with analytical expressions
are tighter than previous results in [12], [13], and indicate that
block sparse recovery requires less measurements to exactly
reconstruct extended targets. Numerical results demonstrate the
accuracy of the derived curves and their approximations.

APPENDIX A
PROOF OF PROPOSITION 3

In this section, we prove Proposition 3. According to Propo-
sition 1, we first calculate the subdifferential of the �2,1 norm
defined in (18), and then the distance between the subdifferential
and a Gaussian vector, as indicated in (19).

Regarding the subdifferential of �2,1 norm of a sB block sparse
vector x ∈ Rmd, we first reorganize the vector x for notation
convenience. Without loss of generality, we assume that the
support set of x is B = {0, 1, . . . , sB − 1}, such that

xT =
[
xT
0 ,x

T
1 , . . . ,x

T
sB−1,0

T , . . . ,0T
]
.

Here, the first sB blocks xi ∈ Rm, i ∈ B, are nonzero. We use
xi,j to represent the j-th element of the i-th block xi, i.e., the
(im+ j)-th entry of x. Let Bc := {sB , sB + 1, . . . , d} be the
complementary set of B.

We link the subdifferential of ‖x‖2,1 and that of ‖xi‖2 by
introducing the following lemma.

Lemma 1: Given two block vectors x = [xT
0 ,x

T
1 , . . . ,

xT
d−1]

T ,s = [sT0 , s
T
1 , . . . , s

T
d−1]

T ∈ Rmd withxi,si ∈ Rm, the
following two statements are equivalent:

1) s ∈ ∂‖x‖2,1,
2) si ∈ ∂‖xi‖2, i = 0, 1, . . . , d− 1.
Proof: According to (18), the definition of subdifferential, we

rewrite the above statements into inequalities, respectively:
1) for ∀y ∈ Rmd, ‖y‖2,1 ≥ ‖x‖2,1 + 〈y − x, s〉,
2) for ∀yi ∈ Rd, ‖yi‖2 ≥ ‖xi‖2 + 〈yi − xi, si〉, i =

0, 1, . . . , d− 1.
To prove 2) → 1), we set y = [yT

0 ,y
T
1 , . . . ,y

T
d−1]

T . By
summing both sides of the inequality in 2) with respect to i,
we have

d∑
i=0

‖yi‖2 ≥
d∑

i=0

‖xi‖2 +
d∑

i=0

〈yi − xi, si〉, (35)

where the summation terms are equal to ‖y‖2,1, ‖x‖2,1 and
〈y − x, s〉, respectively, implying 1).

For the other direction 1) → 2), we construct
y = [xT

0 , . . . ,x
T
i−1,y

T
i ,x

T
i+1, . . . ,x

T
d−1]

T . Due to the
arbitrariness of y, the inequality in 1) still holds, directly
yields the i-th inequality in 2) with some simple arrangement,
i = 0, 1, . . . , d− 1.

Therefore, these two statements are equivalent. �
Lemma 1 facilitates the calculation of ∂‖x‖2,1: we just need

to calculate ∂‖xi‖2. For a convex function f(·), if it is differ-
entiable at a certain point p, then the subdifferential of f(·) at
p contains only one element, the differential of f(·) at p [32,

§35]. Therefore, we discuss ∂‖xi‖2 when xi is a nonzero or
zero block, respectively. In the former case, the function ‖xi‖2
is differentiable with respective to xi. The partial differential of
‖xi‖2 with respective to an entry xi,j is given by

xi,j√∑m−1
k=0 x2

i,k

, i ∈ B, j ∈ M. (36)

In the latter case, the partial differential of ‖xp‖2, p ∈ Bc,
does not exist, and we will calculate its subdifferential with the
following lemma.

Lemma 2: Given the function f(x) = ‖x‖2, x ∈ Rd, the
subdifferential of f(·) at x = 0 is {s ∈ Rd : ‖s‖2 ≤ 1}.

Proof: Let S = {s ∈ Rd : ‖s‖2 ≤ 1}. To prove S = ∂f(0),
we need to show that S ⊂ ∂f(0) and ∂f(0) ⊂ S .

We first consider S ⊂ ∂f(0). Recall the definition
of the subdifferential, ∂f(x) := {s ∈ Rd : f(y) ≥ f(x) +
〈s,y − x〉, ∀ y ∈ Rd}. For ∀s ∈ S , using the Cauchy-
Buniakowsky-Schwarz inequality, we have the following in-
equality

‖0‖2 + 〈s,y − 0〉 ≤ ‖s‖2‖y‖2 ≤ ‖y‖2, (37)

being true for ∀y ∈ Rd, which proves S ⊂ ∂f(0).
We then state ∂f(0) ⊂ S by proving its contrapositive: for

∀s ∈ Rd, if s �∈ S , then s �∈ ∂f(0). For s ∈ Rd, ‖s‖2 > 1, we
choose y = s

‖s‖2 , and obtain the following inequality

f(y) = ‖y‖2 = 1 < ‖s‖2 = 〈y, s〉 = 〈y − 0, s〉+ f(0),
(38)

implying s �∈ ∂f(0).
With the two parts above, we prove ∂f(0) = S . �
Lemma 2 completes the subdifferential of ‖xp‖2 for p ∈ Bc.

Recall that when i ∈ B the subdifferential is given by (36).
We are now ready to derive ∂‖x‖2,1. Let v ∈ Rmd denote

an element in the subdifferential of ‖x‖2,1, i.e., v ∈ ∂‖x‖2,1,
with its i-th block denoted by vi ∈ Rm and (im+ j)-th entry
by vi,j . The subdifferential ∂‖x‖2,1 forms a cone, given by

∂‖x‖2,1 =

{
v ∈ Rmd : vi,j =

xi,j√∑m−1
k=0 x2

i,k

,

m−1∑
q=0

v2p,q ≤ 1,

i ∈ B, j ∈ M, p ∈ Bc

}
. (39)

We then calculate the distance between a standard normal
vector g ∈ Rmd, g ∼ N (0, Imd), and the set ∂‖x‖2,1.

Let gi ∈ Rm and gi,j represent the i-th block and (im+ j)th
entry in g, respectively. The distance is then calculated block-
wise, given by

dist2 (g, τ · {v}) =
d−1∑
i=0

dist2 (gi, τ · {vi}) . (40)

For i ∈ B, dist2(gi, τ · vi) =
∑m−1

j=0 (gi,j − τvi,j)
2, because

the subdifferential reduces to a single point. When p ∈ Bc, we
have {vp} = {s ∈ Rm : ‖s‖2 ≤ 1}. Therefore, the distance is
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given by

dist2
(
gpu · {vp}

)
= inf

‖vp‖2≤1

m−1∑
q=0

(gp,q − τvp,q)
2, (41)

which equals zero when ‖gp‖2 ≤ τ and (‖gp‖2 − τ)2 other-
wise, hence is expressed by Gp(τ) := max((‖gp‖2 − τ)2, 0).
From the above discussion, we have

dist2 (g, τ · {v}) =
sB−1∑
i=0

m−1∑
j=0

(gi,j − τvi,j)
2 +

d−1∑
p=sB

Gp(τ).

(42)

We next calculate the expectation. We have E[g2i,j ] = 1,

E[gi,jvi,j ] = 0 and
∑m−1

j=0 v2i,j = 1, i ∈ B, j ∈ M. The expec-
tation of the first term in (42) is rewritten as follows

E

⎡
⎣sB−1∑

i=0

m−1∑
j=0

(gi,j − τvi,j)
2

⎤
⎦ = E

⎡
⎣sB−1∑

i=0

m−1∑
j=0

g2i,j

⎤
⎦

− 2τE

⎡
⎣sB−1∑

i=0

m−1∑
j=0

gi,jvi,j

⎤
⎦+ τ2

sB−1∑
i=0

m−1∑
j=0

v2i,j

= sB
(
m+ τ2

)
. (43)

Let up = ‖gp‖2, which obeys the χ-distribution with m degrees
of freedom. The expectation of the second term can be calculated
as

E

[
d−1∑
i=sB

Gp(τ)

]
= (d− sB)E

[
max((up − τ)2, 0)

]

= (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du

+ (d− sB)

∫ τ

0

0 · φm(u)du

= (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du, (44)

where φm(u) is the probability density function of the χ-
distribution with m degrees of freedom. With the above results,
the expectation is given by

E
[
dist2 (g, τ · {ṽ})]
= sB

(
m+ τ2

)
+ (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du. (45)

According to Proposition 1, we obtain the upper bound on
δ(D(‖ · ‖2,1,x)) as

ϕm(sB , d) = inf
τ≥0

E[dist2(g, τ · ∂‖x‖2,1)]

= inf
τ≥0

{sB(m+ τ2) + (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du},
(46)

which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 4

Here, we prove the monotonicity ofNb in (25) with respective
to K. For convenience, we define H(K, τ) as

H(K, τ) := K(2M + τ2)

+ (N −K)

∫ ∞

τ

(u− τ)2φ2M (u)du, (47)

where τ ≥ 0, such that

Nb =
1

2
inf
τ≥0

H(K, τ). (48)

To reveal the monotonicity, we regard the integer K as a real
number, and calculate the partial derivative of H(K, τ) with
respect to K, given by

∂H(K, τ)

∂K
= 2M + τ2 −

∫ ∞

τ

(u− τ)2φ2M (u)du, (49)

which is non-negative as shown below.
Since (u− τ)2 ≤ u2 for u ≥ τ ≥ 0 andφ2M (u) ≥ 0 for u ≥

0, we have∫ ∞

τ

(u− τ)2φ2M (u)du ≤
∫ ∞

τ

u2φ2M (u)du

≤
∫ ∞

0

u2φ2M (u)du, (50)

which leads to

∂H(K, τ)

∂K
≥ 2M + τ2 −

∫ ∞

τ

u2φ2M (u)du

≥ 2M + τ2 −
∫ ∞

0

u2φ2M (u)du. (51)

Recall that φ2M (u) denotes the probability density function of
the χ-distribution with 2M degrees of freedom. The integral
term in (51) represents the second moment of χ-distribution,
which equals the first moment ofχ2-distribution, i.e., the degrees
of freedom 2M [33]. Therefore, (51) results in

∂H(K, τ)

∂K
≥ 2M + τ2 − 2M = τ2 ≥ 0. (52)

As a consequence, H(K, τ) is monotonically non-decreasing
with the increase of K, which proves H(K1, τ) ≥ H(K2, τ),
when K1 >= K2. Take the infimum of τ on both sides of the
inequality, we haveNb(K1) >= Nb(K2), completing the proof.

APPENDIX C
PROOF OF PROPOSITION 5

To simplify Nb in (25), we first introduce

xb(τ) := τ2 +
N −K

K

∫ ∞

τ

(u−τ)2φ2M (u)du, (53)

such that

Nb = KM +
K

2
inf
τ≥0

xb(τ). (54)

In the following, we approximate xb(τ) with a conciser form in
X-A. We then seek the value of τ ≥ 0 that leads to the infimum
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of xb(τ) in X-B, followed by the calculation of infτ≥0 xb(τ) in
X-C. Among the derivatives, some formulas corresponding to
the integral over a normal distribution will be used [33], given
by ∫ ∞

y

u3e−
u2

2 du = y2e−
y2

2 + e−
y2

2 , (55)

∫ ∞

y

u2e−
u2

2 du =

√
π

2
erfc

(
y√
2

)
+ ye−

y2

2 , (56)

∫ ∞

y

ue−
u2

2 du = e−
y2

2 , (57)

∫ ∞

y

e−
u2

2 du =

√
π

2
erfc

(
y√
2

)
, (58)

where erfc(x) = 2√
π

∫∞
x e−η2dη is the complementary error

function.

A. Approximation of xb(τ)

The approximation of xb(τ) is based on the central limit the-
orem [33], indicating that the χ-distribution probability density
function φ2M (u) can be well approximated by a probability
density function of a normal distribution when M is reasonably
large. Particularly,

φ2M (u) ≈ 1

σM

√
2π

e
− 1

2

(
u−μM
σM

)2

, (59)

where the mean and variance are denoted by μM and σ2
M ,

respectively, given by

μM =

√
2Γ(M + 1/2)

Γ(M)
, (60)

σ2
M = 2M − μ2

M . (61)

We note that for sufficiently large M , the mean and variance in
(60) and (61) lead to

μ2
M ≈ 2M − 1/2, (62)

σ2
M ≈ 1/2, (63)

respectively [34]. In this case, μM/σM = O(
√
M).

By substituting (59) into (53), we approximate the integral
term in the right hand side of (53) by∫ ∞

τ

(u− τ)2φ2M (u)du

≈ 1

σM

√
2π

∫ ∞

τ

(u− τ)2e
− (u−μM )2

2σ2
M du. (64)

Now, ∫ ∞

τ

(u− τ)2e
− (u−μM )2

2σ2
M du

=

∫ ∞

τ

(u− μM + μM − τ)2e
− (u−μM )2

2σ2
M du, (65)

which can be expanded into a summation of three terms∫ ∞

τ

(u− μM )2e
− (u−μM )2

2σ2
M du

+ 2(μM − τ)

∫ ∞

τ

(u− μM )e
− (u−μM )2

2σ2
M du

+

∫ ∞

τ

(μM − τ)2e
− (u−μM )2

2σ2
M du. (66)

We next calculate these terms by using formulas (56)–(58)
individually. The first term in (66) can be rewritten as∫ ∞

τ

(u− μM )2e
− (u−μM )2

2σ2
M du

= σ2
M

∫ ∞

τ

(u− μM )2

σ2
M

e
− (u−μM )2

2σ2
M du

(a)
= σ3

M ·
(√

π

2
erfc

(
τ − μM√

2σM

)
+

τ − μM

σM
e
− (τ−μM )2

2σ2
M

)
,

(67)

where (a) is a consequence of (56). The integral in the second
term of (66) can be simplified by (57), implying∫ ∞

τ

(u− μM )e
− (u−μM )2

2σ2
M du = σM

∫ ∞

τ

u− μM

σM
e
− (u−μM )2

2σ2
M du

= σM · σMe
− (τ−μM )2

2σ2
M . (68)

With (58), we rewrite the integral of the third term in (66) as∫ ∞

τ

e
− (u−μM )2

2σ2
M du = σM

√
π

2
erfc

(
τ − μM√

2σM

)
. (69)

Substituting (67)–(69) into (66) yields∫ ∞

τ

(u− τ)2e
− (u−μM )2

2σ2
M du

=
(
σ3
M + (μM − τ)2σM

)√π

2
erfc

(
τ − μM√

2σM

)

+
(
σ2
M (τ − μM ) + 2(μM − τ)σ2

M

)
e
− (τ−μM )2

2σ2
M

=
(
σ3
M + (μM − τ)2σM

)√π

2
erfc

(
τ − μM√

2σM

)

+ (μM − τ)σ2
Me

− (τ−μM )2

2σ2
M . (70)

Plugging this integral into (53), yields

xb(τ) = τ2 +
N −K

KσM

√
2π

∫ ∞

τ

(u− τ)2e
− (u−μM )2

2σ2
M du

= τ2 +
N −K

2K

(
σ2
M + (μM − τ)2

)
erfc

(
τ − μM√

2σM

)

+
N −K

K
√
2π

(μM − τ)σMe
− (τ−μM )2

2σ2
M . (71)
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B. Minimizer of xb(τ)

We denote by τ∗ the minimizer of xb(τ). Taking partial
derivatives over both sides of (53) and letting ∂xb(τ)

∂τ = 0, we
have

τ∗ =
N −K

K

∫ ∞

τ∗
(u− τ∗)φ2M (u)du. (72)

In this subsection, we simplify the integral function (72), and
then substitute the result into (71) to facilitate the calculation of
xb(τ∗).

Using (59), we approximate the integral in (72) by∫ ∞

τ∗
(u− τ∗)e

− (u−μM )2

2σ2
M du

=

∫ ∞

τ∗
(u− μM + μM − τ∗)e

− (u−μM )2

2σ2
M du

= σ2
Me

− (τ∗−μM )2

2σ2
M + (μM − τ∗)σM

√
π

2
erfc

(
τ∗ − μM√

2σM

)
,

(73)

from (68) and (69). Hence, we rewrite (72) as

τ∗ =
N −K

KσM

√
2π

∫ ∞

τ∗
(u− τ∗)e

− (u−μM )2

2σ2
M du

=
N −K

2K
(μM − τ∗)erfc

(
τ∗ − μM√

2σM

)

+
N −K

K
√
2π

σMe
− (τ∗−μM )2

2σ2
M . (74)

Denote the solution to (74) by τ∗ = μM − ασM , where α is
unknown indicating the normalized difference between τ∗ and
μM . Substituting τ∗ = μM − ασM into (74), we obtain

μM − ασM =
N −K

2K
ασMerfc

(
− α√

2

)
+

N −K

K
√
2π

σMe−
α2

2 .

(75)

After some arrangement, (75) leads to

α−
(
α

2
erfc

(
− α√

2

)
+

1√
2π

e−
α2

2

)

=
μM

σM
− N

K

(
α

2
erfc

(
− α√

2

)
+

1√
2π

e−
α2

2

)
, (76)

which can be rewritten as

α

2
erfc

(
− α√

2

)
+

1√
2π

e−
α2

2 =

(
μM

σM
− α

)
· K

N −K
.

(77)

Note that the function on the left hand side is monotonically
increasing with respect to α while the one on the right hand
side is monotonically decreasing. Therefore, there is only one
solution to (77). We will substitute the values of α, i.e., α � 1,
α ≈ 0 and α � −1, into (76), respectively, in order to check
whether (76) holds and reveal the dependency between α and
(K,N,M). We resort to series expansions of erfc(·) at ±∞,

respectively, given by

α

2
erfc

(−α√
2

)∣∣∣∣
α=+∞

≈ α− 1√
2π

e−
α2

2 , (78)

α

2
erfc

(−α√
2

)∣∣∣∣
α=−∞

≈ − 1√
2π

e−
α2

2 (1− 1/α2). (79)

i) We first consider the case α � −1. Substitute (79) into
(76), leads to

α ≈ μM

σM
− N −K

K

e−
α2

2√
2πα2

, (80)

which indicates that satisfying α � −1 requires N
K � μM

σM
.

After arrangement of (80), we take logarithm on both sides of
approximation, resulting in

log
N −K

K
− α2

2
− log

√
2πα2 ≈ log

(
μM

σM
− α

)
. (81)

This implies

α ≈ −
√
2

√
log

N −K

K
− log

(
μM

σM
− α

)
− log

√
2πα2

≈ −
√
2

√
log

(N −K)σM

KμM
. (82)

Since in practice, neither N or M would be extremely large,
μM/σM is comparable or larger than logN/K, and therefore
α = −O(log NσM

KμM
) from (82).

ii) In the second case α ≈ 0, which requires N
K ≈ μM

σM
such

that (77) may hold. Applying Taylor expansion at α = 0, we
approximate (77) with

1√
2π

+
α

2
≈
(
μM

σM
− α

)
K

N −K
, (83)

implying

α ≈ 2(N −K)

N +K

(
μM

σM

K

N −K
− 1√

2π

)
, (84)

or simply α = O(μMK
σMN ).

iii) We finally consider the third caseα � 1. Substituting (78)
into (76) implies

α ≈ KμM

NσM
� 1, (85)

which requires that N
K � μM

σM
.

Summarizing the three cases above, we find that: i) When
N
K � μM

σM
, we have α � −1 and (82); ii) When N

K ≈ μM

σM
, we

haveα ≈ 0 and (84); iii) When N
K � μM

σM
, we have (85). We note

that these three cases are generally complete, representing three
kinds of relationship between the relative sparsity (N/K) and
the number of available frequencies (μM/σM ≈ 2

√
M ). With

the obtained α, implying the miminizer τ∗, we next calculate the
limit inferior xb(τ∗).
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C. The Infimum infτ≥0 xb(τ)

Comparing xb(τ) in (71) and τ∗ in (74), we find the right hand
side of (74) also appears in (71). We replace this term in (71) by
τ∗, so that (71) becomes

xb(τ∗) = τ2∗ +
N −K

2K
σ2
Merfc

(
τ∗ − μM√

2σM

)
+ (μM − τ∗)τ∗

= μMτ∗ +
N −K

2K
σ2
Merfc

(
τ∗ − μM√

2σM

)
. (86)

Substituting τ∗ = μM − ασM , we rewrite (86) as

xb(τ∗) = μM (μM − ασM ) +
N −K

2K
σ2
Merfc

(
− α√

2

)
.

(87)

For the three cases considered below (84), we calculate the limit
inferior xb(τ∗) with the obtained α, respectively.

1) In the first case when N
K � μM

σM
, we have α � −1. Using

Taylor expansion, we approximate (87) by

xb(τ∗) ≈ μM (μM − ασM )− N −K

2K
σ2
M

√
2e−

α2

2√
πα

, (88)

which can be further simplified by replacing the exponent term
according to (80), given by

xb(τ∗) ≈ μM (μM − ασM )− N −K

2K
σ2
M

√
2e−

α2

2√
πα

= μM (μM − ασM ) + ασ2
M

(
α− μM

σM

)

= (μM − ασM )2. (89)

Plugging (62), (63) and (82) into (89), we have

xb(τ∗) ≈ μ2
M − 2αμMσM

≈ 2M − 1

2
+
√
2

√
(4M − 1) log

(N −K)

K
√
4M − 1

. (90)

Thus, the final Nb is

Nb ≈ Nb1 = 2MK − K

4

+

√
2K

2

√
(4M − 1) log

(N −K)

K
√
4M − 1

. (91)

2) The second case corresponds to N
K ≈ μM

σM
, leading to α ≈

0. Expanding the erfc(·) term at α = 0, we approximate (87) by

xb(τ∗) ≈ μM (μM − ασM ) +
N −K

2K
σ2
M

(
1−

√
2

π
α

)
.

(92)

Substituting (84), (62) and (63) into (92) yields

xb(τ∗) = 2M − 3

4
+

N

4K
− (4M − 1)K

N +K

+
(N −K)2

2Kπ(N +K)
− (

√
2 + 1)(N −K)

2(N +K)

√
4M − 1

π
. (93)

Plugging the above result into (54), we have

Nb ≈ Nb2 = KM +
K

2
xb(τ∗). (94)

3) In the third case when N
K � μM

σM
, we substitute (85) into

(87), and obtain

xb(τ∗) =
N −K

N
μ2
M +

N −K

2K
σ2
Merfc

(
− KμM√

2NσM

)
.

(95)
Plugging (62) and (63) into (95), we have the approximation

xb(τ∗) ≈ N −K

N

(
2M − 1

2

)
+

N −K

2K

= 2M − 1− K

N

(
2M − 1

2

)
+

N

2K
. (96)

With (96), we rewrite (54) approximately as

Nb ≈ Nb3 = KM +
K

2
·
(
2M − 1− K

N

(
2M − 1

2

)
+

N

2K

)

=

(
2M − 1

2

)
K − (4M − 1)K2

4N
+

N

4

= MN − (4M − 1)(N −K)2

4N
. (97)

Summarizing the three cases above, we have that i) N
K � μM

σM
,

ii) N
K ≈ μM

σM
, or iii) N

K � μM

σM
, Nb is approximated by (91), (94)

or (97), respectively, completing the proof of Proposition 5.

APPENDIX D
PROOF OF PROPOSITION 6

For notation purposes, we use xs(τ) to represent the term
inside the limit inferior operation of (30) as

xs(τ) := τ2 +
N − βK

βK

∫ ∞

τ

(u−τ)2φ2(u)du (98)

= τ2 +
N − βK

βK

∫ ∞

τ

(u−τ)2 ue−u2/2du

(a)
= τ2 +

N − βK

βK

[
2e−τ2/2 −

√
2πτerfc(τ/

√
2)
]
, (99)

where (a) comes from (55), (56) and (57). Then, Ns in (30) is
given by

Ns = βKM +
βKM

2
inf
τ≥0

xs(τ). (100)

Taking partial derivatives over both sides of (98) and letting
∂xs(τ)

∂τ = 0, we find the minimizer that leads to the limit inferior
of xs(τ)

τ� =
N − βK

βK

∫ ∞

τ�

(u−τ�)φ2(u)du

=
N − βK

βK

∫ ∞

τ�

(u−τ�)ue
−u2/2du

(a)
=

N − βK

βK
·
√

π

2
erfc

(
τ�/

√
2
)
, (101)
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where (a) holds according to (56) and (57). Similarly to the
technique used in X, we first approximately solve (101), and
then calculate xs(τ�).

The value τ� relies on N and βK. Since N ≥ βK (otherwise
the unique recovery of the βK extended targets is not possible),
we consider two cases i) N

βK ≈ 1 and ii) N
βK � 1, representing

the less sparse and relatively sparse cases, respectively.
i) In the first case, N

βK ≈ 1, it is deduced from (101) that τ�
takes values around 0. Approximating erfc(τ/

√
2) at τ = 0with

first order Taylor expansion, we rewrite (101) as

τ� ≈ N − βK

βK
·
(√

π/2− τ�

)
, (102)

which implies

τ� ≈ N − βK

N
·
√

π/2. (103)

ii) In the second case, when N
βK � 1, we have that τ� is

also sufficiently large τ� � 1. Therefore, we expand the erfc(·)
function at +∞, and rewrite (101) as

τ� ≈ N − βK

βK
·
√

π

2
·
√

2

π
e−τ2

�/2

(
1

τ�
− 1

τ3�

)

≈ N − βK

βK
e−τ2

�/2
τ�

τ2� + 1
, (104)

implying

log(τ2� + 1) ≈ log
N − βK

βK
− τ2�

2
. (105)

This yields τ� = O(
√
log(N/βK)).

We then calculate xs(τ�)with the substitution of τ�. Note that
the erfc term in (99) can be replaced by linear term according to
(101), which simplifies (99) into

xs(τ�) = −τ�
2 +

N − βK

βK
· 2e−τ2

�/2. (106)

We analyze the results in both cases i) N
βK � 1 and ii) N

βK ≈ 1,
respectively.

1) when N
βK � 1, we have that τ� is sufficiently large. Replac-

ing the exponent term in (106) with a quadratic term according
to (104), we simplify (106) into

xs(τ�) ≈ τ2� + 2. (107)

Considering (105), we substitute (107) into (100), yielding

Ns ≈ Ns1 = 2MβK +
MβKτ2�

2
, (108)

where τ2� can be calculated from (105).
2) When N

βK ≈ 1, we have τ� ≈ 0, thus we approximate

e−τ2
�/2 at τ� = 0, i.e., e−τ2

�/2|τ�=0 ≈ 1− τ2
�

2 , and rewrite (106)
as

xs(τ�) ≈ −Nτ2�
βK

+
2(N − βK)

βK
. (109)

Substituting (103) into (109) yields

xs(τ�) ≈ −π(N − βK)2

2NβK
+

2(N − βK)

βK
. (110)

Together with (100), this implies

Ns ≈ Ns2 = MN − πM(N − βK)2

4N
. (111)

Combining the two cases above, we have approximations of
Ns given by (108) or (111), respectively when i) N

βK � 1 or ii)
N
βK ≈ 1 holds, completing the proof of Proposition 6.
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