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Unambiguous Delay-Doppler Recovery From
Random Phase Coded Pulses
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Abstract—Pulse Doppler radars suffer from range-Doppler am-
biguity that translates into a trade-off between the maximal unam-
biguous range and velocity. Several techniques, like the multiple
PRFs (MPRF) method, have been proposed to mitigate this prob-
lem. The drawback of the MPRF method is that the received sam-
ples are not processed jointly, decreasing signal to noise ratio (SNR).
To overcome the drawbacks of MPRF, we employ a random pulse
phase coding approach to increase the unambiguous range region
while preserving the unambiguous Doppler region. Our method
encodes each pulse with a random phase, varying from pulse to
pulse, and then processes the received samples jointly to resolve
range ambiguity. This technique increases the SNR through joint
processing without the parameter matching procedures required
in MPRF. The recovery algorithm is designed based on orthogonal
matching pursuit so that it can be directly applied to either Nyquist
or sub-Nyquist samples. The unambiguous delay-Doppler recovery
condition is derived using compressed sensing theory in noiseless
settings. In particular, an upper bound on the number of targets is
given, with respect to the number of samples in each pulse repetition
interval and the number of transmit pulses. Simulations show that
in both regimes of Nyquist and sub-Nyquist samples our method
outperforms the popular MPRF approach in terms of hit rate.

Index Terms—Radar theory, pulse Doppler radar, compressed
sensing.

I. INTRODUCTION

PULSE Doppler radars, which simultaneously estimate tar-
gets’ range and velocity, are widely used for both civil-

ian and military purposes, including meteorological applica-
tions [1], [2], surveillance and tracking systems [3]. However,
such systems suffer from the so-called “range-Doppler ambigu-
ity dilemma” [1], [2]. For a certain pulse repetition interval (PRI)
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Tr, the maximum unambiguous range is Rmax = cTr/2, where
c is the propagation velocity, and the maximum unambiguous ve-
locity is Vmax = λ/(4Tr), where λ is the radar wavelength. This
fundamental problem creates a trade-off between range and ve-
locity ambiguity and limits their product to RmaxVmax = cλ/8.

Several techniques have been proposed over the years to miti-
gate this problem by increasing either the unambiguous velocity
region or the unambiguous range region. A first approach uses
carrier frequency variation and transmits pulses with different
carriers. The velocity ambiguous region is increased by ex-
ploiting phase differences between pairs of reflected pulses [4].
However, it is not clear how to compute the phase differences in
the presence of more than one target. This technique suffers
from additional issues, including radar cross section (RCS)
variation under different carriers and large frequency excursion
requirement [5]. Therefore, methods based on pulse repetition
frequency (PRF) variation are generally preferred [3], where
PRF = 1/Tr.

Two main PRF variation based techniques are staggered PRFs
and multiple PRFs (MPRF). The use of staggered PRFs has
been essentially proposed to raise the first blind speed Vmax

significantly without degrading the unambiguous range [6].
Pulse-to-pulse stagger varies the PRF from one pulse to the next
pulse, achieving increased Doppler coverage [7], [8]. The main
disadvantage of this approach is that the data corresponds to a
non-uniformly sampled sequence, making it more difficult to
apply coherent Doppler filtering [6]. In addition, clutter cancel-
lation also becomes more challenging and the sensitivity to noise
increases [3], [4].

The MPRF approach transmits several pulse trains, each with
a different PRF. Ambiguity resolution is typically achieved by
searching for coincidence between unfolded Doppler or delay
estimations for each PRF. A popular approach, adopted in [9],
relies on the Chinese Remainder Theorem [10] and uses two
PRFs, such that the numerator and denominator of the ratios
between these are prime numbers. The ambiguous ranges are
computed for each train and congruence between these are found
by exhaustive search. However, in this approach, a small range
error on a single PRF can cause a large error in the resolved
range with no indication that this has happened [11].

Trunk et al. [11] propose a clustering algorithm which imple-
ments the search of a matching interval by computing average
distances to cluster centers. This technique still requires exhaus-
tive search of clusters and does not process the samples jointly,
decreasing signal to noise ratio (SNR). An alternative method
using a maximum likelihood criterion, which avoids the use of

1053-587X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on September 20,2021 at 05:15:40 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0153-8537
https://orcid.org/0000-0002-9043-6814
https://orcid.org/0000-0002-8947-1268
https://orcid.org/0000-0003-4358-5304
mailto:yonina.eldar@weizmann.ac.il
mailto:deborah.co88@gmail.com
mailto:liuxiang16@mails.tsinghua.edu.cn
mailto:huangtianyao@tsinghua.edu.cn
mailto:yiminliu@tsinghua.edu.cn


4992 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

matching intervals, has been proposed for Doppler ambiguity
resolution [3]. This algorithm, which relies on the choice of
particular values for the PRFs, first estimates the folded or
reduced frequency and then uses it to estimate the ambiguity or-
der. However, it has been demonstrated that the ambiguity order
estimation is very sensitive to the folded frequency estimation
preformed initially [8].

In this paper, we adopt a random pulse phase coding (RPPC)
approach to increase the unambiguous range region, while pre-
serving the unambiguous Doppler region using a single PRF.
RPPC has been used in polarimetric weather radars, which
exploit the inherent random phase between pulses of the popular
magnetron transmitters [12]. In this context, RPPC mitigates
out-of-trip echoes [12]. In our approach, a random phase is
introduced from pulse to pulse, and we then jointly process the
received signals from all pulses to resolve range ambiguity.

Our work has three main contributions. First, theoretical
analysis is performed on unambiguous target recovery con-
ditions in the noiseless case. For a given ambiguous delay
region [0, QTr) with an integer Q > 1, it is proved that range
ambiguity can be resolved with sparse recovery methods if the
number of targets in each ambiguous range resolution bin is
less than (P −Q+ 2)/2, where P is the number of transmit
pulses. Second, compared with MPRF method, our approach
improves SNR by jointly processing the samples from the
overall received signal, rather than matching the estimated pa-
rameters from each pulse train processed separately. Therefore,
our approach achieves improved delay and Doppler estimation
over MPRF method. Finally, we use the matrix version of
orthogonal matching pursuit (OMP) [13], [14] for unambigu-
ous delay-Doppler recovery, which does not involve exhaustive
search. From a practical point of view, our technique does
not require the use of different PRFs, simplifying hardware
implementation.

In addition, our recovery algorithm can be directly applied
to compressed samples, obtained using the sub-Nyquist method
proposed in [15]–[17]. This scheme exploits the sparse nature
of radar target scenes to overcome the sampling rate bottleneck,
breaking the link between radar signal bandwidth and sampling
rate. In [15]–[17], the Fourier coefficients of the received signal
are obtained from low-rate point wise samples taken after analog
pre-filtering. The delay-Doppler map may then be recovered
using compressed sensing (CS) algorithms [18], [19]. Our CS
based unambiguous delay-Doppler recovery method can be
applied to these compressed samples, without requiring any
modification. Given the number of samples K within each PRI,
an upper bound on the number of targets for unambiguous target
recovery is given by min{(K + 1)/2, (P −Q+ 2)/2}.

We compare our approach to the popular MPRF method
of [11], which has been shown to outperform the matching
interval scheme based on the Chinese Remainder Theorem.
We demonstrate that our algorithm outperforms MPRF in both
Nyquist and sub-Nyquist regimes.

The rest of the paper is organized as follows. In Section II, we
present the random phase coded pulse radar model with range
ambiguity, introduce the corresponding sampling methods,
and establish the range-Doppler recovery model. Section III

introduces our unambiguous delay-Doppler recovery algorithm
based on OMP. Section IV presents a theoretical analysis of
the unambiguous delay-Doppler recovery in the noiseless case.
Simulation results are provided in Section V. We conclude in
Section VI.

Notation: For a vector x, a matrix X , and positive integers i
and j, the i-th element of x is denoted by xi, the j-th column of
X is denoted by Xj , and the (i, j)-th element of X is written as
Xi,j . Here, the element index begins with zero. For instance, the
first element of x is x0, and the first column of X is X0. Given
integers N,m, n, Wmn

N represents e−j2πmn/N . In this paper,
(·)H, (·)T, (·)c and (·)−1 are the Hermitian transpose, transpose,
conjugate and inverse, respectively.

II. PROBLEM FORMULATION

In this section, we first present the signal model of a ran-
dom phase coded pulse radar. Then, we introduce the sampling
schemes for radar echoes, in both Nyquist and sub-Nyquist
regimes. Finally, we formulate the sparse matrix recovery prob-
lem for range-Doppler recovery, which will be used to derive
the recovery method and recovery conditions in the following
sections.

A. Signal Model

In the signal model, a pulse-Doppler radar transceiver trans-
mits a phase-coded pulse train consisting of P equally spaced
pulses. For 0 ≤ t ≤ PTr, this pulse train is given by

s(t) =

P−1∑
p=0

h(t− pTr)e
jφ[p]ej2πfct, (1)

where h(t) is the time-limited baseband waveform taking
nonzero values in the interval [0, Th) (with Th being the pulse
width), the pulse-to-pulse delay Tr is the PRI, and fc is the
carrier frequency. We use φ[p] to represent the phase shift of the
p-th pulse, for p = 0, . . . , P − 1. As opposed to traditional pulse
Doppler radars, where the phase codes are identical, here in the
random phase coded pulse radar, φ[p] is randomly distributed
in the interval [0, 2π) and varies from pulse to pulse. The entire
span of the signal in (1) is called the coherent processing interval
(CPI). We also assume that h(t) is band-limited, and Bh is
referred to as the bandwidth of h(t).

Consider that the radar illuminates a point target moving with
radial velocity V , whose distance to the radar is given byR(t) =
R(0)− V t. The echo signal from the target is [20]

r(t) =

P−1∑
p=0

αh(t− pTr − τ(t))ejφ[p]ej2πfc(t−τ(t)), (2)

where τ(t) is the round-trip time delay and α is a complex
amplitude factor accounting for the antenna gain, the two-way
path loss and the target’s RCS. From [20], the time delay can be
approximately given by

τ(t) ≈ τ − 2V
c
t, (3)
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if V � c, where τ = 2R(0)/c. Combining (2) and (3),

r(t) =

P−1∑
p=0

αh ((1 + 2V/c)t− pTr − τ) ejφ[p]ej2π(fct−νt−fcτ), (4)

where ν = −2V fc/c is defined as the Doppler frequency. In
(4), the velocity stretches or compresses the envelop of the pulse
train by the factor 1 + 2V/c [20]. When V � c, this effect is
negligible, and the signal after down-conversion is

r(t)e−j2πfct =

P−1∑
p=0

αh (t− pTr − τ) ejφ[p]e−j2πνt, (5)

where α incorporates the factor e−j2πfcτ .
Next we consider a target scene with L point targets located

within the radar coverage region. The l-th target is defined by
three parameters: a time delay τ̃l = 2Rl/c, where Rl is the
distance from the radar to the target at t = 0; a Doppler frequency
νl = 2Vl/λ, where Vl is the radial velocity of the target; and
a complex amplitude factor of the echo signal αl. The targets
are assumed to have non-fluctuating RCSs, or have slowly-
fluctuating RCSs, e.g. satisfying the Swerling-1 model [10],
[21], and hence αl is constant during the CPI. The targets are
defined in the radar radial coordinate system and the Doppler
frequencies are assumed to lie in the unambiguous frequency
region, that is νl ∈ [0, 1/Tr), for l = 0, . . . , L− 1. As opposed
to the common assumption in traditional radars, the time delays
τ̃l are not assumed to lie in the unambiguous region, namely
less than Tr, but may exceed Tr, and range ambiguity occurs
for a conventional pulse Doppler radar. For convenience, we
decompose τ̃l into its integer part (the ambiguity order) ql and
the fractional part (the folded or reduced delay) τl as

τ̃l = τl + qlTr, (6)

where ql ≥ 0 is an integer and 0 ≤ τl < Tr. Range ambiguity
may occur in radars that have a wide observation range and
transmit pulses with a high PRF for considerations such as:
(a) avoiding Doppler ambiguity for high frequency radars; (b)
increasing the integrated power for low peak power radars [22];
(c) increasing the data rate in joint radar-communication sys-
tems [23].

From (5), the received signal after down-converting is written
as

y(t)=

L−1∑
l=0

P−1∑
p=0

αlh(t− τl − (p+ ql)Tr) e
−j2πνltejφ[p] + u(t),

(7)
where u(t) is additive white Gaussian noise (AWGN) with
varianceσ2. Under the reasonable assumptionmaxl νl � 1/Th,
y(t) can be approximated as [20]

y(t) =

L−1∑
l=0

P−1∑
p=0

α̃lh(t−τl − (p+ ql)Tr) e
−j2πνl(p+ql)Trejφ[p] + u(t),

(8)

Fig. 1. The pulse transmitted in the b-th PRI is received in the (b+ 1)-th PRI.

for 0 ≤ t ≤ PTr, where α̃l = αle
−j2πνlτl .

For convenience, we rewrite the overall received signal in (8)
with respect to each PRI. Note that in traditional pulse Doppler
settings, namely under the assumption that 0 ≤ τ̃l < Tr, the p-th
pulse reflected from the targets is received in the p-th PRI. Here,
the p-th pulse reflected from the l-th target is received in the
(p+ ql)-th PRI. Fig. 1 illustrates this phenomenon for ql = 1,
in which the b-th pulse is received in the (b+ 1)-th PRI. In
other words, the (b− ql)-th pulse reflected from the l-th target is
received in the b-th PRI. Substituting p = b− ql, we can rewrite
(8) as

y(t)=

L−1∑
l=0

P+ql−1∑
b=ql

α̃lh(t− τl − bTr)e
−j2πνlbTrejφ[b−ql] + u(t)

=
P−1∑
b=0

L−1∑
l=0

α̃lh(t− τl − bTr)e
−j2πνlbTrz[b− ql] + u(t),

(9)

for 0 ≤ t ≤ PTr, where the sequence {z[p]} is defined as

z[p] =

{
ejφ[p], for p = 0, . . . , P − 1,
0, for p < 0 or p > P − 1.

(10)

From (9), the received signal in the b-th PRI is expressed as

yb(t) =
L−1∑
l=0

α̃lh(t− τl − bTr)e
−j2πνlbTrz[b− ql] + ub(t),

(11)
for b = 0, 1, . . . , P − 1 and bTr ≤ t < (b+ 1)Tr.

Given the received signal yb(t), b = 0, . . . , P − 1, our goal is
to recover the ranges and velocities of targets, namely the time
delays {τ̃l} and Dopplers {νl}, l = 0, . . . , L− 1. To recover
these parameters, we first sample the signal, as presented in the
next subsection.

B. Sub-Nyquist Sampling

To reduce the sampling rates, we apply sub-Nyquist sampling
in fast time, namely sampling the signal in each PRI with
sampling rate lower than the bandwidth Bh. Generally, aliasing
of frequency bands will occur if the sampling rate is below
the signal bandwidth. Nevertheless, the proposed techniques for
sub-Nyquist radar [15]–[17] can obtain the necessary frequency
information to recover target parameters without aliasing, by
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Fig. 2. In Xampling [17], the Fourier coefficients are directly sampled after
analog pre-processing in each channel.

appropriate analog anti-aliasing filtering before sub-Nyquist
sampling.

To see this, we compute the Fourier series representation of the
aligned received signal in the b-th PRI yb(t+ bTr) with respect
to the period [0, Tr). This results in [15], [16]

Yb[m] =

1

Tr
H

(
2πm

Tr

) L−1∑
l=0

α̃le
−j2πνlbTre−j 2π

Tr
mτlz[b− ql] + Ub[m],

(12)
for m = 0, . . . , N − 1, where H(·) denotes the Fourier trans-
form of h(t), N = �BhTr� is the number of Fourier samples,
and {Ub[m]} are the Fourier coefficients of ub(t+ bTr). Here,
�·� represents the floor function. For convenience, let

Ỹb[m] =
TrYb[m]

H(2πm/Tr)

=

L−1∑
l=0

α̃le
−j2πνlbTre−j 2π

Tr
mτlz[b− ql] + Ũb[m] (13)

be the normalized Fourier coefficients of the b-th PRI, where
Ũb[m] = TrUb[m]/H(2πm/Tr).

From (13), the target parameters {τl, νl, ql} are contained
in the normalized Fourier coefficients {Ỹb[m]}. To recover the
target parameters, a sub-Nyquist radar obtains the Fourier coeffi-
cients from low rate samples of the received signal in each PRI. In
this paper, we consider Xampling [24], [25] based sub-Nyquist
radar systems. For each PRI, Xampling allows one to generate
an arbitrary subset

κ = {m0, . . . ,mK−1} ⊂ {0, . . . , N − 1} ,

comprised of K = |κ| frequency components, and obtain the
corresponding Fourier coefficients Yb[mk], for k = 0, . . . ,K −
1, fromK point-wise samples of the received signal yb(t+ bTr)
after appropriate analog pre-processing. The procedure of Xam-
pling is shown in Fig. 2, in which the received signal is split
into K = |κ| channels. In the k-th channel, Xampling obtains
Yb[mk] by first mixing yb(t+ bTr) with the harmonic signal
e−j(2π/Tr)mkt and then integrating over the aligned receive
period [0, Tr).

By applying Xampling at radar receivers, we can reduce the
sample rate without affecting the range resolution if radar targets
can be sparsely represented. Thus, the cost and complexity of

the analog to digital converter (ADC) at radar receivers may be
reduced, especially for wide-band radars.

After sub-Nyquist sampling, the problem is to recover the
targets’ delays {τ̂l} and Dopplers {νl}, from the compressed
normalized Fourier series

Ỹb[mk] =

L−1∑
l=0

α̃le
−j2πνlbTre−j 2π

Tr
mkτlz[b− ql] + Ũb[mk],

(14)
for b = 0, . . . , P − 1 and k = 0, . . . ,K − 1. We note that these
Fourier series can also be obtained by conventional Nyquist
sampling, if we implement the integration in Fig. 2 by perform-
ing a discrete Fourier transform to the samples. Therefore, the
signal model in (14) holds in both Nyquist and sub-Nyquist
regimes. Unlike sub-Nyquist sampling, in Nyquist sampling all
the Fourier coefficient are obtained, i.e. K = N and mk = k,
for k = 0, . . . , N − 1.

C. Matrix Formulation

In this subsection, we recast (14) in matrix form. To that aim,
we assume that the delays and Dopplers of the L targets lie
on the center of delay resolution bins and Doppler resolution
bins, respectively. As in traditional pulse Doppler radars, the
size of a delay resolution bin is Tr/N , while that of a Doppler
resolution bin is 1/(PTr). Then the delays and Doppler can
be represented by τl = nlTr/N and νl = pl/(PTr), where nl

and pl are integers in the intervals [0, N − 1] and [0, P − 1],
respectively, for l = 0, . . . , L− 1. Under this assumption, (14)
becomes

Ỹb[mk] =

L−1∑
l=0

α̃lW
bpl

P Wmknl

N z[b− ql] + Ũb[mk], (15)

for b = 0, . . . , P − 1 and k = 0, . . . ,K − 1.
Define the ambiguity factor

Q = max(q0, . . . , qL−1) + 1. (16)

When Q = 1, there is no range ambiguity. In our model,
range ambiguity is considered, i.e. Q > 1. In (15), the target
parameters {α̃l, nl, ql, pl} can be characterized by a matrix
X̃ ∈ C

N×PQ, which is defined as

X̃n,c =

{
α̃l, if n = nl and c = Pql + pl,
0, otherwise.

(17)

In other words, the matrix X̃ is an N × PQ matrix which con-
tains the value α̃l at the corresponding L indexes (nl, P ql + pl),
for l = 0, . . . , L− 1, while the rest of the elements in X̃ are all
zeros.

We may now reformulate (15) into a matrix observation model

Y = AX̃BT +U , (18)

where the (k, b)-th entry of Y ∈ C
K×P is given by Ỹb[mk],

denoting the k-th Fourier coefficients of the radar signal received
in the b-th PRI, for b = 0, . . . , P − 1 and k = 0, . . . ,K − 1; the
partial Fourier matrix A ∈ C

K×N has the (k, n)-th entry given
by Wnmk

N , representing the fast-time frequency response from
the n-th range resolution bin at the frequency point mk/Tr,
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for n = 0, . . . , N − 1 and k = 0, . . . ,K − 1; and U ∈ C
K×P

is the additive noise whose (k, b)-th entry is given by Ũb[mk].
In (18), the matrix B ∈ C

P×PQ consists of Q blocks. Partic-
ularly, B is represented by

B =
[
B(0),B(1), . . . ,B(Q−1)

]
, (19)

where B(q) ∈ C
P×P , and the (b, p)-th entry of B(q) is given

by W bp
P z[b− q], for p = 0, . . . , P − 1 and b = 0, . . . , P − 1.

Here, each block B(q) represents the slow-time response of the
targets with ambiguity order q.

From the matrix formation model (18), X̃ should be a solution
of the following equation

AXBT = Y , (20)

in the noiseless case. The problem is to recover the sparse matrix
X̃ from the observation Y and measurement matrix A and B,
by finding the solution of (20). For a Nyquist pulse-Doppler
radar without range ambiguity, namely K = N and Q = 1, A
and B are full-rank square matrices, so the solution to (20) is
unique. However, in our setting, namelyK ≤ N andQ > 1, due
to the rank deficiency of A and B, (20) is an under-determined
equation and may not have a unique solution.

Nevertheless, when L � NPQ, there are only a few nonzero
elements in X̃ , which means that X̃ is a sparse matrix. This
sparsity of radar targets motivates the use of CS algorithms to
solve the under-determined radar observation model. In recent
years, CS algorithms have been applied to many fields of radars,
such as synthetic aperture radar imaging [26], [27], space-time
adaptive processing [28] and randomized stepped frequency
radars [29], [30] and exhibit enhanced target reconstruction
quality compared to a matched filter on real radar data [27], [30],
[31]. In addition, various low complexity methods [31], [32]
are proposed for the real-time implementation of CS algorithms
on radars. In our problem, CS algorithms may be applicable
for ground-to-air radars, where the sparsity of targets holds and
the computation complexity of CS algorithms is affordable. We
follow the concepts of CS and use sparse matrix recovery to
recover X̃ from the received signal, as discussed in the following
section.

III. DELAY-DOPPLER RECOVERY METHODS

To recover X̃ from (18), we consider the 	0 minimization
problem

min ‖X‖0, s.t. AXBT = Y , (21)

under the assumption that X is a sparse matrix. Here, ‖ · ‖0
represents 	0 “norm,” which is defined as the number of nonzero
elements of a vector or a matrix. The 	0 “norm” is a non-
convex function and the sparse matrix recovery problem (21) is
generally NP hard. Therefore, solving (21) is computationally
intractable in practical problems. A more practical way is to
compute a sub-optimal solution with heuristic greedy methods
such as OMP [14] and iterative hard thresholding [33], [34].
The problem in (21) can also be solved by relaxing the 	0

minimization into the convex 	1 norm minimization, which was
shown to be tight under specific conditions [35].

Considering the computation complexity, we use the matrix
version of OMP to solve (21). Matrix OMP recovers L non-zero
elements inX withL iterations. In the t-th iteration, the location
of a new non-zero element in X is first estimated by a matched
filter, then the values of all the non-zero elements is updated
by least squares estimation, and finally the signal residual is
updated by subtracting the signals of all the non-zero elements.
The detailed procedure of matrix OMP are omitted here and can
be found in [13], [36]. Once X is recovered, let Λl,1 be the
row index and Λl,2 be the column index of the l-th non-zero
element in X , respectively. Then the delay ambiguity orders,
folded delays and Dopplers are estimated as

q̂l =

⌊
Λl,2

P

⌋
, τ̂l =

Tr

N
Λl,1, ν̂l =

Λl,2 − q̂lP

PTr
,

where �(·)� is the floor function. We note that here the range
ambiguity is not explicitly resolved, but is indirectly resolved
by solving (20). Similarly, other CS recovery algorithms, such
as FISTA [37], [38], can be extended to our setting, namely to
solve (21).

The computational complexity of OMP is higher than tradi-
tional radar processing techniques like matched filter, which is
performed with O(NKP +NP 2Q) computations. In the t-th
iteration of matrix OMP, the matched filter needs O(NKP +
NP 2Q) computations, the least squares estimation needs
O(t3 + t2(K + P )) computations, and the complexity for resid-
ual update isO(tKP ). The complexity of matrix OMP to recover
L targets is then

O
(

L∑
t=1

t3 + t2(K + P ) + tKP +NKP +NP 2Q

)

= O(L4 + L3(K + P ) + L2KP + LNKP + LNP 2Q).

If L < N and L < P , the computation complexity becomes
O(LNKP + LNP 2Q), which is L times the complexity of a
matched filter.

In our derivations, it is assumed that the delays and Dopplers
lie at the center of delay resolution bins and Doppler resolution
bins, respectively. However, real radar parameters are defined in
a continuous domain and can be “off the grid” [39], namely
do not lie at the center of resolution bins. In this case, the
signal Y may not be sparsely represented by (20), leading to
reconstruction error for sparse recovery methods. To overcome
this problem, a simple strategy is to reduce the size of the
grids. In particular, given an over-discretization factor γ ≥ 1,
we can reduce the size of range grids and Doppler grids to
Tr/(γN) and 1/(γPTr), respectively. When γ is large enough,
the continuous parameters approximately lie on the grid and the
reconstruction error due to the off-grid effect can be eliminated.
The main problem of this strategy is the increase of computation
complexity, especially when γ is large, as the number of columns
in A and B increases. Alternatively, several sparse recovery
schemes are newly proposed that do not involve discretization
and directly recover the parameters in a continuous domain, such
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as atomic norm minimization [39], [40] and alternating descent
conditional gradient [41].

IV. DELAY-DOPPLER RECOVERY CONDITIONS

In this section, we show that the range and Doppler param-
eters of radar targets can be unambiguously recovered under
certain conditions in the noiseless case. Specifically, we derive
conditions with respect to the number of targets, under which
X̃ can be unambiguously recovered by solving (21) in the
sub-Nyquist regime. We begin with reformulating (21) in vector
form, followed by some preliminaries on CS, and then derive
the delay-Doppler recovery conditions.

A. Recovery Condition in the Sub-Nyquist Regime

To derive the recovery conditions, we equivalently rewrite
Y = AXBT in vector form as [42]

vec(Y ) = (B ⊗A)vec(X), (22)

where the operator vec(·) produces a vector by stacking columns
of a given matrix and ⊗ represents the Kronecker product.
Correspondingly, the 	0 minimization problem (21) becomes

min ‖x‖0, s.t. y = Tx, (23)

by letting x = vec(X), y = vec(Y ) and

T = B ⊗A (24)

in (21). Let x̃ = vec(X̃). To unambiguously recover X̃ , we
need x̃ be the unique optimum of (23).

CS theory provides conditions for recovering x̃ with (23) by
investigating the spark property of the measurement matrix T .
The spark of T is defined as the size of the smallest linearly
dependent subset of columns, i.e.

spark(T ) = min {‖x‖0 : Tx = 0, x �= 0} . (25)

From the definition of spark, x̃ is the unique optimum of (23) if
spark(T ) > 2‖x̃‖0 [9], [43]. From [42], one has that for T of
(25),

spark(T ) = spark(B ⊗A) = min{spark(A), spark(B)}.
(26)

Since ‖x̃‖0 = ‖X̃‖0 = L, the unambiguous recovery condition
becomes

spark(A) > 2L, spark(B) > 2L. (27)

For convenience, let βA = spark(A) and βB = spark(B).
A naive bound of βA is given by

βA ≤ K + 1, (28)

because A is a K ×N matrix with K ≤ N and any K + 1
columns of A are linearly dependent. We observe that the last
block inB only hasP −Q+ 1 non-zero rows, meaning that any
P −Q+ 2 columns from the last block are linearly dependent.
As a result,

βB ≤ P −Q+ 2. (29)

Since A is a partial Fourier matrix generated by selecting
K rows from a N -dimensional Fourier matrix indexed with the

subset κ ⊂ {0, . . . , N − 1}, βA depends on κ. From [19], [44],
[45], we can easily generate subsets κ to ensure that A has full
spark, i.e. βA = K + 1. We note that when the received signal is
sampled at the Nyquist rate, i.e. K = N and κ = {0, . . . , N −
1}, A becomes a full Fourier matrix and the N columns of A
are linearly independent. In this case, βA = N + 1 = K + 1.

Next, we note thatB is a random matrix since each element in
B includes a random phase item. Thus βB is a random variable
with respect to {z[p]}. Under the assumption that the random
phase item φ[p] is generated from a uniform distribution over
[0, 2π), the spark of B, βB , almost surely equals P −Q+ 2, as
indicated in the following theorem.

Theorem 1: Suppose thatφ[p] is independently and uniformly
distributed in [0, 2π), for p = 0, . . . , P − 1. Then, with proba-
bility one, βB = P −Q+ 2.

Proof: See Appendix. �
Combining the results on βA and βB with the recovery con-

dition in (27), we obtain the following theorem. In (30), K is
the number of samples in each PRI, P is the number of transmit
pulses and Q is the ambiguity factor defined in (16).

Theorem 2: Assume that 1) The subset κ is properly designed
so that A has full spark; 2) The phase terms {φ[p]} are indepen-
dently and uniformly distributed in [0, 2π). Suppose that there
existL targets with maximal ambiguity factorQ. In the noiseless
setting, the range and Doppler parameters of these targets can be
unambiguously recovered with probability one by solving (21)
or (23) if and only if

L < min

{
K + 1

2
,
P −Q+ 2

2

}
. (30)

Proof: From the assumptions, one has βA = K + 1 and
βB = P −Q+ 2 with probability one. The recovery condition
then becomes

K + 1 > 2L, P −Q+ 2 > 2L. (31)

The condition in (30) can be directly obtained from (31). �
The randomness of the phase codes {z[k]} is crucial for the

derivation of Theorem 1 and Theorem 2.
In a pulse-Doppler radar without phase coding in which

z[0] = · · · = z[P − 1], it can be validated that

B1 −B2 = BP+1 −BP+2, (32)

which means there exist 4 linearly dependent columns in B. As
a consequence, βB ≤ 4 and the number of targets is bounded by
L < 2 from (27).

B. Recovery Condition in the Nyquist Regime

In the Nyquist regime, A is an invertible Fourier matrix.
Therefore, (21) becomes

min ‖X‖0, s.t. BXT = Y TAc. (33)

Let XT = [x0, . . . ,xN−1]. The problem in (33) can be split
into multiple independent sub-problems:

min ‖xn‖0, s.t. Bxn = [Y TAc]n. (34)
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for n = 0, . . . , N − 1. The corresponding recovery condition
for these sub-problems are

‖xn‖0 < βB/2 =
P −Q+ 2

2
, 0 ≤ n ≤ N − 1. (35)

The conditions in the Nyquist regime only require that the
number of targets within each reduced range resolution bin is
bounded by (P −Q+ 2)/2, and is much looser than that in
the sub-Nyquist regime, in which the total number of targets is
bounded by (P −Q+ 2)/2.

We note that the upper bound on the number of targets in (35)
is reduced compared to a conventional pulse Doppler radar. For a
Nyquist pulse Doppler radar without range ambiguity, the matrix
B becomes an invertible Fourier matrix. Thus, the targets can
be recovered by directly solving (20) without using CS. Under
this circumstance, the number of recoverable targets in each
range resolution bin is P . In our setting, range ambiguity leads
to rank deficiency of B. As a result, the observation equation
is under-determined, and is solved by sparse matrix recovery
methods, for which the upper bound of the number of targets is
given in (35).

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments il-
lustrating our proposed unambiguous range-Doppler recovery
algorithm. We compare our method with the classical MPRF
algorithm from [11] and examine the impact of sub-Nyquist
sampling as well as the number of targets on the detection
performance. The recovery performance in the off-grid case is
also demonstrated.

A. Preliminaries

We consider a pulse Doppler radar transmitting a pulse train
composed of P = 20 pulses with PRI Tr = 25 μsec over a
CPI of 500 μsec. The carrier frequency is fc = 10GHz and
the propagation velocity is fc = 3× 108 m/s. Then we have
Rmax = 3.75 km and Vmax = 300 m/s. The baseband wave-
formh(t) is a linear frequency modulation pulse with bandwidth
Bh = 20 MHz and pulse width Th = 1 μsec. Specifically, the
expression of h(t) is

h(t) =

{
ejπ(Bh/Th)t

2
, 0 ≤ t ≤ Th,

0, otherwise.

To extend the maximal unambiguous range, we adopt range
phase coding to each pulse, where the phase φ[p] is uniformly
distributed in [0, 2π), for p = 0, . . . , P − 1.

The number of Nyquist rate samples in each PRI is N =
TrBh = 500. In the simulations, we investigate sub-Nyquist
sampling by reducing the number of samples K in each PRI. We
randomly select K < N frequency components and obtain the
corresponding compressed Fourier coefficients by the Xampling
scheme in Fig. 2. We find that the matrix A has full spark
with high probability if the frequency components are selected
randomly.

We consider L targets with Doppler frequencies spread
uniformly at random in the appropriate unambiguous region

[0, 1/Tr) and delays spread uniformly at random in the am-
biguous region [0, QTr) for an ambiguity factor Q. In the
simulations, the echoes from all targets have unit amplitude,
i.e. |αl| = 1, for l = 0, . . . , L− 1.

In the simulations, we produce the received signal y(t) with
(7). The received signal is corrupted with AWGN u(t) which
has variance σ2 and is band-limited to Bh. The total transmit
SNR of the transmitted pulse train is

SNR =
P
∫ Th

0 |h(t)|2 dt
σ2

.

Here, the inter-pulse random phase coding does not affect the
SNR after coherent integration.

After y(t) is produced, we compute Yb[m] and H(2πm/Tr)
by applying Fourier transform to yb(t) and h(t), respectively.
Then the elements of matrix Y are computed via (13) and (14),
after which the delays and Dopplers of the targets are recovered
by solving (21) via matrix OMP. We use a hit-or-miss criterion
as a performance metric. A “hit” is defined as a delay-Doppler
estimate circumscribed by a rectangles around the true target po-
sition in the time-frequency plane. We use rectangles with axes
equivalent to ±1 times the delay and Doppler resolution bins,
equal to 1/Bh = 50nsec and 1/(PTr) = 2KHz, respectively.

B. Comparison to MPRF Scheme

We compare our approach to the popular MPRF method
of [11] that has been shown to outperform the matching interval
scheme based on the Chinese Remainder Theorem. In MPRF,
the pulse Doppler radar transmits two pulse trains with baseband
signal h(t). The first train is composed of P1 = 20 pulses,
with PRI Tr,1 = 25 μsec over a CPI of 500 μsec. The second
train is composed of P2 = 25 pulses, with PRI Tr,2 = 20 μsec
over a CPI of 500 μsec. Like the random phase coded pulses,
the observation model in (18) still holds for each pulse train
in the MPRF scheme, where the measurement matrix B is
constructed for Q = 1 and all z[p] = 1. We use matrix OMP to
recover the ambiguous delay-Doppler map from each pulse train.
Once the targets’ Doppler frequencies and ambiguous delays are
recovered, we apply the clustering method in [11] to estimate the
unambiguous delays. The total transmit SNR of the two transmit
pulse trains is

SNR =
(P1 + P2)

∫ Th

0 |h(t)|2 dt
σ2

.

In this experiment, the number of targets is L = 5 and ambi-
guity factorQ = 4. Here, we require the Dopplers and delays lie
in the center of Doppler and range resolution bins, respectively.
Performance of RPPC and MPRF is compared with the same
range resolution, Doppler resolution and total transmit SNR so
that the comparison is fair.

Fig. 3 presents the delay-Doppler recovery performance of
both MPRF and RPPC with respect to transmit SNR. The results
are obtained in both Nyquist and sub-Nyquist regimes. In the
sub-Nyquist regime, we randomly choose K = 250 and K =
125 Fourier coefficients in each PRI, leading to a compression
ratio of 50% and 25%, respectively. As Fig. 3 shows, the hit
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Fig. 3. Delay-Doppler recovery performance for MPRF and RPPC in Nyquist
and sub-Nyquist regimes.

rate increases with the increase of the total transmit SNR, which
is proportional to the SNR after matched filtering in fast and
slow time. We observe that our RPPC approach outperforms
the MPRF approach in both Nyquist and sub-Nyquist regimes,
in terms of the hit rate under the same total transmit SNR.
The explanation is that the RPPC approach jointly processes all
the received samples, while the MPRF approach processes the
received samples of the two pulse trains separately. Therefore,
the RPPC approaches can obtain better SNR after fast and slow
time matched filter with the same total transmit SNR.

To achieve the same hit rate as MPRF, our RPPC technique
requires a lower total transmit SNR, leading to around 3 dB SNR
gain. As a result, for a radar transmitter with fixed pulse width,
peak power and PRF, RPPC needs a lower number of transmit
pulses to achieve a commensurate performance with MPRF, and
thus reduces the cost of power and transmit time.

The impact of sub-Nyquist sampling is also demonstrated in
Fig. 3. It is observed that the recovery performance in the Nyquist
regime is better than that in the sub-Nyquist regime, and the
recovery performance in sub-Nyquist regime decreases as the
number of samples decreases. This is because sub-Nyquist sam-
pling leads to loss of SNR. Nevertheless, sub-Nyquist sampling
still guarantees perfect recovery of target parameters when the
SNR is high, indicating that sampling with a sub-Nyquist rate
does not affect the resolutions of sparse targets.

C. Performance in the Off-Grid Case

The last experiment was conducted in the on-grid case,
namely the delays and Dopplers lie in the center of the resolution
bins. In this experiment, we consider a more realistic scene
where the delays and Dopplers do not necessarily lie in the center
of resolution bins, and examine the performance of matrix OMP
in the off-grid case. In particular, there are L = 5 point targets
whose Doppler frequencies and delays can be arbitrary values
in the region [0, 1/Tr) and [0, QTr) for Q = 4, respectively.

In the off-grid case, we directly produce the Fourier coeffi-
cients in (12) for convenience. The hit rate of matrix OMP is
computed for over-discretization factors γ = 1, 2, 4, 16. When
γ = 1, there is no over-discretization, i.e. the range and Doppler

Fig. 4. Delay-Doppler recovery performance for RPPC in the on-grid and
off-grid case, where Nyquist sampling is performed.

Fig. 5. Delay-Doppler recovery performance for RPPC in the on-grid and
off-grid case, where sub-Nyquist sampling with a compression ratio of 50% is
performed.

grid size are equal to the range and Doppler resolution, respec-
tively. The result for Nyquist and sub-Nyquist sampling is given
in Fig. 4 and Fig. 5, respectively. In the sub-Nyquist regime,
we randomly choose K = 250 Fourier coefficients in each PRI,
leading to a compression ratio of 50%. The hit rate of matrix
OMP in the on-grid case is also displayed for comparison. From
Fig. 4 and Fig. 5, matrix OMP exhibits a serious performance
degradation in the off-grid case compared to the on-grid case,
if no over-discretization is performed. It it observed that the
hit rate is only around 0.7 even when the SNR is high enough
because of the mismatch of observation model. Nevertheless,
the performance degradation can be significantly relieved by
over-discretization. Whenγ ≥ 2, performance of matrix OMP in
the off-grid case is still worse than the counterpart in the on-grid
case, but the performance gap is not significant, especially
when γ is large. For a high SNR, the performance loss can be
effectively reduced by increasing γ. The results here indicate
that matrix OMP is still applicable in our problem by properly
decreasing the grid size.

D. Impact of Number of Targets

We also performed simulations to examine the impact of
number of targets on the recovery performance. Specifically,
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Fig. 6. Delay-Doppler recovery performance forL = 7, 9, 11, in both Nyquist
and sub-Nyquist regimes.

the hit rate versus SNR is calculated and demonstrated in Fig. 6
for L = 7, 9, 11, in both Nyquist and sub-Nyquist regimes,
where Q = 4 and the targets lie in the center of range-Doppler
resolution bins. In the sub-Nyquist regime, we randomly choose
K = 250 Fourier coefficients in each PRI, leading to a compres-
sion ratio of 50%. It is observed that the recovery performance
only slightly decreases as L increases for both Nyquist and
sub-Nyquist sampling if L is not very large. Note that from
the recovery condition obtained in Sec. IV-A for sub-Nyquist
sampling, perfect recovery is guaranteed for arbitrary sparse
matrix X with L < 9.

That means if L < 9, the targets can always be recovered
in the noise-less case, regardless of their locations and RCSs,
while if L ≥ 9, the targets may not be correctly reconstructed,
depending on their parameters. Nevertheless, as shown in Fig. 6,
the targets can still be recovered with a high probability when
the targets are uniformly distributed, even if L ≥ 9, namely the
sparse recovery condition is not met. This result suggests that
the sparsity constraint to radar targets can be relaxed in practical
use, extending the application scope of sub-Nyquist sampling.

When the recovery condition is not met, although the ranges
and Dopplers of randomly distributed targets may still be recov-
ered with high probability, there should exist some radar target
scenes in which recovery fails. Moreover, even if the recovery
condition is met, the targets may not be perfectly recovered with
practical algorithms like OMP and 	1 norm minimization. To
show this, consider the worst case in which all the L targets are
located in the same reduced range resolution bin, i.e.

n0 = · · · = nL−1.

The velocities are uniformly distributed in the unambiguous
region [0, 1/Tr). The ambiguity orders can be arbitrary integers
in [0, Q− 1]. The delays and Dopplers of targets lie at the center
of the corresponding resolution bins.

From the recovery condition, if L < (P −Q+ 2)/2, the
targets can be recovered with probability 1 by finding the sparsest
solution of (20). However, as practical algorithms may not find
the sparsest solution, the hit rate for them may be less than
1. Here, we evaluate the impact of the number of targets on

Fig. 7. Hit rate versus number of targets in the Nyquist regime for �1 norm
minimization.

the hit rate under this target scene for 	1 norm minimization
and OMP, under random pulse phase and random locations of
targets. The simulation is run in the noiseless case and in the
Nyquist regime. In particular, we recover X by solving the
sub-problems in (34) via 	1 norm minimization and OMP. To
reduce the computational complexity, we first detect the reduced
range resolution bin where the targets lie, and then solve the
sub-problem in the detected reduced range resolution bin.

The hit rate versus number of targets for 	1 norm minimization
is given in Fig. 7, for different Q and P . In Fig. 7, if Q = 1,
namely there is no range ambiguity, the hit rate is always 1
regardless of the number of targets, since the equation in (20)
well-determined. If Q > 1, the hit rate is close to 1 for small L,
i.e. range ambiguity can be resolved for sparse targets. When
L becomes larger, the targets are not sparse enough and the
hit rate can be rather low. From Fig. 7, it is observed that the
number of recoverable targets can be increased by transmitting
more pulses or reducing the ambiguity order. This observation
is also verified by the theoretical bound (P −Q+ 2)/2. It is
also observed that, to achieve a hit rate close to 1, the maximal
number of recoverable targets with 	1 norm minimization is
less than the theoretical bound, indicating the performance gap
between 	1 norm minimization and 	0 minimization.

The hit rate versus number of targets for OMP is given in
Fig. 8, for different Q and P . Comparing Fig. 7 and Fig. 8,
the recovery performance of OMP is worse than 	1 norm mini-
mization although OMP generally has lower computation load.
Nevertheless, OMP still guartantees a high hit rate when the
number of targets is small.

E. Computation Time of Matrix OMP

In the end, we compare the computation time of matrix OMP
under different number of targets. This comparison is performed
for different P , in both Nyquist and sub-Nyquist regimes. In
sub-Nyquist sampling, we randomly choose K = 250 Fourier
coefficients, leading to a compression ratio of 50%. The average
computation time versus L is shown in Fig. 9. From Fig. 9, we
observe that the computation time of matrix OMP approximately
grows linearly with L when L is small. When more pulses
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Fig. 8. Hit rate versus number of targets in the Nyquist regime for OMP.

Fig. 9. Computation time versus number of targets L in both Nyquist and
sub-Nyquist regimes.

are transmitted, namely P becomes larger, the computation
load becomes higher. The computation time in the sub-Nuquist
regime is less than the counterpart in the Nyquist regime, since
sub-Nyquist sampling reduces the size of data.

VI. CONCLUSION

In this paper, a random pulse phase coding approach is pro-
posed to resolve the range ambiguity of pulse-Doppler radars.
The advantage of our approach is that the samples from all pulses
can be jointly processed to estimate the range-Doppler param-
eters, and thus the SNR is improved compared to the MPRF
method. For random pulse phase coding, we establish a range-
Doppler recovery problem, which is under-determined. To un-
ambiguously recover the ranges and Dopplers, we propose to
solve this problem by sparse recovery algorithms, which can be
used in both Nyquist and sub-Nyquist regimes. We analyze the
performance of sparse recovery by deriving the maximal number
of recoverable targets in the noiseless case, given the number of
samples K in each PRI, the number of transmit pulses P and
the maximal ambiguity order Q. In particular, sparse recovery
guarantees unambiguous recovery if the number of targets in
each reduced range resolution bin is less than (P −Q+ 2)/2
in the Nyquist regime. In the sub-Nyquist regime, the recovery

condition is tighter, and requires that the total number of tar-
gets is less thanmin{(K + 1)/2, (P −Q+ 2)/2}. Simulations
demonstrate that our approach outperforms MPRF in terms of
detection rate, in both Nyquist and sub-Nyquist regimes. We
also verified that sparse recovery algorithms, like matrix OMP,
are still applicable even when the delays and Dopplers of the
targets do not lie in the center of resolution bins.

Despite the above contributions, our approach still has
some limitations. First, our approach is proposed for slowly-
fluctuating targets. If the target is fast-fluctuating, the RCS of
a target varies from pulse to pulse, which corrupts the coded
pulse phase. Second, the proposed target reconstruction method
requires that the targets satisfy certain sparse conditions. When
the target scene is not sparse, range ambiguity is not guaranteed
to be correctly resolved. Finally, although our recovery method
is applicable by reducing the grid size in the off-grid case, this
strategy increases the computation complexity and still exhibits
performance loss due to model mismatch. More effective sparse
recovery algorithms should be applied in the off-grid case.

APPENDIX

PROOF OF THEOREM 1

Under the assumption that φ[p] is independently and uni-
formly distributed in [0, 2π), we will prove that βB = P −Q+
2 with probability one. Since βB ≤ P −Q+ 2, we need to
prove that βB ≥ P −Q+ 2, namely any P −Q+ 1 columns
of B are linearly independent.

Let B be the matrix consisting of the (Q− 1)-th to the (P −
1)-th rows in B. In the rest of the proof, we prove that any P −
Q+ 1 columns of B are linearly independent with probability
one. As a corollary, any P −Q+ 1 columns of B are linearly
independent with probability one.

For convenience, we use the following notations. Let u =
P −Q+ 1. Define

C = {(c0, c1, . . . , cu−1) | 0 ≤ c0 < c1 < · · · < cu−1

≤ PQ− 1} , (36)

which consists of all the u-combinations of the column index
set {0, . . . , PQ− 1} for B. For each c = (c0, . . . , cu−1) ∈ C,
we stack the c0-th, c1-th,..., and the cu−1-th columns of B into a
square matrix D(c). Let cv = Pqv + pv, where qv is an integer
in [0, Q− 1], pv is an integer in [0, P − 1], and q0 ≤ q1 ≤ · · · ≤
qu−1, for v = 0, . . . , u− 1. Then the (b−Q+ 1, v)-th entry of
D(c) is given byW bpv

P z[b− qv], for b = Q− 1, . . . , P − 1 and
v = 0, . . . , u− 1.

The columns of a square matrix are linearly independent if
and only if the determinant of the matrix is not zero. Therefore,
the statement that any P −Q+ 1 columns of B are linearly
independent is equivalent to any of the following two statements:

1) For any c ∈ C, f(z; c) = det(D(c)) �= 0.
2) F (z) = Πc∈Cf(z; c) �= 0.
Here, z = (z[0], . . . , z[P − 1]) = (ejφ[0], . . . , ejφ[P−1]), for

p = 0, . . . , P − 1.
We note that both F (z) and f(z; c) can be expressed as a

polynomial with respect to z. To prove that any P −Q+ 1
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columns of B are linearly independent with probability one, we
only need to prove that F (z) �= 0 with probability one.

To finish the proof, we first prove that f(z; c) is a nonzero
polynomial, as stated in Lemma 1. As an immediate conse-
quence of Lemma 1, F (z) should be a nonzero polynomial.
Later in Lemma 2, we use a strengthened version of the well-
known fact that the Harr measure of the zeros of a nonzero
polynomial is zero. Combining Lemma 1 and Lemma 2, since
F (z) is a nonzero polynomial, the Harr measure of its zeros
is zero. Therefore, the probability for F (z) = 0 is zero, and
F (z) �= 0 with probability one.

We start the proof by presenting Lemma 1.
Lemma 1: For any c in C, f(z; c) = det(D(c)) is a nonzero

polynomial, namely there exists z ∈ C
P such that f(z; c) �= 0.

Proof: We note that the v-th columns of D(c) is selected
from the qv-th block of B, for v = 0, . . . , u− 1. We first prove
the proposition under the condition that all columns of D(c) are
from the same block in B, and then prove the proposition under
the opposite condition. Correspondingly, the proof is divided
into the two following situations:

(a) q0 = q1 = . . . = qu−1;
(b) q0, q1, . . . , qu−1 are not all the same.
Proof for situation (a): In this case, the (b−Q+ 1, v)-th

entry of D(c) is W bpv

P z[b− q0] and p0 < p1 < · · · < pu−1. To
calculate f(z; c), the determinant of D(c), we apply the fol-
lowing operations to D(c): First divide the (b−Q+ 1)-th row
by z[b− q0] and then divide the v-th column by W

pv(Q−1)
P , for

b = Q− 1, . . . , P − 1 and v = 0, . . . , u− 1. These operations
result in a new matrix, denoted by D̂(c), whose (b,′ v)-th entry
is given by [D̂(c)]b,′v = W b′pv

p , for b′ = 0, . . . , u− 1 and v =
0, . . . , u− 1. According to the property of determinant [46], one
has

f(z; c) = det
(
D̂(c)

) P−1∏
b=Q−1

z[b− q0]

u−1∏
v=0

W
pv(Q−1)
P . (37)

We note that D̂(c) is a Vandermonde matrix and its determinant
is not zero since its bases W p0

P , . . . ,W pu−1

P are distinct [44].
Therefore, f(z; c) is certainly a nonzero polynomial.

Proof for situation (b): Since the values of q are not identical,
we have Q ≥ 2. The proposition can be proved by mathematical
induction for situation (b).

First, we check the proposition whenD(c) ∈ C
u×u has a low

dimension, say, u = 2. In this case, one has Q = P − 1, c =
(c0, c1), P − 2 ≤ b ≤ P − 1, and we let q0 < q1. Then, D(c)
is written as

D(c) =

[
W

(P−2)p0

P z[P − 2− q0] W
(P−2)p1

P z[P − 2− q1]

W
(P−1)p0

P z[P − 1− q0] W
(P−1)p1

P z[P − 1− q1]

]
,

with its determinant f(z; c) given by

f(z; c) = W
(P−2)p0

P W
(P−1)p1

P z[P − 1− q1]z[P − 2− q0]

−W
(P−1)p0

P W
(P−2)p1

P z[P − 2− q1]z[P − 1− q0].

It can be easily verified that f(z; c) is a non-zero polynomial
when q0 < q1.

Next, suppose that the proposition holds for u =
2, 3, . . . , u′ − 1, or equivalentlyQ = P − 1, . . . , Q′ + 1, where
Q′ = P − u′ + 1 and 2 ≤ Q′ ≤ P − 2. We need to prove
that it holds for u = u′ or Q = Q′. To this aim, we recall
that q0 ≤ q1 · · · ≤ qu′−1 because c0 < c1 < · · · < cu′−1. Since
q0, q1, . . . , qu′−1 are not all the same, there exists an integer t
satisfying that q0 = · · · = qt−1 and qt−1 < qt, where 1 ≤ t ≤
u′ − 1.

With the Leibniz formula [46], the determinant of D(c) is
expressed as

f(z; c) =
∑
v∈S

sgn(v)

u′−1∏
i=0

Di,vi
(c)

=
∑
v∈S

sgn(v)

P−Q′∏
i=0

W
(i+Q′−1)pvi

P z[i+Q′ − 1− qvi
],

(38)
where the sum is computed over all the permutations v for
{0, 1, . . . , P −Q′}, and S is the set consisting of all such
permutations. For each permutation v, sgn(v) is the sign of
v. If v can be obtained by interchanging two elements in
(0, 1, . . . , P −Q′) for an even number of times, sgn(v) = 1.
Otherwise, sgn(v) = −1.

We note that f(z; c) is expressed as the sum of several
monomials. These monomials can be divided into two groups,
according to whether the monomial includes the variables
z[P − 1− q0], . . . , z[P − t− q0]. We denote the sum of the
monomials which include z[P − 1− q0], . . . , z[P − t− q0] by
f1(z; c), and denote the sum of the monomials which do not
include them or only include part of them by f2(z; c). It is
clear that f(z; c) = f1(z; c) + f2(z; c). Hereinafter, we show
that f1(z; c) is a nonzero polynomial. If f1(z; c) is a nonzero
polynomial,f(z; c) should be a nonzero polynomial. Otherwise,
one has f2(z; c) = −f1(z; c), indicating that the monomials
in f2(z; c) include z[P − 1− q0], . . . , z[P − t− q0], which is
opposite to the definition of f2(z; c).

For i < u′ − t, it holds that

i+Q′ − 1− qvi
< u′ − t+Q′ − 1− q0 = P − t− q0.

(39)
Therefore,

∏u′−t−1
i=0 Di,vi

(c) does not include z[P − 1−
q0], . . . , z[P − t− q0]. For v ∈ S , if

∏u′−1
i=0 Di,vi

(c) includes

z[P − 1− q0], . . . , z[P − t− q0],
∏u′−1

i=u′−t Di,vi
(c) should in-

clude z[P − 1− q0], . . . , z[P − t− q0], indicating that

i+Q′ − 1− qvi
= i+Q′ − 1− q0 ⇒ qvi

= q0, (40)

and further

0 ≤ vi ≤ t− 1, (41)

for u′ − t ≤ i ≤ u′ − 1.
Let v = [v(1),v(2)], where v(1) = (v0, . . . ,vu′−t−1) and

v(2) = (vu′−t, . . . ,vu′−1). From (41), we have v(1) ∈ S1 and
v(2) ∈ S2, where S1 is the set of all the permutations of
{t, . . . , u′ − 1}, and S2 is the set of all the permutations of
{0, . . . , t− 1}. Then f1(z; c) can be expressed as

f1(z; c)
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=
∑

v(1)∈S1

∑
v(2)∈S2

sgn(v)

u′−1∏
i=0

Di,vi
(c) (42a)

=
∑

v(1)∈S1

∑
v(2)∈S2

sgn(v)
u′−t−1∏
i1=0

u′−1∏
i2=u′−t

Di1,vi1
(c)Di2,vi2

(c)

(42b)

=
∑

v(1)∈S1

∑
v(2)∈S2

sgn(v(1))sgn(v(2))

×
u′−t−1∏
i1=0

u′−1∏
i2=u′−t

D
i1,v

(1)
i1

(c)D
i2,v

(2)

i2+t−u′
(c) (42c)

=
∑

v(1)∈S1

∑
v(2)∈S2

sgn(v(1))sgn(v(2))

×
u′−t−1∏
i1=0

t−1∏
i2=0

D
i1,v

(1)
i1

(c)D
i2+u′−t,v

(2)
i2

(c). (42d)

Here, (42c) comes from the fact that

sgn(v) = sgn(v(1))sgn(v(2)),

vi1 = v
(1)
i1

, 0 ≤ i1 ≤ u′ − t− 1,

vi2 = v
(2)
i2+t−u′ , u

′ − t ≤ i2 ≤ u′ − 1,

and (42d) is obtained via replacing i2 with i2 + u′ − t.
To further explore the property of h1(z; c), we express D(c)

in block matrix form

D(c) =

[
... E(c)

G(c) · · ·

]
, (43)

where G(c) is a t× t matrix and E(c) is a (u′ − t)× (u′ − t)
matrix. According to the relationship that

D
i1,v

(1)
i1

(c) = E
i1,v

(1)
i1

−t
(c), 0 ≤ i1 ≤ u′ − t− 1,

D
i2+u′−t,v

(2)
i2

(c) = G
i2,v

(2)
i2

(c), 0 ≤ i2 ≤ t− 1,

we have

f1(z; c) =
∑

v(1)∈S1

∑
v(2)∈S2

sgn(v(1))sgn(v(2))

×
u′−t−1∏
i1=0

t−1∏
i2=0

E
i1,v

(1)
i1

−t
(c)G

i2,v
(2)
i2

(c) (44a)

=

( ∑
v(1)∈S1

sgn(v(1))

u′−t−1∏
i1=0

E
i1,v

(1)
i1

−t
(c)

)

×
( ∑

v(2)∈S2

sgn(v(2))

t−1∏
i2=0

G
i2,v

(2)
i2

(c)

)
(44b)

= det(G(c)) det(E(c)). (44c)

The matrix E(c) has a similar expression with D(c) and

the (b−Q′ − t+ 1, v)-th entry ofE(c) isW (b−t)pv+t

P z[b− t−

qv+t], for b = Q′ + t− 1, . . . , P − 1 and v = 0, . . . , u′ − t−
1. Let q̂v = t+ qv+t and p̂v = pv+t. Multiply the v-th column
of E(c) by W tp̂v

P , for v = 0, . . . , u′ − t− 1, and the result
is a new matrix Ê(c) whose (b− (Q′ + t) + 1, v)-th entry is
given by W bp̂v

P z[b− q̂v], for b = (Q′ + t)− 1, . . . , P − 1 and
v = 0, . . . , u′ − t− 1. One can observe that Ê(c) has a consis-
tent expression withD(c)while its dimension is less thanD(c).
Using the induction hypothesis for Q = Q′ + t, the determinant
of Ê(c) is a nonzero polynomial of z.

The (b, v)-th entry of G(c) is given by W−bpv

P z[b− q0], for
b = P − t, . . . , P − 1 and v = 0, . . . , t− 1. It is clear thatG(c)
has the same structure as D(c) in the proof for situation (a).
Similarly, one can prove that det(G(c)) is a nonzero polyno-
mial. Since det(G(c)) and det(E(c)) are nonzero polynomials,
f1(z; c) is a nonzero polynomial, and f(z; c) is also a nonzero
polynomial.

Now that we have proved that the proposition holds for Q =
Q′. With mathematical induction, the proposition holds for all
Q = 2, . . . , P − 1 under situation (b). In conclusion, f(z; c) is
a nonzero polynomial under both situations (a) and (b), and the
proof is complete. �

Lemma 1 shows that f(z; c) is a nonzero polynomial for
all c ∈ C. Therefore, F (z) = Πc∈Cf(z; c) is a nonzero poly-
nomial. We use the following lemma from [29] to prove that
F (z) �= 0 with probability one, which points out the fact that
the Harr measure of the set composed of zeros for a nonzero
polynomial is zero.

Lemma 2: Let F (z0, . . . , zP−1) be a nonzero complex poly-
nomial with P variables. Define the set of zeros of F

NF =
{
(z0, . . . , zP−1) ∈ C

P
∣∣ F (z0, . . . , zP−1) = 0

}
. (45)

Define the P -torus

T P = T 1 × · · · × T 1︸ ︷︷ ︸
P

, T 1 = {z ∈ C | |z| = 1} , (46)

where × denotes the Cartesian product. Let σP be the Harr
measure on T P . Then one has

σP (T P ∩NF ) = 0. (47)

Define the map Θ : [0, 2π)P → T P by Θ(φ0, . . . , φP−1) =
(e−jφ0 , . . . , e−jφP−1). The map Θ is bijective and absolutely
continuous. Let μP be the Harr measure on [0, 2π)P . Because
σP (T P ∩NF ) = 0, one has

μP (Θ−1(T P ∩NF )) = 0. (48)

If φ[0], . . . , φ[P − 1] are independent and uniformly distributed
in [0, 2π), the probability of F (z) = 0 is

μP (Θ−1(T P ∩NF ))

μP ([0, 2π)P )
=

μP (Θ−1(T P ∩NF ))

(2π)P
= 0. (49)

In other words,F (z) �= 0with probability one. Further, anyP −
Q+ 1 columns of B are linearly independent with probability
one, completing the proof.
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