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Unitary Approximate Message Passing for Sparse
Bayesian Learning

Man Luo, Qinghua Guo
Defeng Huang

Abstract—Sparse Bayesian learning (SBL) can be implemented
with low complexity based on the approximate message passing
(AMP) algorithm. However, it does not work well for a generic
measurement matrix, which may cause AMP to diverge. Damped
AMP has been used for SBL to alleviate divergence issues at the cost
of reducing convergence speed. In this work, we propose a new SBL
algorithm based on structured variational inference, leveraging
AMP with a unitary transformation. Both single measurement
vector and multiple measurement vector problems are investigated.
It is shown that, compared to state-of-the-art AMP-based SBL
algorithms, the proposed UAMP-SBL is more robust and efficient,
leading to remarkably better performance.

Index Terms—Sparse Bayesian learning, structured variational
inference, approximate message passing.

1. INTRODUCTION

E CONSIDER the problem of recovering a sparse signal

W x from noisy measurements y = Ax + w, where A is
a known measurement matrix [1]. This problem finds numerous
applications in various areas of signal processing, statistics and
computer science [1]-[7]. One approach to recovering x is to use
sparse Bayesian learning (SBL), where x is assumed to have a
sparsity-promoting prior [8]. Conventional implementation of
SBL involves matrix inversion in each iteration, resulting in
prohibitive computational complexity for large scale problems.
The approximate message passing (AMP) algorithm [9], [10]
has been proposed for low-complexity implementation of

Manuscript received January 21, 2021; revised June 13, 2021 and September
2,2021; accepted September 8, 2021. Date of publication September 24, 2021;
date of current version November 11, 2021. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Chiara
Ravazzi. This work was supported in part by Australian Research Council Dis-
covery Project under Grant DP190100786. The work of Ming Jin was supported
in part by the Zhejiang Provincial Natural Science Funds for Distinguished
Young Scholars under Grant LR21F010001. The work of Yonina C. Eldar was
supported in part by the QuantERA under Grant C’MON-QSENS!. This work
was presented in part at the 16th IEEE APWCS 2019 [DOI: 10.1109/VTS-
APWCS.2019.8851644]. (Corresponding author: Qinghua Guo.)

Man Luo and Qinghua Guo are with the School of Electrical Computer
and Telecommunications Engineering, University of Wollongong, Wollongong,
NSW 2522, Australia (e-mail: mI857 @uowmail.edu.au; qguo@uow.edu.au).

Ming Jin is with the Faculty of Electrical Engineering and Computer Science,
Ningbo University, Ningbo 315211, China (e-mail: jinming@nbu.edu.cn).

Yonina C. Eldar is with the Faculty of Mathematics and Computer Science,
Weizmann Institute of Science, Rehovot 7610001, Israel (e-mail: yonina.eldar @
weizmann.ac.il).

Defeng Huang is with the School of Engineering, University of Western
Australia, Perth 6009, Australia (e-mail: david.huang@uwa.edu.au).

Xiangming Meng is with the Institute for Physics of Intelligence, University
of Tokyo, Hongo, Tokyo 113-0033, Japan (e-mail: meng @g.ecc.u-tokyo.ac.jp).

Digital Object Identifier 10.1109/TSP.2021.3114985

, Senior Member, IEEE, Ming Jin
, Senior Member, IEEE, and Xiangming Meng

, Member, IEEE, Yonina C. Eldar"”, Fellow, IEEE,

SBL [11], [12]. AMP was originally developed for compressive
sensing based on loopy belief propagation (BP) [10]. Compared
to convex optimization based algorithms such as LASSO [13]
and greedy algorithms such as iterative hard-thresholding [14],
AMP has low complexity and its performance can be rigorously
characterized by a scalar state evolution (SE) in the case of alarge
independent and identically distributed (i.i.d.) (sub-)Gaussian
matrix A [15]. AMP was later extended in [16] to solve gen-
eral estimation problems with a generalized linear observation
model [17]. By implementing the E-step using AMP in the
expectation maximization (EM) based SBL method, matrix
inversion can be avoided, leading to a significant reduction in
computational complexity. However, AMP does not work well
for a generic matrix such as non-zero mean, rank-deficient, cor-
related, or ill-conditioned matrix A [18], resulting in divergence
and poor performance.

Many variants of AMP have been proposed to address the
divergence issue and achieve better robustness to a generic A,
such as the damped AMP [18], swept AMP [19], generalized
approximate message passing algorithm (GAMP) with adaptive
damping [20], AMP with unitary transformation (UTAMP) [21],
vector AMP (VAMP) [22], orthogonal AMP [23], memory
AMP [24], convolutional AMP [25] and more. In [26], by
incorporating damped Gaussian generalized AMP (GGAMP)
to the EM-based SBL method, a GGAMP-SBL algorithm was
proposed. Although the robustness of the approach is signifi-
cantly improved, it comes at the cost of slowing the convergence.
In addition, the algorithm still exhibits significant performance
gap from the support-oracle bound when the measurement ma-
trix has relatively high correlation, large condition number or
non-zero mean.

For a general linear inverse problem, it was proposed
in [21], [27] to apply AMP to a unitary transform of the orig-
inal model, where the unitary matrix for the transformation
can be obtained by the singular value decomposition (SVD)
of A. In the case of a circulant A, the normalized discrete
Fourier transform matrix can be used for the unitary trans-
formation, enabling highly efficient implementation with the
fast Fourier transform algorithm [28]. This leads to the AMP
variant UTAMP, which is renamed as unitary AMP (UAMP) in
this paper.! Here, we apply this concept to SBL, resulting in a
new SBL algorithm called UAMP-SBL. UAMP-SBL achieves
more efficient sparse signal recovery with significantly enhanced

'SVD plays an important role in both UAMP and VAMP. In UAMP, SVD is
used to obtain the unitary transformed model that AMP works with. SVD also
connects VAMP and AMP in its analysis. In addition, the linear minimum mean
squared error (LMMSE) estimator in VAMP results in cubic complexity in each
iteration, and VAMP relies on SVD to implement the LMMSE estimator with
low complexity.
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robustness, compared to the state-of-the-art AMP-based SBL
algorithm GGAMP-SBL [26].

To develop UAMP-SBL, we apply structured variational in-
ference (SVI) [29]-[31]. In particular, the formulated problem
is represented by a factor graph model, based on which approxi-
mate inference is implemented in terms of structured variational
message passing (SVMP) [30]-[32]. The use of SVMP allows
the incorporation of UAMP to the message passing algorithm
to handle the most computationally intensive part of message
computations with high robustness and low complexity. In
UAMP-SBL, a Gamma distribution is used as the hyperprior
for the precisions of the elements of x. We propose to tune the
shape parameter of the Gamma distribution automatically during
iterations. We show by simulations that, in many cases with
a generic measurement matrix, UAMP-SBL can still approach
the support-oracle bound closely. We also investigate empirical
SE-based performance prediction for UAMP-SBL and analyze
the impact of the shape parameter on SBL. In addition, the
UAMP-SBL algorithm is extended from single measurement
vector (SMV) problems to multiple measurement vector (MMV)
problems [2], [33], [34]. Based on our preliminary results in
[35]?, UAMP-SBL was applied to inverse synthetic aperture
radar [36], where the measurement matrix can be highly cor-
related in order to achieve high Doppler resolution. Real data
experiments in [36] demonstrate its superiority in terms of both
recovery performance and speed.

The rest of the paper is organized as follows. We briefly intro-
duce SBL and (U)AMP in Section II. In Section III, UAMP-SBL
is derived for SMV problems and empirical SE-based perfor-
mance prediction for UAMP-SBL is also discussed. The impact
of the shape parameter is analyzed in Section IV. UAMP-SBL is
extended to the MMV setting in Section V. Numerical results are
provided in Section VI, followed by conclusions in Section VII.

Throughput the paper, we use boldface lowercase and upper-
case letters to represent column vectors and matrices, respec-
tively. The superscript (-) represents the conjugate transpose
for a complex matrix, and the transpose for a real matrix. We
use 1 and O to denote the all-ones vector and all-zeros vector
with proper sizes, respectively. The notation N (x|, ) denotes
a Gaussian distribution of x with mean g and covariance 3,
and Ga(7y|e,n) is a Gamma distribution with shape parameter e
and rate parameter 7. We use | - |2 to denote the element-wise
magnitude squared operation, and || - || for the lo norm. The
notation (f(x)), ) denotes the expectation of f(x) with respect
to probability density function ¢(x), and E[-] is the expectation
over all random variables involved in the brackets. We use
Diag(a) to represent a diagonal matrix with elements of a on its
diagonal, Z,, ,, is the (m, n)th element of Z, and a,, is the nth
element of vector a. The element-wise product and division of
two vectors a and b are denoted by a - b and a. /b, respectively.
The superscript of a’ in an iterative algorithm denotes the tth
iteration.

II. BACKGROUND

A. Sparse Bayesian Learning
Consider recovering a length-/N sparse vector x from mea-
surements
y = Ax+w, (1)
2Compared to [35], we present a new derivation of UAMP-SBL, extend

it from SMV to MMV, and provide theoretical analyses and comprehensive
comparisons.
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where y is a measurement vector of length M, the measure-
ment matrix A has size M x N, w denotes a Gaussian noise
vector with mean zero and covariance matrix 3711, and 3 is
the precision of the noise. It is assumed that the elements in x
are independent and the following two-layer sparsity-promoting
prior is used

p(X|’y) = Hp(xn"yn) = HN(HL‘MO”YEI% ()

p(v) = [1p(n) = [T Ga(rmle, ), ()
i.e., the prior of z,, is a scale mixture of Gaussian distributions

p(zn) = /N(xnl(l Yo )P(n) dyn, 4)
where the precision vector v = [v1, V2, - - -, Yn | 2.
In the conventional SBL algorithm by Tipping [8], the preci-
sion vector =y is learned by maximizing the a posteriori proba-
bility

p(vly) o< p(ylv)p(7), 5)
where the marginal likelihood function is
p(517) = [ plybpieiyix. ©)

It can be shown that [8]

1 .
log p(yly) = 3 (log |3 + log | Diag()|

— CHDiag('y)C> + const, 7

where const represents terms independent of -y, and
> = (BAHA + Diag('y))i1 , (8)
¢ =pBxAy. 9)

The posterior probability of x is given by

p(xly,v) = N(x[¢, ). (10)
Taking the logarithm of p(~|y) and ignoring terms indepen-
dent of =, learning of ~ reduces to maximizing the following
objective function [8]
N
L(v) =logp(ylv) + > _(€logvn — 17m)-
n=1
As the value of ~ that maximizes L£(-) cannot be obtained
in closed form, iterative re-estimation is employed by taking
advantage of (7), i.e., with a learned = in the last iteration,
compute X and ¢ using (8) and (9), then update v by maximizing
L(~y) with (7), which leads to

Yo = (2e+1)/2n+ Gl + Znn)n=1,....N. (12)

In summary, Tipping’s SBL algorithm (which is called SBL
hereafter) executes the following iteration [8]:

(1)

Repeat
Z = (BA" A + Diag())”" (13)
% =pZAy (14)

A = 2e+1)/@20+ |20* + Zpn)yn =1,...,N. (15)
Until terminated

If the noise precision /3 is unknown, then its estimation can
be incorporated as well. SBL can also be derived based on the
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Algorithm 1: UAMP (UAMPv2 Executes Operations
in[]).
Initialize ngo)(or Ta(go)) > 0and x(@. Set s(-Y = 0 and
t = 0. Define vector A = AAT1.
Repeat
1. 7, =|®%7

[or 7, = TLA]

2. p=®&x—7, s!
33 Ts=1/(t,+B7'1)
4: st=71,-(r—p)
50 1. /7, =|®" %1, lor 1./74 = (£ A7 1)1]
6: q=x'+T1, (®7s)
7. Tt =1 gh(a, 1) formptt =
17 (1, - gl(q,7))]
8: x'""'=g.(q,7g)

9. t=t+1
Until terminated

EM algorithm [8], [26]. The SBL algorithm requires a matrix
inverse in (13) in each iteration, resulting in cubic complexity
per iteration.

B. (U)AMP

AMP was derived based on loopy BP with Gaussian and
Taylor-series approximations [10], [16]. It is known that AMP
can easily diverge in the case of a generic measurement matrix
A [18]. Inspired by the work in [28], it was shown in [21] that
the robustness of AMP is remarkably improved through simple
pre-processing, i.e., performing a unitary transformation to the
original linear model [21], [27]. As any matrix A has an SVD
A = UAYV with U and V being two unitary matrices, perform-
ing a unitary transformation with U leads to the following
model

r=®x+w, (16)
where r = Ufly, & = U A = AV, Ais an M x N rectan-
gular diagonal matrix, and w = U”w remains a zero-mean
Gaussian noise vector with the same covariance matrix 3~ '1.
Applying the vector step size AMP [16] with model (16)
leads to the first version of UAMP (called UAMPv1) shown in
Algorithm 1.3

We can apply an average operation to two vectors: T, in Line
7and |®* |27, in Line 5 of UAMPv1 in Algorithm 1, leading to
the second version of UAMP [21] (called UAMPV2), where the
operations in the brackets of Lines 1, 5 and 7 are executed (refer
to [27] for the derivation). Compared to AMP and UAMPvI,
UAMPv2 does not require matrix-vector products in Lines 1 and
5, so that the number of matrix-vector products is reduced from 4
to 2 per iteration. This is a significant reduction in computational
complexity because the complexity of AMP-like algorithms is
dominated by matrix-vector products.

In the (U)AMP algorithms, g, (q, T) is related to the prior of
x and returns a column vector with the nth element [g,(q, 7)]»,
given by

— f an(«rn)N(l‘n, Qm an)dl‘n
fp(l'n)f\/(.%‘n; ) Tq" )dl‘n ’

[92(a, Tg)]n (17)

3By replacing r and @ with y and A in Algorithm 1 respectively, the original
AMP algorithm is recovered.
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where we note that p(z,,) represents a general known prior for
xp. The function ¢/,(q, 74) returns a column vector and the nth
element is denoted by ¢/, (q, T4)]n, Where the derivative is taken
with respect to q,.

III. SPARSE BAYESIAN LEARNING USING UAMP

A. Problem Formulation and Approximate Inference

To enable the use of UAMP, we employ the unitary trans-
formed model r = ®x + w in (16). As in many applications
the noise precision /3 is unknown, its estimation is also consid-
ered. The joint conditional distribution of x, v and 3 can be
expressed as

p(x,7, Blr) o< p(r|x, B)p(x|v)p(v)p(B), (18)

where p(x|v) and p(«) are given by (2) and (3), respectively.
We assume an improper prior p(f3) o 1/ for the noise preci-
sion [8]. According to the transformed model (16), p(r|x, 5) =
N (r|®x, 71). Our aim is to find the marginal distribution
p(x|r). The a posteriori mean is then used as an estimate of
x in the sense of minimum mean squared error (MSE). How-
ever, exact inference is intractable due to the high dimensional
integration involved, so we resort to approximate inference
techniques.

Variational inference is a machine learning method for ap-
proximate inference [29]-[31]. In variational inference, a
tractable trial distribution function is chosen and optimized
by minimizing the Kullback-Leibler (KL) divergence between
the trial function and the true posterior distribution. Instead of
using fully factorized trial functions where all variables are
assumed to be independent (thereby likely resulting in poor
approximations), more structured factorizations can be used,
leading to SVI algorithms. With graphical models, SVI can
be formulated as message-passing [30]-[32], which is termed
SVMP. In this work, SVMP is adopted because it facilitates the
incorporation of UAMP into SVMP. We will show how UAMP
can be used to handle the most computational intensive part of
message computations, enabling us to achieve low complexity
and high robustness. With SVMP, we can find an approximation
to the marginal distribution p(x|r), where an approximation to
p(y|r) is also involved (the approximate inference for x and ~y
is performed alternately).

We introduce an auxiliary variable h = ®x to facilitate the
incorporation of UAMP, which is crucial to an efficient realiza-
tion of SBL. Then the conditional joint distribution is

p(x,h,v,Br)
o p(r|h, B)p(h[x)p(x|v)p(v]e)p(3)

=

M
= H N(Tm|hmaﬂil)

m=1 m

5(h7n - [q)] mX)

1

N N
[T N@al0,7.1) T Ga(ymle, n)p(B)-

n=1

(19)
n=1

To facilitate the derivation of the message passing al-
gorithm, a factor graph representation of the factoriza-
tion in (19) is shown in Fig. 1, where the local
functions fﬂ(ﬁ) X 1/[‘3, frm (Tma P s 6) = N(Tm|hma 571)7
J5 (B, X) = 8(hin, — [®]inX), fu, (Tn, ) = N (200,75, 1),
Jon () = Ga(vyn|e, ) and [@],,, is the mth row of matrix ®.
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|
} f"'” f&w Xy f/ N
Subgraph 1 | Subgraph 2 Subgraph 3
Fig. 1. Factor graph of (19) for deriving UAMP-SBL.

Following SVI, we define the following structured trial
function

q(x,h,v,8) = 4(B)q(x, h)q (7). (20)
In terms of SVMP, the use of the above trial function corresponds
to a partition of the factor graph shown by the dotted boxes
in Fig. 1, where ¢(5), ¢(x,h) and ¢() are associated with
Subgraphs 1, 2 and 3, respectively. As the KL divergence

KL (q(B)a(x,h)q(v)l[p(x, h,~, Blr)), 21
is minimized, it is expected that
q(x,h) ~ p(x, hlr), 22)
q(v) = p(vIr), (23)
q(B) ~ p(Blr). (24

Integrating out h in (22), which corresponds to running BP in
Subgraph 2 (except the factor nodes connecting external variable
nodes), we have ¢(x) = p(x|r). Running BP in Subgraph 2
involves the most intensive computations; fortunately it can
be handled efficiently and with high robustness using UAMP.
The derivation of UAMP-SBL is shown in Appendix A, and the
algorithm is summarized in Algorithm 2.

Regarding the UAMP-SBL in Algorithm 2, we have the

following remarks:

1. UAMPv2isemployedin Algorithm 2. Similarly, UAMPv1
can also be used. By comparing UAMPv1 and UAMPV2,
the differences lie in Lines 1, 8, 9 and 10 as vectors Ti
and 1, need to be used. The UAMP-SBL algorithms with
two versions of UAMP deliver comparable performance,
but UAMP-SBL with UAMPv2 has lower complexity.

2. In SBL with Gamma hyperprior, the shape parameter ¢ and
the rate parameter 7 are normally chosen to be very small
values [8], and sometimes the value of the shape parameter
€ is chosen empirically, e.g., ¢ = 1 [37]. In UAMP-SBL,
we propose to tune the shape parameter automatically (as
shown in Line 13) with the following empirical rule

1 1 . 1 .
€= 2\/log(N Zn Yn) — N Zn:log%, (25)

i.e., € is learned iteratively in the iterative process, with
a small positive initial value. We note that, as the log
function is concave, the parameter € in (25) is guaranteed
to be non-negative. In Section IV, we will show that
the shape parameter € in SBL functions as a selective
amplifier for {~,, }, and a proper € plays a significant role in
promoting sparsity, leading to considerable performance
improvement.
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Algorithm 2: UAMP-SBL.

Unitary transform: r = Ul y = &x + w, where

® =U”A =AV,and A has SVD A = UAV.
Define vector A\ = AAT1.

Initialization: ¥ = 1, % = 0, ¢ = 0.001, 4 =1,
B=1,s=0,andt = 0.

Do

T, =TI

2 p:@it*Tp'S

3 ovihn=1p /(1487

4 h= (BTp-T —|—Ap)./(1 + BTp)
5: B=M/(||[r —h|*+1"v,)
6: 3
7

8

—

o= 1/(r, + 51
s=7s-(r—p)
c 1)1, = (1/N)XH 7,
9: q=%'+7,8"s
100 7Ht = (7 /N)IP (L) (1 + 79))
11: %l =q./(1+7,9)
12: 4= e+ 1)/(|25H 2+t ),n=1,...,N.
13 e=1/log(£ 3, 9n) — £ 3, log 4
14: t=t+1
while (||x!+1 — %2 /[|x' |2 > §, and t < tax)

B. Empirical SE-Based Performance Prediction

In this section, leveraging empirical UAMP SE, we study how
to predict the performance of UAMP-SBL. We treat UAMP-SBL
as UAMP with a special denoiser, enabling the use of UAMP
SE to predict the performance of UAMP-SBL. The denoiser in
the UAMP-SBL corresponds to Lines 10-13 of the UAMP-SBL
algorithm (Algorithm 2).

As (U)AMP decouples the estimation of vector X, in the tth
iteration, we have the following pseudo observation model

G = Tp + wy, (26)
where ¢ is the nth element of q in the tth iteration, and w?,
denotes a Gaussian noise with mean 0. The variance 7° of the
noise is given by

o N
T T O (0iA+ 511))

27)

which can be simply obtained with the variance-related variables
in Lines 1, 5 and 7 of UAMPV2 in Algorithm 1. Here v, is the
average MSE of {x,,} after denoising in the ¢th iteration. As
it is difficult to obtain a closed form for the average MSE, we
simulate the denoiser with the additive Gaussian noise model
(26) by varying the variance of noise 7¢ (or the SNR), so that
we can get a “function” in terms of a table, with the variance of
the noise as the input and the MSE as the output, i.e.,

U = P(7). (28)
The function ¢(-) is independent of the measurement matrix
A. The performance of UAMP-SBL can be predicted using the
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Fig. 2. SE and evolution trajectory of UAMP-SBL with a nonzero mean A

(N = 10240, M = 8192, SNR = 50dB, sparsity rate p = 0.1 and matrix mean
n=1.0).

following iteration with the initialization of v,:

Repeat
N A
T = 1H (A/(U:EA—FB_l].)) :¢(Ux)
vy = P(T)

Until terminated 29)

We show the predicted performance, simulated performance in
terms of normalized MSE (NMSE, which is defined in (41)) and
the evolution trajectory of UAMP-SBL in Fig. 2 for a non-zero
mean measurement matrix A. It can be seen that the predicted
performance matches well the simulated performance.

C. Computational Complexity

UAMP-SBL works well with a simple single loop itera-
tion, which is in contrast to the double loop iterative algo-
rithm GGAMP-SBL [26]. The complexity of UAMP-SBL (with
UAMPV2) is dominated by two matrix-vector product operations
in Line 2 and Line 9, i.e., O(M N) per iteration. The algorithm
typically converges fast and delivers outstanding performance
as shown in Section VI. UAMP-SBL involves an SVD, but it
only needs to be computed once and may be carried out off-line.
The complexity of economic SVD is O(min{M?N, M N?}).
Note that for the runtime comparison in Section VI, we do not
assume off-line SVD computations, and the time consumed by
SVD is counted for UAMP-SBL.

IV. IMPACT OF THE SHAPE PARAMETER ¢ IN SBL

In this section, we analyze the impact of the hyperparameter e
on the convergence of SBL. We focus on the case of an identity
matrix A. The same results for a general A are demonstrated
numerically.

We consider the conventional SBL algorithm (7 is set to be
zero) [8]. In the case of identity matrix A, it reduces to

Repeat
Zn,n = (ﬁ +’YZ)71
z, = BZn,nyn

71?_1 = (2¢ + 1)/(|§7n|2 + Zn.,n)

Until terminated (30)
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Here note that in the above iteration we initialize 7,(10) > 0. The
iteration in terms of -y, has a closed form

1 _ 2¢+1
T T BB ) )+ Bk
(B+L)?

=+ Vg S

= 9e(0)- (3D

Next, we investigate the impact of € on the convergence behavior
and fixed points of the iteration (31) when € = 0 or € takes a
positive value.

For the iteration (31) with a small positive initial value %(LO),
we have the following results.

Proposition 1: When € = 0, if By2 > 1, 4 converges to a
stable fixed point

s__B
"By -1
if By2 < 1, v} goes to +oo.
Proof: See Appendix B. |
Theorem 1: Whene > 0,if By2 > 1+ 4e + 4/€2 + €/2,7},
converges to a stable fixed point
26(1 + 2¢)

By2 —de — 1+ /B2ys —8eBy2 — 2By2 + 1’
(33)

(32)

Tn(a) =

if By2 < 1+ 4e+4y/e2 + €/2, v} goes to +oo.
Proof: See Appendix C. |

Based on Proposition 1 and Theorem 1, we make the following

remarks:

1. If By2 <1, for both e = 0 and € > 0, 7/, goes to +oo.
However, a positive € accelerates the move of 7/, towards
+00. This can be shown as follows. As 3 > 0 and By2 <
1, we have (By,)? < 3. Hence, from (31)

(B +1)?
28 +n

(26+1)( ! +52>
LT R
> (2e+ 1)k, (34)
From (34), compared to e = 0, a positive value of e moves
vk towards infinity more quickly. Considering a fixed
number of iterations, a positive value of € can be significant
because the precision can reach a large value much faster.

2. When € = 0, v} converges to a finite fixed point if By2 >
1. Incontrast, when € > 0, 7% goesto +ooif By2 € (1,1 +
de + 41/€% + €/2). This is an additional range for 7 to
go to infinity. Hence, a positive € is stronger in terms of
promoting sparsity, compared to € = 0.

3. When € >0, if By2 =1+ 4e+4+/e2 +€/2, 4, may
converge or diverge because the iteration has a unique
neutral fixed point as shown in Theorem 1.

4. When By2 > 1+ 4e + 4\/€2 + €/2, ! always converges
to a fixed point. Based on (32) and (33), the ratio of the
precisions obtained with ¢ > 0 and € = 0 is given by

Vn(a) _ 2(1 + 2¢)

Tn 4 s )2
15y{—1+\/(1 i)

Y =g.04) > (2e + 1)

_ 8e(1+2¢) .
(Byn-1)?
(35
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The ratio is a function of 3y2, and

Vn(a)/Vn & 1+ 2€, (36)

if By? is relatively large.
The ratios of the precisions versus 3y2 are shown in Fig. 3,

where they are not shown for By2 < 1 + 4e + 41/€% + €/2 as

they are infinity when 1 < By2 < 1+ 4e + 41/€% + ¢/2, and
undefined when y?2 < 1 (see the above remarks). It can be seen
that the precision obtained with € = 0 is amplified depending on
the value of By2. The smaller the value of 3y2, the larger the
amplification for the corresponding precision (In the case of
Byi < 1, the ratios are undefined. However, considering a fixed
number of iterations, the ratios can be large as v/, with a positive
€ goes to infinity much quicker). Note that y,, = x,, + w,, and
is the noise precision. Hence, if By2 is a small value, it is highly
likely that the corresponding x,, is zero, hence the precision 7,
should go to infinity. If By? is a large value, it is highly likely that
the corresponding z,, is non-zero, hence -, should be a finite
value. We see that a positive € tends to a sparser solution, and
a proper value of e leads to much better recovery performance,
compared to € = 0.

The precisions of the elements of the sparse vector obtained by
the SBL algorithm with € = 1.5 and € = 0 are shown in Fig. 4,
where A is an identity matrix with size 10000 x 10000, the
sparsity rate of the signal is 0.1, and SNR = 50 dB. It can be seen
that the precisions with € = 1.5 are separated into two groups
more clearly, and the ratios for the small precisions are roughly 4
(i.e., 1 4+ 2¢), while other precisions are amplified significantly.
Although the above analysis is for an identity matrix A, it is
interesting that the same results are observed for a general matrix
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A as demonstrated numerically in Fig. 5, where A is an i.i.d
Gaussian matrix with size 5000 x 10000, the non-zero shape
parameter ¢ = 1.5, and the sparsity rate and the SNR are the
same as the case of the identity matrix. (Similar observations are
observed for other matrices). We see that the small precisions
are also roughly amplified by 4 times while others are amplified
significantly, leading to two well-separated groups.

It is noted that the value of e should be determined properly.
If the matrix A and the sparsity rate of x are given, we can
find a proper value for e through trial and error. However, this
is inconvenient, and the sparsity rate of the signal may not
be available. We found the empirical (25) to determine the
value of €. Next, we examine its effectiveness with the SBL
algorithm. Plugging the shape parameter update rule (25) to
the conventional SBL algorithm leads to the following iterative
algorithm (assuming the noise precision [ is known):

Repeat
Z = (BA"A + Diag(¥))
% =pZAy
An = (2e +1)/(|#n|> + Znn)n=1,....,N

1 1 R 1 R
€= 2\/10g(N ;'}/ﬂ) - N Xn:log’}/n

Until terminated

To demonstrate the effectiveness of the shape parameter up-
date rule (25), we compare the performance of the conventional
SBL algorithm with and without shape parameter update. The
results are shown in Fig. 6, where the SNR is 50 dB, the size
of the measurement matrix is 800 x 1000, and the sparsity rate
p = 0.1.Inthis figure, the support-oracle bound is also shown for
reference. The matrices in (a), (b), and (c) are respectively i.i.d.
Gaussian, correlated and low-rank matrices (refer to Section VI
for their generations). It can be seen that there is a clear gap
between the performance of conventional SBL and the bounds,
and with shape parameter updated with our rule, the SBL algo-
rithm attains the bound. It is worth mentioning that the empirical
finding in [26], i.e., replacing the noise variance 3! with 3371
can lead to better performance of GGAMP-SBL [26]. We use
this for the conventional SBL algorithm and the performance is
also included in Fig. 6. We see that it also leads to substantial
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Fig. 6. Performance of the conventional SBL. (a) Gaussian matrix; (b) corre-
lated matrix with ¢ = 0.3; (c) low-rank matrix with R/N = 0.6.

performance improvement, but its performance is inferior to that
of SBL with e updated using (25). Moreover, in many cases, the
noise variance is unknown, and it may be hard to determine its
value accurately. In contrast, our empirical update of ¢ does not
require any additional information.

V. EXTENSION TO MMV

In this section, we extend UAMP-SBL to the MMV setting,
where the relation among the sparse vectors is exploited, e.g.,
common support and temporal correlation.

A. UAMP-SBL for MMV

The objective inan MMV problem is to recover a collection of

length-N sparse vectors X = [x(1), x(?) .. x(V)] from L noisy
length- M measurement vectors Y = [y(1) |y . y()] with
the following model

Y =AX+W, (37)

where we assume that the L vectors {x(Y)} share a common
support (i.e., joint sparsity), A is a known measurement matrix
withsize M x N,and W denotes ani.i.d. Gaussian noise matrix
with the elements having mean zero and precision /3.

With the SVD A = UAV, aunitary transformation with UH
to (37) can be performed, i.e.,

R =®&X +Q, (38)

where R = U?Y = [t +@) +(D)] & =UFA = AV
and © = U”W is still white and Gaussian with mean zero
and precision 3. Define h() = &x" and H = [h() ... h(})].,
Then we have the following joint distribution

p(X,H,~v,3R)

L
x [[ @M@, B)p(h® |xM)p(x® |y)p(v)p(8)

=1

L M
=TT IT VeL1nD, 8- 1)6(hD — [@],,x D)
I=1m=1

L N N
< [T TINGEP10,9%1 [T Galyle,mp(8).  (39)
[=1n=1 n=1
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Algorithm 3: UAMP-SBL for MM V.

Unitary transform: R = U”Y = &X + W, where
=UfA = AV, and A has SVD A = UAV.

Deﬁne vector A = AAY

Initialization: VI; Tglg 0) = 1 %0 =0, ¢ = 0.001, ¥ =1,

B=1,s' =0,and t = 0.

Do

I: VT, —ng(t))\

2: Vl,p—@x()—ﬂ,-sl

3: Vl;\:ﬁl ZT}./(].—FﬁTé) )

4: Vi;h' = (prl el +ph). /(1 + pT)
5 B=LM/(Z(|le" - B2+ 17v}));
6: Vi, = 1./(7';,—1—[3*11)

70 Vst =71l (vl — ph)

8 VI 1/75 = (1/N)\ !

9: Vi;q' =% 4 7l(®sh)

. R o DN H
10: 91572 = (21 /N1 (L1 4 7))
11 VD =o' /(1 +7149)

. N — 2¢ _
12 WTL - (1/L) Zl—l(l l(jﬁ}l)‘2+ l(t+1)) 1, ey N
13 ¢ Wlogw i) — & X, log 3
14: t=t+1

while fZL (|| — D12 /)% D) 12) > 6, and

t < tmax)

Define  factors (l)(r(l) h® 3y = I, N(r, l)|hm7 )
MO x0) =TT, 6(hsY) — [8],,xD), f5(8) x 1/8, f
(xD,4) =1, N(x[0,7,1), and f(~,€) =TT, Ga(vale,n)

denotes the hyperprior of the hyperparameters {,, }. The factor
graph representation of (39) is shown in Fig. 74, based on which
the message passing algorithm can be derived. The message
updates related to x() and h(® are the same as those for the
SMYV case and can be computed in parallel. The difference lies
in the computations of B and 4, and the relevant derivations
are shown in Appendix D. The UAMP-SBL for MMV is
summarized in Algorithm 3, where UAMPV2 is employed. The
complexity of the algorithm is O(M N L) per iteration.

4The vector variable node -~y is used in the factor graph to make it neat. We

note that each entry z(l> of (") is connected to 7r, through the function node
between them.
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B. UAMP-TSBL

With the assumption of a common sparsity profile shared
by all sparse vectors, we further consider exploiting the tem-
poral correlation that exists between the non-zero elements.
The messages update related to h("), ¢ and § are the same as
those for the MMV case, where no temporal correlation between
non-zero elements is assumed. As the correlation is considered,
the differences from the UAMP-SBL MMV algorithm lie in the
computations of 4,, and x(V).

As in [26], we use an AR(1) process [38] to model the
correlation between =) and x(l D ,i.e.,

n

0 = az(=D 4 /1 — o290

pla ey ™) = Na a7V, (1 -
p(a)) = ND]0,7, 1), (40)

where o € (—1,1) is the temporal correlation coefficient and
9P ~ N (0,7,,1). Due to the temporal correlation, the condi-
tional prior distribution for the Vector X(l) changes. We redefine

the factors {f n(xn )} 1€, f n(xn ) = (fg)|x7(1l_l))

for! > 1 and f,;” (x; ),%) =p(z 511)). Thus, each :rgf) is con-

nected to the factor nodes fa(;i)(ng ) [7n)s fclj b (:cg +1)

{f éfn) (h&f} |x(1),¥m}. The factor graph characterizing the tem-
poral correlation is shown in Fig. 8. The remaining part of
the graph is omitted as it is the same as that of the MMV
case without temporal correlation. The derivation of the extra
message passing for the UAMP-TSBL algorithm is shown in
Appendix E, and the algorithm is summarized in Algorithm 4.
UAMP-TSBL is an extension of the UAMP-SBL algorithm for
MMV (Algorithm 3). The complexity of UAMP-TSBL is also
dominated by matrix-vector multiplications, and is O(M N L)
per iteration.

)y, 0> 1

|7n) and

VI. NUMERICAL RESULTS

In this section, we compare the proposed UAMP-(T)SBL
algorithms with the conventional SBL and state-of-the-art AMP-
based SBL algorithms. We evaluate the performance of various
algorithms using normalized MSE, defined as

K
1 .
NMSE £ — > 1% — [/ [k, D
k=1
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Algorithm 4: UAMP-TSBL.

Unitary transform: R = UHY = X + W, where
= UHA =AV,and A has SVD A = UAV.
Define vector A = AAT 1.
Initialization: Vi: 79 = 1, £(0) = g, q = O,Tf](o) =1,
£10) — g, 10 = 1,
6'® =0,¢'® =1, =0,¢ =0.001,4Y =1,5=1,
and ¢t = 0.

Do
1. ¢e=o0
2: = 1_/27(t)
3: forli=2,...,L
-1 -1 L1 qpl=1
4: e:a(%jﬁm).(w)
11 -1 R
Z: dwl = 0 (Jtrigrn) + (1= 0?)/3"
: en
7: forl=1,...,L
8: Tp (t)A
9: pl = q);(l(t) _ Ti, L glt-1)
10: v =7/ (L4 )
1 B = (br) x4 ph). /()
12: end

13: B =LM/((|let = B2 + 15 v]))

14: fori=1,...,L

15: rh=1/(r,+ 81
16: st = 7L . (¢! — ph)
17: 1/T (1/N)X 75t
18: q =%x® + 74 (‘I>H l(t))
19: AU —nfa /( Jrh+1/¢l+ 1. /9h)
200 KD = (gl yrl 6l /gl € /)
21: end
. L-1 _ 1 _L
22: gt l=1q
23 ¢P = L(rh 4+ (1-a?)/4Y)
24: forl=L—-2,...,1
I+1 I+1 .,.f;rl l+1
25: el:é(%‘F%)'(Wzﬂ
S N
260 ¢l = LTl + (1-a?)/AY)
afirtlie
27: end
28: ,Q/(tJrl) _ L(Ze’ + 1)/[‘i1(t+1)|2 —|—Tzl(t+1)1
N l 1
g zf_ (RHEHD2 4 7D
oy Y (RITD2 4 “””1)
13((3;2 l:2( l(t+1) 'X(l 1) (t+1))]
29: El = %\/log(% Zn '%(Lt_‘—l) - % Z 1 A(t+1)
30: t=t+1
. L ~ N ~
while 7 > (| [/ — 012 /)% (¢+1)]2) > 5, and
t < tmax
1< PYORIN() 0)
A l D2
NMSE*ﬁZZI 2P/ (42)

k=1 1=1
for the SMV and MMV cases respectively, where xj, (fcg)

the estimate of xj, (x§C )) and K is the number of trials. Since

different algorithms have different computational complexity
per iteration and they require a different number of iterations to

) is
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converge, as in [26], we measure the runtime of the algorithms
to indicate their relative computational complexity. It is noted
that the time consumed by the SVD in UAMP-SBL is counted
for the runtime.

To test the robustness and performance of the algorithms, we

use the following measurement matrices:

1) Ill-conditioned Matrix: Matrix A is constructed based on
the SVD A = UAYV where A is a singular value matrix
with A; /A1 i1 = &YM7D for i =1,2,...,M — 1
(i.e., the condition number of the matrix is k).

2) Correlated Matrix: The correlated matrix A is constructed
using A = ClL/QGC}{Q, where G is an i.i.d. Gaussian
matrix with mean zero and unit variance, and Cy, is an
M x M matrix with the (m, n)th element given by ¢/™~ "
where ¢ € [0, 1]. Matrix Cgp, is generated in the same way
but with a size of N x N. The parameter ¢ controls the
correlation of matrix A.

3) Non-zero Mean Matrix: The elements of matrix A are
drawn from a non-zero mean Gaussian distribution, i.e.,
Am.n ~ N (@ n|p, 1). The mean p measures the deriva-
tion from the i.i.d. zero-mean Gaussian matrix.

4) Low Rank Matrix: The measurement matrix A = BC,
where the size of B and C are M x R and R x N, re-
spectively, and R < M. Both B and C are i.i.d. Gaussian
matrices with mean zero and unit variance. The rank ratio
R/N is used to measure the deviation of matrix A from
the i.i.d. Gaussian matrix.

A. Numerical Results for SMV

In this section, we compare UAMP-SBL against the con-
ventional SBL [8] and the state-of-the-art AMP based SBL
algorithm GGAMP-SBL [26] with estimated noise variance
and 3 times true noise variance. The vector x is drawn from
a Bernoulli-Gaussian distribution with a non-zero probability p.
The SNR is defined as SNR £ E||Ax||?/E|w|?. As a per-
formance benchmark, the support-oracle MMSE bound [26]
is also included. We set M = 800, N = 1000 and the SNR
is 60 dB unless it is specified. For UAMP-SBL we set the

0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(e) Parameter ¢ (p =0.3)

(f) Parameter ¢ (p = 0.3)

Performance and runtime comparisons (ill-conditioned matrices and correlated matrices).

maximum iteration number %,,,, = 300 (note that there is no
inner iteration in UAMP-SBL). GGAMP-SBL is a double loop
algorithm, the maximum numbers of E-step and outer iteration
are set to be 50 and 1000 respectively. A small damping factor
0.2 is used for GGAMP-SBL to enhance its robustness against
tough measurement matrices. It is noted that the damping factor
can be increased to reduce the runtime of GGAMP-SBL but at
the cost of compromised robustness and performance.

In Figs. 9(a) and (b), the performance of various algorithms
in terms of NMSE versus the condition number is shown for
the p = 0.1 and 0.3, respectively. It can be seen from Fig. 9(a)
that UAMP-SBL delivers the best performance (even better than
the conventional SBL algorithm), which closely approaches the
support-oracle bound. With a larger sparsity rate p in Fig. 9(b),
UAMP-SBL still exhibits excellent performance and it performs
slightly better than SBL and significantly better than GGAMP-
SBL when the condition number is relatively large. Figs. 9(d) and
(e) show the performance of various algorithms versus a range
of correlation parameter ¢ from 0.1 to 0.5. It can be seen that,
UAMP-SBL still delivers exceptional performance, which is bet-
ter than SBL and significantly better than GGAMP-SBL when
the correlation parameter c is relatively large. The gap between
UAMP-SBL and GGAMP-SBL becomes more notable with a
higher sparsity rate. In addition, the simulation performance of
UAMP-SBL matches well with the predicted performance. The
average runtime of various algorithms is shown in Figs. 9(c)
and (f) for ill-conditioned matrices and correlated matrices,
respectively, where the sparsity rate p = 0.3. It can be seen
that UAMP-SBL is much faster than GGAMP-SBL and SBL.
SBL is normally the slowest as it has the highest complexity
due to the matrix inverse in each iteration. It is noted that, for
GGAMP-SBL, we set its damping factor to be a relatively small
value, i.e., 0.2 to achieve better performance and robustness. If
the damping factor is increased, GGAMP-SBL could be faster
but at the cost of offsetting its performance and robustness.

In Fig. 10, we examine the performance of the algorithms
versus rank ratio in (a), where the sparsity rate p = 0.1, and
versus non-zero mean in (b), where the sparsity rate p = 0.3. It
can be seen that UAMP-SBL still delivers good performance,
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Zero mean matrices.

which closely matches the support-oracle bound, and is slightly
better than that of SBL. We can also see that GGAMP-SBL
diverges when the mean p is relatively large. The simulated
performance of UAMP-SBL matches well with the predicted
performance.

In Fig. 11, we evaluate the support recovery rate of the
algorithms versus correlation parameter c for correlated matrices
in (a) and mean value x for non-zero mean matrices in (b), where
the sparse rate p = 0.3. The support recovery rate is defined
as the percentage of successful trials in the total trials [39]. In
the noiseless case, a successful trial is recorded if the indexes
of estimated non-zero signal elements are the same as the true
indexes. In the noisy case, as the true sparse vector cannot be
recovered exactly, the recovery is regarded to be successful if
the indexes of the estimated elements with the K largest absolute
values are the same as the true indexes of non-zero elements
in the sparse vector x, where K is the number of non-zero
elements in x. From the results, we can see that UAMP-SBL
and SBL deliver similar performance and they can significantly
outperform GGAMP-SBL when c or p is relatively large.
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for ill-conditioned matrices.

We also compare the performance of various algorithms
at SNR = 35 dB, and the NMSE performance and runtime
of the algorithms are shown in Fig. 12, where (a) and (b)
are for non-zero mean matrices, and (c) and (d) are for ill-
conditioned matrices. The sparsity rate p = 0.1. Again, we can
see that, compared to GGAMP-SBL, UAMP-SBL delivers better
performance with considerably much smaller runtime when the
mean or condition number of the matrices are relatively large. We
show the performance of the algorithms versus SNR in Fig. 13,
where the matrices are highly ill-conditioned with a condition
number x = 10%. We can see that GGAMP-SBL does not work
well, and UAMP-SBL performs better and is faster than SBL
and GGAMP-SBL.

The key difference between AMP and UAMP is that a unitary
transformation is performed in UAMP, which makes UAMP
much more robust against a generic measurement matrix. In-
spired by this, we test the impact of the unitary transformation
on the GGAMP-SBL algorithm, where we first perform the
unitary transformation to the original model and then carry out
GGAMP-SBL. We call this algorithm UT-GGAMP-SBL, and
compare it with UAMP-SBL in the case of correlated matrices.
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Performance and runtime comparisons of UAMP-SBL and VAMP-

The performance and the corresponding runtime are shown in
Fig. 14, where the hyper-parameter e of UT-GGAMP-SBL is not
updated in (a) and (b) while it is updated in (c) and (d). It can be
seen that, thanks to the unitary transformation, the stability of
GGAMP-SBL is significantly improved as expected. Fig. 14(a)
shows that UT-GGAMP-SBL with 3 times true noise variance
achieves almost the same performance as UAMP-SBL, however,
UT-GGAMP-SBL requires the knowledge of noise variance and
itis significantly slower than UAMP-SBL. Fig. 14(c) shows that
updating € is not helpful for UT-GGAMP-SBL. UT-GGAMP-
SBL with estimated noise variance simply diverges, so its per-
formance is not shown in the figure. UAMP-SBL outperforms
UT-GGAMP-SBL with 3 times true noise variance when c is
relatively large. In addition, UAMP-SBL is faster.

We then compare UAMP-SBL with VAMP-EM in [40]. In
VAMP-EM, Bernoulli-Gaussian priors are employed and the
parameters of the priors are learned using EM. The NMSE
performance and runtime are shown in Fig. 15, where (a) and (b)
are for ill-conditioned matrices, and (c¢) and (d) are for correlated
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with temporal correlation.

matrices. The sparsity rate p = 0.3. It can seen that, compared to
VAMP-EM, UAMP-SBL delivers better performance with less
runtime.
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B. Numerical Results for MMV

The elements of the sparse vectors {x(), 1 = 1 : L} are drawn
from a Bernoulli-Gaussian distribution, and the vectors share a
common support. The number of measurement vectors is 5. The
performance of the algorithms with ill-conditioned, correlated,
non-zero mean and low-rank measurement matrices is shown
in Figs. 16(a)-(d), respectively. In this figure, we also include
the performance of the direct extension of the conventional SBL
algorithm to the MMV model (MSBL) [41] and support-oracle
bound. It can be seen from this figure that, when the deviation
of the measurement matrices from the i.i.d. zero-mean Gaussian
matrix is small, GGAMP-SBL (with 3x true noise variance)
and UAMP-SBL deliver similar performance, and both of them
can approach the bound closely. MSBL is slightly worse than
GGAMP-SBL and UAMP-SBL. However, when the deviation
is relatively large, MSBL delivers slightly better performance
but at high complexity. In most cases, UAMP-SBL and MSBL
almost have the same performance, and can significantly out-
perform GGAMP-SBL. As an example, we show the average
runtime of different algorithms in the case of ill-conditioned ma-
trices in Fig. 16(e), where UAMP-SBL converges significantly
faster than GGAMP-SBL and MSBL.

Furthermore, we present a numerical study to illustrate the
performance of UAMP-SBL when incorporating the temporal
correlation. Besides the temporally correlated SBL (TMSBL)
[39] and GGAMP-SBL, we also compare the recovery per-
formance with a lower bound: the achievable NMSE by a
support-aware Kalman smoother (SKS) [42] with the knowledge
of the support of the sparse vectors and the true values of j3,
« and . The SKS is implemented in a more efficient way
by incorporating UAMP. As examples, we use low rank and
non-zero mean measurement matrices to test their performance.
The sparsity rate p = 0.1, SNR = 50 dB and the temporal
correlation coefficient « = 0.8. It can be seen from Fig. 17 that,
UAMP-TSBL can approach the bound closely and outperform
other algorithms significantly when the rank ratio is relatively
low and the mean is relatively high. In addition, UAMP-TSBL
is much faster.

VII. CONCLUSION

In this paper, leveraging UAMP, we proposed UAMP-SBL
for sparse signal recovery with the framework of structured
variational inference, which inherits the low complexity and
robustness of UAMP against a generic measurement matrix. We
demonstrated that, compared to the state-of-the-art AMP based
SBL algorithm, UAMP-SBL achieves much better performance
in terms of robustness, speed and recovery accuracy. Future work
includes rigorous analyses of the state evolution of UAMP-SBL
and the update mechanism of the shape parameter.

APPENDIX A
DERIVATION OF UAMP-SBL WITH SVMP

We detail the forward and backward message passing in each
subgraph of the factor graph in Fig. 1 according to the principle
of SVMP [29], [30], [32]. The notation M., _,,, (x) is used to
denote a message passed from node n, to node np, which is
a function of z. Note that, if a forward message computation
requires backward messages, we use the messages in previous
iteration by default.
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1) Message Computations in Subgraph 1: In this subgraph,
we only need to compute the outgoing (forward) messages
{Mp_y, (B)}, which are input to Subgraph 2. The derivation
of the message update rule is delayed in the message computa-
tions in Subgraph 2, and is given in (53).

2) Message Computations in Subgraph 2: According to
SVMP, we need to run BP in this subgraph except at the factor
nodes { f,.  } as they connect external variable nodes. Due to the
involvement of @, this is the most computational intensive part,
and we propose to use UAMP to handle it by integrating it to
the message passing process.

According to the derivation of (U)AMP using loopy BP,
UAMP provides the message from variable node h,,, to func-
tion node f,. . Due to the Gaussian approximation in the the
derivation of (U)AMP, the message is Gaussian, i.e.,

M g, (hin) = M5 b (hin) = N (B[P )
(43)

where the mean p,,, and the variance 7, are respectively the
mth elements of p and 7, given in Line 2 and Line 1 of the
UAMP algorithm (Algorithm 1), which are also Line 2 and Line
1 of the UAMP-SBL algorithm (Algorithm 2).

Following SVMP [32], the message M, _,5([3) from factor
node f, = to variable node 3 can be expressed as

M, 8(8) o ex0 { (108 fro, (rinllims 87y} 44)
where the belief of h,, is given as

b(hm) o< M, ., (him) My, S, (hin)- (45)

In (51), we see that My, 5, (W) < N (A |7, A1) where

371 is an estimate of 31 (in the last iteration), and its com-

putation is given in (54). Hence b(h,,) is Gaussian accord-

ing to the property of the product of Gaussian functions, i.e.,
b(hm) = N (hm|hum, v, ) with

Vh,, = (1/7p,, +5)7"
him = 0, (BT + P [T, ). (47)
Note that 7, may contain zero elements. To avoid numerical

problems in (46) and (47), they can be rewritten (in vector form)
as

(46)

v =7, /(1 + 7)) (48)

h= (BTP r+p)./(1+ BTp)a
which are Lines 3 and 4 of the UAMP-SBL algorithm.
From (44) and the Gaussianity of b(h,,), the message

Mfrmeﬁ(ﬁ) is
My (9 o< VBexp { =5 1~ inf? + 01, b 5O

According to SVMP, the message from function node f,  to
variable node h,,, is

My, (hon) o 0 {108 fr (onl s 7))y}
o< N (hunrin, 57,
where 3 = (B)p(s) with
b(B) = Mgaoy,, (B)My,  —5(B)

(49)

(1)
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= f5(8) [ [ M,,.-5(8)

[o'e ﬁ%71 exp {_g Z (|Tm - }Alm|2 + ’thn)} ,» (52)

m

and

Mg, (8) = fs(8) TT My, ,~5(8).

m'#Em

(53)

It is noted that b(3) follows a Gamma distribution with rate pa-
rameter 5 > (|7 — hin|? + vp,, ) and shape parameter M /2,
s0 3 = (B)p(p) can be computed as

B=M/3" (Irm = ol + 01,

which can be rewritten in vector form shown in Line 5 of the
UAMP-SBL algorithm.

From (51), the Gaussian form of the message My, 1, (hum,)
suggests the following model

(54)

(55)

where w,,, is a Gaussian noise with mean 0 and variance B’l.
This fits the forward recursion of the UAMP algorithm with
known noise variance. Therefore, Lines 3 - 6 of the UAMP algo-
rithm (Algorithm 1) can be executed, which are Lines 6 - 9 of the
UAMP-SBL algorithm. According to the derivation of (U)AMP,
UAMP produces the message My, 7, (25,) o< N (Zn|Gn,74)
with mean g,, and variance 74, which are given in Lines 5 and 6
of the UAMP algorithm or Line 8 and Line 9 of the UAMP-SBL
algorithm.

The function nodes { f,;, } connect the external variable node
Yn. According to SVMP, the outgoing message of Subgraph 2
My, s, (n) can be expressed as

Mo, () o exp { (108 fo (010,75 )y, |+ 56)

where the belief b(z,,) oc My, p, (Tn) My, e, (2n).

The message My, o (2,) o N(2,]0,5;,") will be com-
puted in (63), where 4, = (Y )y, - Then b(zy,) turns out to be
Gaussian, i.e., b(z,,) = N (2|2, 72, ) With

Ton = (1/7g + )" (57)

Tp = Qn/(l + TQ’AYH)- (58)
Performing the average operations to {7, } in (57) and ar-
ranging (58) in a vector form lead to Lines 10 and 11 of the
UAMP-SBL algorithm. According to the above,

In g4
Mo () o VA exp { =21l +72) }

which is passed to Subgraph 3. This is the end of the message
update in Subgraph 2.

3) Message Computations in Subgraph 3: The message
My, (7n) from the factor node f, to the variable node
vn, is a predefined Gamma distribution with shape parameter e
and rate parameter 7, i.e.,

M () < exp {—n7n} -
According to SVMP, the message

M, e (o) o exp { (10g fu(@l0,7,1)),0 Fo - 6D)

Tm = hopy + Wi, m=1,..., M,

(59)

(60)
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where the belief of v,
b(Vn) X Mfa,n —Yn ('Yn>Mfzn —Yn ('Vn)
x %6*% exp {—77"(|i"n|2 + 7 + 27])} ) (62)
Hence, the message
My, e (@) X N (20]0,5,0), (63)
where
2e+1
Y = (Y = 64
=l =g e
(2¢+1)

Here we set n = 0, and %, is reduced to , which leads
to Line 12 of the UAMP-SBL algorithm.

We propose to tune the parameter automatically with the
empirical update rule for e shown in Line 13 of the UAMP-SBL
algorithm. The iteration is terminated when either the difference
between two consecutive estimates of x is smaller than a thresh-

old or the iteration number reaches the pre-set maximum value

[&n 2472

tIl’laX N

APPENDIX B
PROOF OF PROPOSITION 1

When e = 0, the iteration in terms of ~, has a simplified
closed form, i.e.,

V= g (gt = LTl )
" O (Byn )2+ B A,
In order to find the fixed point, we need to solve the following

equation

(65)

F(m) = geo (¥n) — 1 =0, (66)
which leads to the unique root
Vo = B/(Byy — 1) (©7)

If By2 > 1, the root v, = 3/(By2 — 1) > 0. Taking the
derivative of g, (7, ) in (65), we have
Bys >2

Caotm =1 (
dry 90N = B2yE + B+
It is easy to verify that, when v, >0, 0 < %geo () < L.

(63)

Thus, the unique root ], = #
iteration. As 0 < ﬁgeo(%) < 1 when 7, > 0, with an initial

value %(10) > 0, v will converge to the stable fixed point 7/,

[43].1f By2 < 1,theroot~y), = B/(By2 — 1) < Oor~/, = +o0,
i.e., there is no cross-point between y = g¢,(7,) and y = v,
when v, > 0. As g, (0) = 8%/((Byn)® + B) > 0,y = geo (1)
is above y ==, for 7, > 0. In addition, y = g.,(7,) is an
increasing function for y,, > 0. Hence 7/, goes to +oo with the
iteration.

is a stable fixed point of the

APPENDIX C
PROOF OF THEOREM 1

With e > 0, the derivative of g.(~,,) is given as

dge('Yn)_ . Bun °
i eeen - (i) ) @
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where u,, = $y2. To find the fixed points of the iteration, we let
() = ge(m) — ¥n = 0, leading to

2e7 — BBy — e —1) + 2 (1 +2¢) =0.  (70)
The two roots of (70) are given by >
28(1 4 2¢
R P 6(11% - 8)eun o Y
and
26(1 4+ 2¢
T a1 \B/(u% - 8)eun 1 P
If
Up > 14 4de + 41/ + €/2, (73)
it is not hard to verify that
Uy — 4€ — 1 —\/u2 — 8eu,, — 2u, +1>0, (74)

so both roots are positive. Hence they are two fixed points of the
iteration. Next, we show that ,,(,) is a stable fixed point while
Tn(v) 18 an unstable one.

Plugging the root 7,,(4) into (69), we have

d Bu :
L] —ern (1o (2 ).
d’yn ( ) _ ( ) ( Bun + ﬁ + Tn(a)

Tn=7n(a)
(75)
It is clear that the derivative is larger than 0. Verifying that
d
Ege(/yn)‘vn:%,(a) <1 (76)
is equivalent to showing that
U(un) = (2¢ + 1)(Bun)® = 26(Bun + B+ (@) (77
is larger than 0. Inserting (71) into (77),
4el(uy)
32 =l (up) + ((4e + Dup — D)/ =11 (un), (78)
where
I (up) = —(u2 — 8eu, — 2u, +1) < 0. (79)
Then
del(uy,)
T = \/_ll(un) (—\/—ll(un)+(4eun+un - 1)) .
(80)
Because

(dewn, +up — 1)% — (=11 (un)) = 16€%u2 + 8eu,, > 0, (81)
the term in (80)

—v/ =l (uy) + (deu, + u, — 1) > 0, (82)
and we have [(u,,) > 0. Therefore,
('Yn)|'yn='yn<a) <1, (83)

Tge
Tn
i.€., Yn(a) 18 @ stable fixed point. Similarly, it is not hard to show

that I(u,) < 0 (i.e., ﬁgg('yn) > 1) for v, = Yn(v)s 1-€0 Yn(n)
is an unstable fixed point.

3 An alternative form for the quadratic formula is used, which can be deduced
from the standard quadratic formula by Vieta’s formulas.
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We now analyze the convergence behavior. As 7, > 0, the
derivative (69) is an increasing function and it is positive. In the
above, it is already shown that

d
Ege(f}/ﬂ)|7n27n(a) <L (84)
Therefore, for v, € [0, Yy (a)ls
0< —ge(vn 1. 85
<9 (1) < (85)

Thus, with an initial %(10) with the range, vfl converges to the
stable fixed point 7, (q) [43].
Next we consider

Up < 14+4e+4/e? +¢€/2. (86)
For wu, € (1 +4e—4y/e2+¢/2,1+4de+4\/e®+¢€/2), it

can be verified that

u? — 8eu, — 2u, +1 <0, (87)
leading to two complex roots v, (q) and vy, (). If
Up < 144e — 44/ +¢/2, (88)
it can be shown that
ui — 8eu,, — 2u, +1 >0, (89)
and
u? — 8ety, — 2up + 1 < (u, —4e — 1) (90)
Thus
Up — 46— 1 < =43/ +¢/2 <0 (91)
and
Up — 4€ — 1 £/ u2 — Seu, —2u, +1<0,  (92)
leading to negative v, (4) and 7, (). In summary, if
Up < 1+4e+4y/2 +€¢/2, 93)

the two roots are either complex or negative. Hence, there is no
cross-point between y = g.(7y,) and y = 7, for v, > 0. As
/82
9e(0) = (2 +1)——5—5 >0,
0 =( )([33,/77,)2 + 68
y = ge(vn) is above y = ,,. Meanwhile g. (7! ) is an increasing
function. Hence, vfl goes to oo with the iterations.

(94)

When
U, =14+ 4e+4\/e? +¢€/2, (95)
there is single root
25(1 + 2¢)

= 96
Tn Uy — 1 — 4e ©6)

Plugging ~;, into (69), we have
(Yn)lyn=r;, = 1. )

Wge

Thus ~;; is neutral fixed point [43]. Depending on the initial

(0)

value 5, /, v}, may converge to the fixed point «y;, or diverge.
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APPENDIX D
DERIVATION OF UAMP-SBL FOR MMV

The belief b(3) can be represented as

b(B) o f5(B HM 10 5(B)
o 1/B[N®R S, B7). (98)
lm
Then according to B=<p >p(8), We have
B=ML/Y () = AP + o). (99)
m,l

According to the factor graph in Fig. 7, the belief b(~y,,) can be
updated as
b(7 ) o< My

()
= () e § — L2y + (0P + 7))

WM ()
l)

TRy,

(100)

Here, we still set 7 = 0 and the expectation of ,, leads to
2¢ +1
(1/L) Sy (32 4+ )

where ¢ = ¢/ L. By comparing (101) with (64), the update of ¢
can be expressed as

Tn =

(101)

, 1

1 . 1 .
51/log (N >, vn> — 52, logdn.  (102)

€ = —

APPENDIX E
DERIVATION OF UAMP-TSBL

We only derive the message passing for the graph shown in
) is computed by the BP

V), vm}
)} ie.,

Fig. 8. The message Mfil,z La® (xsll)
rule with the product of messages {Mf(l—l) 2 1>(
Sm

defined in UAMP and message {Mf(l—l) 20D (:cn
Sm

Mo @)

Mygon oo I My oo

N (@D, »D), (103)

which leads to Lines 1 to 6 of the UAMP TSBL algorithm.
Similarly, the message Mf(z+1) (z)(

én b to variable node xSR

My o0 (@)
_ <f£l+1)(x(l+1))>

) from factor node

is also updated by the BP rule

Mfiln+2)ﬂ§f+l) Il Mf§z+1)%g+1>
m

x N(@P1oP, o), (104)

6037

leading to Lines 22 to 27 of the UAMP-TSBL algorithm. We

compute the belief of variable x,(f ) by

b(ai?) o My o My o [T My o

o N(zP)20, 7D (105)
leading to Lines 19 to 20 of the UAMP-TSBL algorithm. With
the beliefs b(:c%l)) and b(acgf 1)) the message M o) (7n)
can be obtained as o

_ D (D)
Mfﬁz—wn (n) = exp {<f (a, ’yn)>b(m5f))b(m5fl))} .
(106)

Then, with the message My ., (7,) in (60), the belief
b(n) 0 M,y (1) My, o, (). The update of 4, is
then expressed as

L

. . 1o~ s
A = L2+ D/ P+ 70+ =5 3 (PP +70)
=2
012 L-1 20, L
o > O(EDP +70) - T-aZ > &P,
=1 =2

(107)
completing the derivation.
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