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Abstract— Symbol detection plays an important role in the
implementation of digital receivers. In this work, we propose
ViterbiNet, which is a data-driven symbol detector that does not
require channel state information (CSI). ViterbiNet is obtained
by integrating deep neural networks (DNNs) into the Viterbi algo-
rithm. We identify the specific parts of the Viterbi algorithm that
depend on the channel model, and design a DNN to implement
only those computations, leaving the rest of the algorithm struc-
ture intact. We then propose a meta-learning based approach to
train ViterbiNet online based on recent decisions, allowing the
receiver to track dynamic channel conditions without requiring
new training samples for every coherence block. Our numerical
evaluations demonstrate that the performance of ViterbiNet,
which is ignorant of the CSI, approaches that of the CSI-based
Viterbi algorithm, and is capable of tracking time-varying chan-
nels without needing instantaneous CSI or additional training
data. Moreover, unlike conventional Viterbi detection, ViterbiNet
is robust to CSI uncertainty, and it can be reliably implemented in
complex channel models with constrained computational burden.
More broadly, our results demonstrate the conceptual benefit
of designing communication systems that integrate DNNs into
established algorithms.

Index Terms— Symbol detection, machine learning (ML).

I. INTRODUCTION

AFUNDAMENTAL task of a digital receiver is to reli-
ably recover the transmitted symbols from the observed

channel output. This task is commonly referred to as symbol
detection. Conventional symbol detection algorithms, such as
those based on the maximum a-posteriori probability (MAP)
rule, require complete knowledge of the underlying channel
model and its parameters. Consequently, in some cases, con-
ventional methods cannot be applied, particularly when the
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channel model is highly complex, poorly understood, or does
not capture well the underlying physics of the system. Further-
more, when the channel models are known, many detection
algorithms rely on the instantaneous channel state information
(CSI), i.e., the instantaneous parameters of the channel model,
for detection. Therefore, conventional techniques require the
instantaneous CSI to be estimated. However, this process
entails overhead, which decreases the data transmission rate.
Moreover, inaccurate CSI estimation typically degrades detec-
tion performance.

One of the most common CSI-based symbol detection meth-
ods is the iterative scheme proposed by Viterbi in [1], known
as the Viterbi algorithm. The Viterbi algorithm is an efficient
symbol detector that is capable of achieving the minimal
probability of error in recovering the transmitted symbols for
channels obeying a Markovian input-output stochastic rela-
tionship, which is encountered in many practical channels [2].
Since the Viterbi algorithm requires the receiver to know the
exact statistical relationship relating the channel input and
output, the receiver must have full instantaneous CSI.

An alternative data-driven approach is based on machine
learning (ML). ML methods, and in particular, deep neural
networks (DNNs), have been the focus of extensive research
in recent years due to their empirical success in various
applications, including image processing and speech process-
ing [3]. There are several benefits in using ML schemes
over traditional model-based approaches: First, ML methods
are independent of the underlying stochastic model, and
thus can operate efficiently in scenarios where this model is
unknown or its parameters cannot be accurately estimated.
Second, when the underlying model is extremely complex, ML
algorithms have demonstrated the ability to extract and dis-
entangle meaningful semantic information from the observed
data [4], a task which is very difficult to carry out using
traditional model-based approaches. Finally, ML techniques
often lead to faster convergence compared to iterative model-
based approaches, even when the model is known [5], [6].

Recent years have witnessed growing interest in the appli-
cation of DNNs for receiver design. Due to the large
amount of recent works on this topic, we only discuss a
few representative papers; detailed surveys can be found
in [7]–[10]: The work [11] used deep learning for decoding
linear codes. Decoding of structured codes using DNNs was
considered in [12], while symbol recovery in multiple-input
multiple-output (MIMO) systems was treated in [13]. The
work [14] used variational autoencoders for equalizing linear
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multipath channels. Sequence detection using bi-directional
recurrent neural networks (RNNs) was proposed in [15],
while [16] considered a new ML-based channel decoder by
combining convolutional neural networks with belief propa-
gation. RNN structures for decoding sequential codes were
studied in [17]. The work [18] proposed a neural network
architecture that enables parallel implementation of the Viterbi
algorithm with binary signals in hardware. DNN-based MIMO
receivers for mitigating the effect of low-resolution quantiza-
tion were studied in [19]. These approaches were shown to
yield good performance when sufficient training is available.
However, previous applications of DNNs typically treat the
network as a black box, hoping to achieve the desired perfor-
mance by using sufficient training and relying on methods that
were developed to treat other tasks such as image processing.
This gives rise to the question of whether additional gains,
either in performance, complexity, or training size, can be
achieved by combining model-based methods, such as the
Viterbi algorithm, with ML-based techniques.

In this work, we design and study ML-based symbol detec-
tion for finite-memory causal channels based on the Viterbi
algorithm. Our design is inspired by deep unfolding, which is
a common method for obtaining ML architectures from model-
based iterative algorithms [5], [20], [21]. Unfolding was shown
to yield efficient and reliable DNNs for applications such as
sparse recovery [5], recovery from one-bit measurements [6],
matrix factorization [22], image deblurring [23], and robust
principal component analysis [24]. However, there is a fun-
damental difference between our approach and conventional
unfolding: The main rationale of unfolding is to convert each
iteration of the algorithm into a layer, namely, to design a
DNN in light of a model-based algorithm, or alternatively,
to integrate the algorithm into the DNN. Our approach to
symbol detection implements the Viterbi channel-model-based
algorithm, while only removing its channel dependence by
replacing the CSI-based computations with dedicated DNNs,
i.e., we integrate ML into the Viterbi algorithm.

In particular, we propose ViterbiNet, which is an ML-based
symbol detector integrating deep learning into the Viterbi
algorithm. The resulting system approximates the mapping
carried out by the channel-model-based Viterbi method in a
data-driven fashion without requiring CSI, namely, without
knowing the exact channel input-output statistical relationship.
ViterbiNet combines established properties of DNN-based
sequence classifiers to implement the specific computations
in the Viterbi algorithm that are CSI-dependent. Unlike direct
application of ML algorithms, the resulting detector is capable
of exploiting the underlying Markovian structure of finite-
memory causal channels in the same manner as the Viterbi
algorithm. ViterbiNet consists of a simple network architecture
which can be trained with a relatively small number of training
samples.

Next, we propose a method for adapting ViterbiNet to
dynamic channel conditions online without requiring new
training data every time the statistical model of the chan-
nel changes. Our approach is based on meta-learning [25],
namely, automatic learning and adaptation of DNNs, typically
by acquiring training from related tasks. The concept of

meta-learning was recently used in the context of ML for
communications in the work [26], which used pilots from
neighboring devices as meta-training in an Interent of Things
(IOT) network. Our proposed approach utilizes channel coding
to generate meta-training from each decoded block. In partic-
ular, we use the fact that forward error correction (FEC) codes
can compensate for decision errors as a method for generating
accurate training from the decoded block. This approach
exploits both the inherent structure of coded communication
signals, as well as the ability of ViterbiNet to train with the
relatively small number of samples obtained from decoding a
single block.

Our numerical evaluations demonstrate that, when the train-
ing data obeys the same statistical model as the test data,
ViterbiNet achieves roughly the same performance as the
CSI-based Viterbi algorithm. Furthermore, when ViterbiNet is
trained for a variety of different channels, it notably outper-
forms the Viterbi algorithm operating with the same level of
CSI uncertainty. It is also illustrated that ViterbiNet performs
well in complex channel models, where the Viterbi algorithm
is extremely difficult to implement even when CSI is available.
In the presence of block-fading channels, we show that by
using our proposed online training scheme, ViterbiNet is capa-
ble of tracking the varying channel conditions and approaches
the performance achievable with the Viterbi detector, which
requires accurate instantaneous CSI for each block. Our results
demonstrate that reliable, efficient, and robust ML-based com-
munication systems can be realized by integrating ML into
existing CSI-based techniques and accounting for the inherent
structure of digital communication signals.

The rest of this paper is organized as follows: In Section II
we present the system model and review the Viterbi algorithm.
Section III proposes ViterbiNet: A receiver architecture that
implements Viterbi detection using DNNs. Section IV presents
a method for training ViterbiNet online, allowing it to track
block-fading channels. Section V details numerical training
and performance results of ViterbiNet, and Section VI provides
concluding remarks.

Throughout the paper, we use upper case letters for random
variables (RVs), e.g. X . Boldface lower-case letters denote
vectors, e.g., x is a deterministic vector, and X is a random
vector, and the ith element of x is written as (x)i. The
probability density function (PDF) of an RV X evaluated
at x is denoted pX(x), Z is the set of integers, N is the
set of positive integers, R is the set of real numbers, and
(·)T is the transpose operator. All logarithms are taken to
base 2. Finally, for any sequence, possibly multivariate, y[i],
i ∈ Z , and integers b1 < b2, yb2

b1
is the column vector[

yT [b1], . . . , yT [b2]
]T

and yb2 ≡ yb2
1 .

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider the problem of recovering a block of t symbols
transmitted over a finite-memory stationary causal channel.
Let S[i] ∈ S be the symbol transmitted at time index i ∈
{1, 2, . . . , t} � T , where each symbol is uniformly distributed
over a set of m constellation points, thus |S| = m. We use
Y [i] ∈ Y to denote the channel output at time index i.
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Fig. 1. System model.

Since the channel is causal and has finite memory, Y [i] is
given by some stochastic mapping of Si

i−l+1, where l denotes
the memory of the channel, assumed to be smaller than the
blocklength, i.e., l < t. Consequently, the conditional PDF of
the channel output given the channel input satisfies

p
Y

k2
k1

|St

(
yk2

k1
|st
)

=
k2∏

i=k1

pY [i]|Si
i−l+1

(
y[i]|si

i−l+1

)
, (1)

for all k1, k2 ∈ T such that k1 ≤ k2. The fact that the
channel is stationary implies that for each y ∈ Y , s ∈ Sl,
the conditional PDF pY [i]|Si

i−l+1
(y|s) does not depend on the

index i. An illustration of the system is depicted in Fig. 1.
Our goal is to design a DNN architecture for recovering

St from the channel output Y t. In particular, in our model
the receiver assumes that the channel is stationary, causal, and
has finite memory l, namely, that the input-output statistical
relationship is of the form (1). The receiver also knows the
constellation S. We do not assume that the receiver knows
the conditional PDF pY [i]|Si

i−l+1
(y|s), i.e., the receiver does

not have this CSI. The optimal detector for finite-memory
channels, based on which we design our network, is the Viterbi
algorithm [1]. Therefore, as a preliminary step to designing
the DNN, we review Viterbi detection in the following
subsection.

B. The Viterbi Detection Algorithm

The following description of the Viterbi algorithm is based
on [27, Ch. 3.4]. Since the constellation points are equiprob-
able, the optimal decision rule in the sense of minimal
probability of error is the maximum likelihood decision rule,
namely, for a given channel output yt, the estimated output is
given by

ŝt (yt
)

� argmax
st∈St

pY t|St

(
yt|st

)
= argmin

st∈St

− log pY t|St

(
yt|st

)
. (2)

By defining

ci (s) � − log pY [i]|Si
i−l+1

(y[i]|s) , s ∈ Sl, (3)

it follows from (1) that the log-likelihood function in (2) can
be written as

log pY t|St

(
yt|st

)
=

t∑
i=1

ci

(
si

i−l+1

)
, (4)

and the optimization problem (2) becomes

ŝt (yt
)

= arg min
st∈St

t∑
i=1

ci

(
si

i−l+1

)
. (5)

Algorithm 1 The Viterbi Algorithm

1: Input: Block of channel outputs yt, where t > l.
2: Initialization: Set k = 1, and fix the initial path cost

c̃0 (s̃) = 0, for each state s̃ ∈ Sl.
3: For each state s̃ ∈ Sl, compute the path cost via c̃k (s̃) =

min
u∈Sl:ul

2=s̃l−1
(c̃k−1 (u) + ck (s̃)).

4: If k ≥ l, set (ŝ)k−l+1 :=(s̃o
k)1, where s̃o

k =arg min
s̃∈Sl

c̃k (s̃).

5: Set k := k + 1. If k ≤ t go to Step 3.
6: Output: decoded output ŝt, where ŝt

t−l+1 := s̃o
t .

The optimization problem (5) can be solved recursively
using dynamic programming, by treating the possible combi-
nations of transmitted symbols at each time instance as states
and iteratively updating a path cost value for each state. The
resulting recursive solution, which is known as the Viterbi
algorithm, is given below as Algortihm 1.

In addition to its ability to achieve the minimal error proba-
bility [2], the Viterbi algorithm has several major advantages:
A1 The algorithm solves (2) at a computational complexity

that is linear in the blocklength t. For comparison,
the computational complexity of solving (2) directly
grows exponentially with t.

A2 The algorithm produces estimates sequentially on run-
time. In particular, while in (2) the estimated output ŝt is
computed using the entire received block yt, Algorithm 1
computes ŝ[i] once y[i + l − 1] is received.

In order to implement Algorithm 1, one must be able to
compute ci (s) of (3) for all i ∈ T and for each s ∈ Sl.
Consequently, the conditional PDF of the channel, which we
refer to as full CSI, must be explicitly known. As discussed
in the introduction, obtaining full CSI may be extremely
difficult in rapidly changing channels and may also require
a large training overhead. In the following section we propose
ViterbiNet, an ML-based symbol decoder based on the Viterbi
algorithm, that does not require CSI.

III. ViterbiNet

A. Integrating ML into the Viterbi Algorithm

In order to integrate ML into the Viterbi Algorithm, we note
that CSI is required in Algorithm 1 only in Step 3 to compute
the log-likelihood function ci(s). Once ci(s) is computed for
each s ∈ Sl, the Viterbi algorithm only requires knowledge
of the memory length l of the channel. This requirement
is much easier to satisfy compared to knowledge of the
exact channel input-output statistical relationship, i.e., full
CSI. In fact, a common practice when using the model-based
Viterbi algorithm is to limit the channel memory by filtering
the channel output prior to symbol detection [28] in order to
reduce computational complexity. The approach in [28], which
assumes that the channel is modeled as a linear time-invariant
(LTI) filter, is an example of how the channel memory used
by the algorithm can be fixed in advance, regardless of the
true memory length of the underlying channels. Furthermore,
estimating the channel memory in a data-driven fashion with-
out a-priori knowledge of the underlying model is a much
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Fig. 2. Proposed DNN-based Viterbi decoder.

simpler task compared to symbol detection, and can be reliably
implemented using standard correlation peak based estimators,
see, e.g., [29]. We henceforth assume that the receiver has
either accurate knowledge or a reliable upper bound on l, and
leave the extension of the decoder to account for unknown
memory length to future exploration.

Since the channel is stationary, it holds by (3) that if
y[i] = y[k] then ci(s) = ck(s), for each s ∈ Sl, and
i, k ∈ T . Consequently, the log-likelihood function ci(s)
depends only on the values of y[i] and of s, and not on
the time index i. Therefore, in our proposed structure we
replace the explicit computation of the log-likelihood (3) with
an ML-based system that learns to evaluate the cost function
from the training data. In this case, the input of the system is
y[i] and the output is an estimate of ci(s), denoted ĉi(s), for
each s ∈ Sl. The rest of the Viterbi algorithm remains intact,
namely, the detector implements Algorithm 1 while using ML
techniques to compute the log-likelihood function ci(s). The
proposed architecture is illustrated in Fig. 2.

A major challenge in implementing a network capable of
computing ci(s) from y[i] stems from the fact that, by (3),
ci(s) represents the log-likelihood of Y [i] = y[i] given
Si

i−l+1 = s. However, DNNs trained to minimize the cross
entropy loss typically output the conditional distribution of
Si

i−l+1 = s given Y [i] = y[i], i.e., pSi
i−l+1|Y [i] (s|y[i]).

Specifically, classification DNNs with input Y [i] = y[i],
which typically takes values in a discrete set, or alternatively,
is discretized by binning a continuous quantity as in [30],
[31], output the distribution of the label Si

i−l+1 conditioned
on that input Y [i] = y[i], and not the distribution of the input
conditioned on all possible values of the label Si

i−l+1. For this
reason, the previous work [15] used a DNN to approximate
the MAP detector by considering pS[i]|Y i

i−l+1

(
s|yi

i−l+1

)
.

It is emphasized that the quantity which is needed for the
Viterbi algorithm is the conditional PDF pY [i]|Si

i−l+1
(y[i]|s),

and not the conditional distribution pSi
i−l+1|Y [i] (s|y[i]). Note,

for example, that while
∑

s∈Sl pSi
i−l+1|Y [i] (s|y[i]) = 1, for

the desired conditional PDF
∑

s∈Sl pY [i]|Si
i−l+1

(y[i]|s) �= 1
in general. Therefore, outputs generated using conventional
DNNs with a softmax output layer are not applicable. The

Fig. 3. ML-based log-likelihood computation.

fact that Algorithm 1 specifically uses the conditional PDF
pY [i]|Si

i−l+1
(y[i]|s) instead of pSi

i−l+1|Y [i] (s|y[i]) allows it
to exploit the Markovian nature of the channel, induced by
the finite memory in (1), resulting in the advantages A1-A2
discussed in Subsection II-B.

In order to tackle this difficulty, we recall that by Bayes’
theorem, as the channel inputs are equiprobable, the desired
conditional PDF pY [i]|Si

i−l+1
(y|s) can be written as

pY [i]|Si
i−l+1

(y|s) =
pSi

i−l+1|Y [i] (s|y) · pY [i](y)

m−l
. (6)

Therefore, given estimates of pY [i](y[i]) and of
pSi

i−l+1|Y [i] (s|y[i]) for each s ∈ Sl, the log-likelihood
function ci(s) can be recovered using (6) and (3).

A parametric estimate of pSi
i−l+1|Y [i] (s|y[i]), denoted

p̂θ (s|y[i]), can be reliably obtained from training data using
standard classification DNNs with a softmax output layer.
The marginal PDF of Y [i] may be estimated from the
training data using conventional kernel density estimation
methods [32]. Furthermore, the fact that Y [i] is a stochas-
tic mapping of Si

i−l+1 implies that its distribution can be
approximated as a mixture model of ml kernel functions [33].
Consequently, a parametric estimate of pY [i](y[i]), denoted
p̂ϕ (y[i]), can be obtained from the training data using mixture
density networks [35], expectation minimization (EM)-based
algorithms [33, Ch. 2], or any other finite mixture model fitting
method. The resulting ML-based log-likelihood computation is
illustrated in Fig. 3.

The ML-based log-likelihood computation depicted in Fig. 3
is applicable for both real-valued channels, where Y and S
are subsets of R, as well as complex channels, in which the
elements of Y and S take complex values. In particular, for
complex-valued channels, the input to the classification DNN
should be a real vector consisting of the real and imaginary
parts of y[i], as DNNs typically operate on real-valued quan-
tities. Furthermore, the finite mixture model PDF estimator
should use kernel functions for complex distributions, e.g.,
complex Gaussian mixture. Except for these modifications,
the architecture of ViterbiNet is invariant as to whether the
channel is real or complex-valued.
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B. Discussion

The architecture of ViterbiNet is based on the Viterbi
algorithm, which achieves the minimal probability of error
for communications over finite-memory causal channels. Since
ViterbiNet is data-driven, it learns the log-likelihood function
from training data without requiring full CSI. When properly
trained, the proposed DNN is therefore expected to approach
the performance achievable with the conventional CSI-based
Viterbi algorithm, as numerically demonstrated in Section V.
Unlike direct applications of classification DNNs, which pro-
duce a parametric estimate of the conditional distribution of
the transmitted symbols given the channel output, ViterbiNet
is designed to estimate the conditional distribution of the
channel output given the transmitted symbols. This conditional
distribution, which encapsulates the Markovian structure of
finite-memory channels, is then used to obtain the desired
log-likelihoods, as discussed in the previous subsection. The
estimation of these log-likelihoods, which are not obtained by
simply applying a classification DNN to the channel output,
is then exploited to recover the transmitted symbols using
the same operations carried out by the conventional Viterbi
algorithm.

ViterbiNet replaces the CSI-based parts of the Viterbi algo-
rithm with an ML-based scheme. Since this aspect of the
channel model is relatively straightforward to learn, ViterbiNet
can utilize a simple and standard DNN architecture. The
simple DNN structure implies that the network can be trained
quickly with a relatively small number of training samples,
as also observed in the numerical study in Section V. This
indicates the potential of the proposed architecture to adapt on
runtime to channel variations with minimal overhead, possibly
using pilot sequences periodically embedded in the transmitted
frame for online training.

The approach used in designing ViterbiNet, namely, main-
taining the detection scheme while replacing its channel-
model-based computations with dedicated ML methods, can
be utilized for implementing additional algorithms in commu-
nications and signal processing in a data-driven manner. For
instance, in [36], we showed how this approach can allow
a MIMO receiver to learn to implement the soft iterative
interference cancellation scheme of [37] from a small training
set. In particular, the ML-based computation of the conditional
probability used in ViterbiNet to carry out Viterbi detection
can be utilized to realize other trellis or factor graph based
detection schemes, such as the BCJR algorithm [38], by prop-
erly modifying the processing of these estimates. We leave
the study of these alternative data-driven schemes for future
investigation, and initial results can be found in [39].

The fact that ViterbiNet is based on the Viterbi algorithm
implies that it also suffers from some of its drawbacks. For
example, when the constellation size m and the channel
memory l grow large, the Viterbi algorithm becomes computa-
tionally complex due to the need to compute the log-likelihood
for each of the possible ml different values of s. Consequently,
the complexity of ViterbiNet is expected to grow exponentially
as m and l grow, since the label space of the DNN grows
exponentially. It is noted that greedy schemes for reducing the

complexity of the Viterbi algorithm, such as beam search [40]
and reduced-state equalization [41], were shown to result in
minimal performance degradation, and we thus expect that
these methods can inspire similar modifications to ViterbiNet,
facilitating its application with large m and l. We leave the
research into reducing the complexity of ViterbiNet through
such methods to future investigation.

IV. EXTENSION TO BLOCK-FADING CHANNELS

A major challenge associated with using ML algorithms in
communications stems from the fact that, in order to exploit
the ability of DNNs to learn an underlying model, the network
should operate under the same (or a closely resembling)
statistical relationship for which it was trained. Many com-
munication channels, and particularly wireless channels, are
dynamic by nature, and are commonly modeled as block-
fading [42]. In such channels, each transmitted block may
undergo a different statistical transformation. In Section V,
we show that ViterbiNet is capable of achieving relatively good
performance when trained using samples taken from a variety
of channels rather than from the specific channel for which it
is tested. Consequently, a possible approach to use ViterbiNet
in block-fading channels is to train the system using samples
acquired from a large variety of channels. However, such an
approach requires a large amount of training data in order to
cover a multitude of different channel conditions, and is also
expected to result in degraded performance, especially when
tested under a channel model that deviates significantly from
the channels used during training. This motivates us to extend
ViterbiNet by allowing the receiver to track and adjust to
time-varying channel conditions in real-time, by exploiting the
inherent structure of digital communication signals and, partic-
ularly, of coded communications. Broadly speaking, we utilize
the fact that in coded systems, the receiver is capable of
identifying and correcting symbol detection errors. The iden-
tification and correction of these errors can be used to retrain
ViterbiNet online using meta-learning principles [25], allowing
it to track channel variations. To present this approach, we first
extend the channel model of Subsection IV-A to account
for coded communications and block-fading channels. Then,
we detail in Subsection IV-B how ViterbiNet can exploit the
use of channel coding for online training.

A. Coded Communications over Block-Fading Channels

In coded communications, each block of t transmitted
channel symbols represents a channel codeword conveying b
bits. During the jth block, j ∈ N , a vector of bits, denoted
Bb

(j) ∈ {0, 1}b, is encoded and modulated into the symbol
vector St

(j) which is transmitted over the channel. The purpose
of such channel coding is to facilitate the recovery of the
information bits at the receiver. A channel code can consist of
both FEC codes, such as Reed-Solomon (RS) codes, as well
as error detection codes, such as checksums and cyclic redun-
dancy checks. The receiver uses the recovered symbols Ŝ

t

(j)

to decode the information bits B̂
b

(j) ∈ {0, 1}b. The presence
of FEC codes implies that even when some of the symbols are
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Fig. 4. Coded communications over block-fading channels.

not correctly recovered, i.e., St
(j) �= Ŝ

t

(j), the information bits
can still be perfectly decoded. Error detection codes allow the
receiver to detect whether the information bits were correctly
recovered and estimate the number of bit errors, i.e., the
Hamming distance between Bb

(j) and B̂
b

(j), denoted ε(j).
In block-fading channels, each block of transmitted channel

symbols undergoes a different channel. In particular, for the
jth block, j ∈ N , the conditional distribution of the channel
output Y t

(j) given the input St
(j) represents a finite-memory

causal stationary channel as described in Subsection II-A.
However, this conditional distribution can change between
different blocks, namely, it depends on the block index j.
An illustration of this channel model is depicted in Fig. 4.
Block-fading channels model dynamic environments in which
the transmitted bursts are shorter than the coherence duration
of the channel, faithfully representing many scenarios of
interest in wireless communications [42].

Since each block undergoes a different channel input-output
relationship, the receiver must be able to track and adapt
to the varying channel conditions in order to optimize its
performance. In the next subsection, we show how the fact
that ViterbiNet requires relatively small training sets can be
combined with the presence of coded communications such
that the receiver can track channel variations online.

B. ViterbiNet with Online Training

We next discuss how coded communications can allow
ViterbiNet to train and track channel variations online.
Our proposed approach is inspired by concepts from meta-
learning [25], which is a field of research focusing on self-
teaching ML algorithms, as well as from decision-directed
adaptive filter theory, which considers the blind adaptation
of adjustable filters based on some decision mechanism,
see, e.g., [43].

ViterbiNet uses the channel outputs over a single block,
denoted Y t

(j), where j ∈ N represents the block index, to gen-

erate an estimate of the transmitted symbols, denoted Ŝ
t

(j).
In the presence of FEC codes, when the number of detection
errors is not larger than the minimal distance of the code,
the encoded bits can still be perfectly recovered [44, Ch. 8].
It therefore follows that when the symbol error rate (SER) of
ViterbiNet is small enough such that the FEC code is able to
compensate for these errors, the transmitted message can be
recovered. The recovered message may also be re-encoded
to generate new training samples, denoted S̃

t

(j), referred
to henceforth as meta-training. If indeed the encoded bits
were successfully recovered, then S̃

t

(j) represents the true
channel input from which Y t

(j) was obtained. Consequently,

the pair S̃
t

(j) and Y t
(j) can be used to re-train ViterbiNet.

The simple DNN structure used in ViterbiNet implies that
it can be efficiently and quickly retrained with a relatively

Algorithm 2 Online Training of ViterbiNet

1: Input: Block of channel outputs yt; ViterbiNet DNN
weights θ and mixture model parameters ϕ; Bit error
threshold ε̄.

2: Apply ViterbiNet with parameters θ, ϕ to recover the
symbols ŝt from yt.

3: Decode bits vector b̂
b

and number of error ε from ŝt.
4: if ε < ε̄ then
5: Encode and modulate b̂

b
into s̃t.

6: Re-train DNN weights θ using meta-training
(
s̃t, yt

)
.

7: Update mixture model ϕ using yt.
8: end if
9: Output: Decoded bits b̂

b
; ViterbiNet DNN weights θ and

mixture model parameters ϕ.

small number of training samples, such as the size of a single
transmission block in a block-fading channel. An illustration of
the proposed online training mechanism is depicted in Fig. 5.

A natural drawback of decision-directed approaches is their
sensitivity to decision errors. For example, if the FEC decoder
fails to successfully recover the encoded bits, then the meta-
training samples S̃

t

(j) do not accurately represent the channel
input resulting in Y t

(j). In such cases, the inaccurate training
sequence may gradually deteriorate the recovery accuracy
of the re-trained ViterbiNet, making the proposed approach
unreliable, particularly in low signal-to-noise ratios (SNRs)
where decoding errors occur frequently. Nonetheless, when
error detection codes are present in addition to FEC codes,
the effect of decision errors can be mitigated. In particular,
when the receiver has a reliable estimate of ε(j), namely, the
number of bit errors in decoding the jth block, it can decide to
generate meta-training and re-train the symbol detector only
when the number of errors is smaller than some threshold ε̄.
Using this approach, only accurate meta-training is used, and
the effect of decision errors can be mitigated and controlled.
The proposed online training mechanism is summarized below
as Algorithm 2.

Setting the value of ε̄ should be based on the nature of
the expected variations between blocks as well as on the FEC
scheme. When operating with gradual variations, one can set
ε̄ to represent zero errors, guaranteeing that the meta-training
symbols used for re-training ViterbiNet are accurate. How-
ever, this setting may limit the ability of ViterbiNet to track
moderate channel variations. Using larger values of ε̄ should
also account for the FEC method used, as for some codes,
encoding a bit stream with a small number of errors may result
in a distant codeword compared to the one transmitted, thus
yielding inaccurate meta-training labels. In Subsection V-B we
numerically evaluate the effect of different values of ε̄ on the
ability of ViterbiNet to reliably track block-fading channels.

The learning rate used in re-training the DNN in Step 6 of
Algorithm 2 should be set based on the expected magnitude of
the channel variations. Specifically, the value of the learning
rate balances the contributions of the initial DNN weights,
which were tuned based on a past training set corresponding
to previous channel realizations, and that of the typically much
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Fig. 5. Online training model.

smaller meta-training set, representing the current channel.
Using larger learning rates implies that the network can
adapt to nontrivial channel variations, but also increases the
sensitivity of the algorithm to decision errors, and should thus
be used with smaller values of the threshold ε̄.

The method for updating the mixture model parameters ϕ
in Step 7 of Algorithm 2 depends on which of the possible
finite mixture model estimators discussed in Subsection III-A
is used. For example, when using EM-based model fitting,
the previous model parameters ϕ can be used as the initial
guess used for fitting the PDF based on the current channel
outputs.

Finally, we note that our meta-learning based online train-
ing scheme exploits only the structure induced by channel
codes. Modern communication protocols dictate a multitude
of additional structures that can be exploited to generate
meta-training. For example, many communication protocols
use a-priori known preamble sequences to facilitate synchro-
nization between the communicating nodes [44, Ch. 14.2].
The receiver can thus use the a-priori knowledge of the
preamble to generate meta-training from the corresponding
channel outputs, which can be used for re-training ViterbiNet
online. Additional structures induced by protocols that can be
exploited to re-train ViterbiNet in a similar manner include
specific header formats, periodic pilots, and network man-
agement frames. Consequently, while the proposed approach
focuses on using channel codes to generate meta-training,
it can be extended to utilize various other inherent structures
of digital communication signals.

V. NUMERICAL STUDY

In this section we numerically evaluate the performance
of ViterbiNet. In particular, we first consider time-invariant
channels in Subsection V-A. For such setups, we numerically
compare the performance of ViterbiNet to the conventional
model-based Viterbi algorithm as well as to previously pro-
posed deep symbol detectors, and evaluate the resiliency of
ViterbiNet to inaccurate training. Then, we consider block-
fading channels, and evaluate the performance of ViterbiNet
with online training in Subsection V-B. In the following we
assume that the channel memory l is a-priori known. It is
emphasized that for all the simulated setups we were able
to accurately detect the memory length using a standard

correlation peak based estimator,1 see, e.g., [29], hence this
assumption is not essential. Throughout this numerical study
we implement the fully connected network in Fig. 3 using
three layers: a 1 × 100 layer followed by a 100 × 50 layer
and a 50 × 16(= |m|l) layer, using intermediate sigmoid and
ReLU activation functions, respectively. The mixture model
estimator approximates the distribution as a Gaussian mixture
using EM-based fitting [33, Ch. 2]. The network is trained
using 5000 training samples to minimize the cross-entropy loss
via the Adam optimizer [45] with learning rate 0.01, using up
to 100 epochs with mini-batch size of 27 observations. We
note that the number of training samples is of the same order
and even smaller compared to typical preamble sequences
in wireless communications.2 Due to the small number of
training samples and the simple architecture of the DNN,
only a few minutes are required to train the network on a
standard CPU.

A. Time-Invariant Channels

We first consider two finite-memory causal scalar channels:
An intersymbol interference (ISI) channel with additive white
Gaussian noise (AWGN), and a Poisson channel. In both
channels we set the memory length to l = 4. For the ISI
channel with AWGN, we let W [i] be a zero-mean unit variance
AWGN independent of S[i], and let h(γ) ∈ Rl be the channel
vector representing an exponentially decaying profile given by
(h)τ � e−γ(τ−1) for γ > 0. The input-output relationship is
given by

Y [i] =
√

ρ ·
l∑

τ=1

(h(γ))τ S[i − τ + 1] + W [i], (7)

where ρ > 0 represents the SNR. Note that even though the
effect of the ISI becomes less significant as γ grows, the
channel (7) has memory length of l = 4 for all values of γ
considered in this study. The channel input is randomized from
a binary phase shift keying constellation, i.e., S = {−1, 1}.
For the Poisson channel, the channel input represents on-off

1We note that correlation based channel length estimators assume that the
transmitter and the receiver are synchronized in time.

2For example, preamble sequences in fourth-generation cellular LTE sys-
tems consist of up to 10 subframes of 2.4 · 104 samples, each embedding
839 symbols [34, Ch. 17].
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keying, namely, S = {0, 1}, and the channel output Y [i] is
generated from the input via

Y [i]|St ∼ P

(
√

ρ ·
l∑

τ=1

(h(γ))τ S[i − τ + 1] + 1

)
, (8)

where P(λ) is the Poisson distribution with parameter λ > 0.
For each channel, we numerically compute the SER of

ViterbiNet for different values of the SNR parameter ρ. In the
following study, the DNN is trained anew for each value
of ρ. For each SNR ρ, the SER values are averaged over 20
different channel vectors h(γ), obtained by letting γ vary in
the range [0.1, 2]. For comparison, we numerically compute
theSER of the Viterbi algorithm, as well as that of the sliding
bidirectional RNN (SBRNN) deep symbol decoder proposed
in [15]. In order to study the resiliency of ViterbiNet to
inaccurate training, we also compute the performance when
the receiver only has access to a noisy estimate of h(γ), and
specifically, to a copy of h(γ) whose entries are corrupted by
i.i.d. zero-mean Gaussian noise with variance σ2

e . In particular,
we use σ2

e = 0.1 for the Gaussian channel (7), and σ2
e = 0.08

for the Poisson channel (8). We consider two cases: Perfect
CSI, in which the model-based Viterbi detector has accurate
knowledge of h(γ), while ViterbiNet is trained using labeled
samples generated with the same h(γ) used for generating the
test data; and CSI uncertainty, where the Viterbi algorithm
implements Algorithm 1 with the log-likelihoods computed
using the noisy version of h(γ), while the labeled data used
for training ViterbiNet is generated with the noisy version of
h(γ) instead of the true one. In particular, for CSI uncertainty,
the 5000 samples used for training ViterbiNet are divided into
10 subsets, each generated from a channel with a different
realization of the noise in h(γ). In all cases, the information
symbols are uniformly randomized in an i.i.d. fashion from S,
and the test samples are generated from their corresponding
channel, i.e., (7) and (8) for the Gaussian and Poisson chan-
nels, respectively, with the true channel vector h(γ).

The numerically computed SER values, averaged over
50000 Monte Carlo simulations, versus ρ ∈ [−6, 10] dB for
the ISI channel with AWGN are depicted in Fig. 6, while
the corresponding performance versus ρ ∈ [10, 34] dB for the
Poisson channel are depicted in Fig. 7. Observing Figs. 6-7,
we note that the performance of ViterbiNet approaches that
of the conventional CSI-based Viterbi algorithm. In particular,
for the AWGN case, in which the channel output obeys a
Gaussian mixture distribution, the performance of ViterbiNet
coincides with that of the Viterbi algorithm, while for the
Poisson channel a very small gap is observed at high SNRs
due to the model mismatch induced by approximating the
distribution of Y [i] as a Gaussian mixture. We expect the
performance of ViterbiNet to improve in that scenario when
using a Poisson kernel density estimator for p̂ϕ (y[i]), however,
this requires some basic level of knowledge of the input-output
relationship. It is also observed in Figs. 6-7 that the SBRNN
receiver, which was shown in [15] to approach the performance
of the CSI-based Viterbi algorithm when sufficient training
is provided, is outperformed by ViterbiNet here due to the
small amount of training data provided. For example, for the

Fig. 6. SER versus SNR, ISI channel with AWGN.

Fig. 7. SER versus SNR, Poisson channel.

ISI channel with AWGN, both the Viterbi detector as well as
ViterbiNet achieve an SER of 4.7·10−3 for SNR of 8 dB, while
the SBRNN detector achieves an SER of 8.5·10−3 for the same
SNR value. For the Poisson channel at an SNR of 28 dB,
the Viterbi algorithm achieves an SER of 5.1 · 10−3, while
ViterbiNet and the SBRNN detector achieve SER values of
6.6·10−3 and 8.3·10−3, respectively. These results demonstrate
that ViterbiNet, which uses simple DNN structures embedded
into the Viterbi algorithm, requires significantly less training
compared to previously proposed ML-based receivers.

In the presence of CSI uncertainty, it is observed in Figs. 6-7
that ViterbiNet significantly outperforms the Viterbi algorithm.
In particular, when ViterbiNet is trained with a variety of
different channel conditions, it is still capable of achieving
relatively good SER performance under each of the channel
conditions for which it is trained, while the performance of
the conventional Viterbi algorithm is significantly degraded in
the presence of imperfect CSI. While the SBRNN receiver is
shown to be more resilient to inaccurate CSI compared to the
Viterbi algorithm, as was also observed in [15], it is outper-
formed by ViterbiNet with the same level of uncertainty, and
the performance gap is more notable in the AWGN channel.
The reduced gain of ViterbiNet over the SBRNN receiver for
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Fig. 8. High-SNR performance for different training sizes, ISI channel with
AWGN.

the Poisson channel stems from the fact that ViterbiNet here
uses a Gaussian mixture kernel density estimator for the PDF
of Y [i], which obeys a Poisson mixture distribution for the
Poisson channel (8).

The simulation results depicted in Figs. 6-7 focus on SNRs
for which the SER values are of the orders of 10−2 and 10−3.
While it is observed in Figs. 6-7 that ViterbiNet approaches
the performance of the Viterbi algorithm with perfect CSI, it is
also noted that there is a small SER gap between these symbol
detector in higher SNRs. This gap indicates that training is
more difficult in higher SNRs, for which there is a smaller
diversity in the training samples compared to lower SNR
values, and thus larger training sets are required to improve
performance. To demonstrate this, we depict in Fig. 8 the SER
values achieved by ViterbiNet when trained using training sets
of sizes {2, 5, 15, 25} · 103 for the ISI channel with AWGN
with SNRs of 12−16 dB, i.e., higher SNRs than those depicted
in Fig. 6. The numerically evaluated performance, averaged
here over 106 Monte Carlo simulations to faithfully capture
SER values in the order of 10−5, is compared to the model-
based Viterbi algorithm with perfect CSI. Observing Fig. 8.
we note that in high SNRs, ViterbiNet requires larger training
sets in order to approach the performance of the Viterbi
algorithm, when trained using samples from the same channel
under which it is tested, i.e., perfect CSI. However, it is also
noted that, except for very small training sets, ViterbiNet
with CSI uncertainty outperforms ViterbiNet with perfect CSI,
and that its performance is within a small gap from that
of the Viterbi detector. These results indicate that, in high
SNRs, the additional diversity induced when training under
CSI uncertainty is in fact beneficial, and allows ViterbiNet
to achieve smaller SER values compared to training using
samples from the same channel realization.

The main benefit of ViterbiNet is its ability to accurately
implement the Viterbi algorithm in causal finite-memory chan-
nels while requiring only knowledge of the memory length,
i.e., no CSI is required. The simulation study presented in
Figs. 6-7 demonstrates an additional gain of ViterbiNet over
the Viterbi algorithm, which is its improved resiliency to

Fig. 9. SER versus SNR, ISI channel with alpha-stable noise.

inaccurate CSI. Another benefit of ViterbiNet is its ability to
reliably operate in setups where, even when full instantaneous
CSI is available, the Viterbi algorithm is extremely compli-
cated to implement. To demonstrate this benefit, we again
consider the ISI channel in (7) with an exponential decay
parameter γ = 0.2, however, here we set the distribution of
the additive noise signal W [i] to an alpha-stable distribution
[46, Ch. 1]. Alpha-stable distributions, which are obtained as
a sum of heavy tailed independent RVs via the generalized
central limit theorem, are used to model the noise in various
communications scenarios, including molecular channels [47],
underwater acoustic channels [48], and impulsive noise chan-
nels [49]. In particular, we simulate an alpha-stable noise with
stability parameter α = 0.5, skewness parameter β = 0.75,
scale parameter c = 1, and location parameter μ = 0,
following [47, Ch. III]. Recall that the PDF of alpha-stable
RVs is in general not analytically expressible [46, Ch. 1.4].
Thus, implementing the Viterbi algorithm for such channels
is extremely difficult even when full CSI is available, as it
requires accurate numerical approximations of the conditional
PDFs to compute the log likelihoods. Consequently, in order
to implement the Viterbi algorithm here, we numerically
approximated the PDF of such alpha-stable RVs using the
direct integration method [46, Ch. 3.3] over a grid of 50
equally spaced points in the range [−5, 5], and used the PDF
of the closest grid point when computing the log-likelihood
terms in the Viterbi detector.

In Fig. 9 we depict the SER performance of ViterbiNet
compared to the SBRNN detector and the Viterbi algorithm
for this channel versus ρ ∈ [10, 30] dB. Observing Fig. 9,
we note that the CSI-based Viterbi detector, which has to use a
numerical approximation of the PDF, is notably outperformed
by the data-driven symbol detectors, which are ignorant of
the exact statistical model and do not require an analytical
expression of the conditional PDF to operate. Furthermore,
we note that ViterbiNet achieves a substantial SNR gap
from the SBRNN detector. For example, ViterbiNet achieves
an SER smaller than 5 · 10−2 for SNR values larger than
22 dB, while the SBRNN detector requires an SNR of at
least 30 dB to achieve a similar SER, namely, an SNR gap
of 8 dB. Finally, the performance of ViterbiNet scales with
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Fig. 10. Training for each SNR compared to training over a single SNR,
ISI channel with AWGN.

respect to SNR in a similar manner as in Figs. 6-7. The results
in Fig. 9 demonstrate the ability of ViterbiNet to reliably
operate under non-conventional channel models for which the
Viterbi algorithm is difficult to accurately implement, even
when full CSI is available.

Finally, we study the robustness of ViterbiNet to different
noise powers than those used during training. Recall that so far
we have trained ViterbiNet for each value of ρ, i.e., for each
SNR. To evaluate its resiliency to an inaccurate noise level in
training, we next numerically compute the SER of ViterbiNet
for different values of the SNR parameter ρ. In particular,
we repeat the simulation study of the ISI channel with AWGN,
whose results are depicted in Fig. 6, while training ViterbiNet
using 5000 samples drawn from a channel with a single SNR,
i.e., ViterbiNet is trained once instead of being re-trained
for each SNR. The numerically computed SER values are
depicted in Fig. 10, where the curves denoted ‘ViterbiNet,
single SNR’ represent the performance achieved when training
only with samples corresponding to a single SNR, which is in
the set {−2, 4, 8} dB; The curves denoted ‘ViterbiNet, each
SNR’ stand for the performance achieved when ViterbiNet is
trained anew for each SNR level, i.e., the same curves as
those of Fig. 6 of the revised manuscript. Observing Fig. 10,
we note that ViterbiNet achieves approximately the same
performance when trained using a single SNR value of either
4 dB or 8 dB as when it is trained anew for each SNR. A
small gap is observed when ViterbiNet is trained using samples
corresponding to a low SNR level of −2 dB. These results
demonstrate the ability of ViterbiNet to generalize to multiple
SNR levels.

B. Block-Fading Channels

Next, we numerically evaluate the online training method
for tracking block-fading channels detailed in Section IV.
To that aim, we consider two block-fading channels: an
ISI channel with AWGN and a Poisson channel. For each
transmitted block we use the channel models in (7) and
(8), respectively, with a fixed exponential decay parameter

Fig. 11. Channel coefficient variations between different blocks.

γ = 0.2, and thus we omit the notation γ from the vector
h in this subsection. However, unlike the scenario studied in
the previous subsection, here the channel coefficient vector
h varies between blocks. In particular, for the jth block
we use

(
h(j)

)
τ

� e−0.2(τ−1) ·
(
0.8 + 0.2 cos

(
2π·j
(p)τ

))
, with

p = [51, 39, 33, 21]T . An illustration of the variations in
the channel coefficients with respect to the block index j is
depicted in Fig. 11.

In each channel block a single codeword of an RS [255, 223]
FEC code is transmitted, namely, during each block b = 1784
bits are conveyed using t = 2040 binary symbols. Before
the first block is transmitted, ViterbiNet is trained using 5000
training samples taken using the initial channel coefficients,
i.e., using the initial channel coefficients vector h(1). For
online training, we use a learning rate of 0.002, i.e., five
times smaller than that used for initial training, and a bit
error threshold of ε̄ = 2%. In addition to ViterbiNet with
online training, we also compute the coded bit error rate
(BER) performance of ViterbiNet when trained only once
using the 5000 training samples representing the initial channel
h(1), referred to as initial training, as well as ViterbiNet
trained once using 5000 training samples corresponding to
10 different channels {h(3·k)}10

k=1, referred to as composite
training. The performance of ViterbiNet is compared to the
Viterbi algorithm with full instantaneous CSI as well as to
the Viterbi detector which assumes that the channel is the
time-invariant initial channel h(1). The coded BER results,
averaged over 200 consecutive blocks, are depicted in Figs.
12-13 for the ISI channel with AWGN and for the Poisson
channel, respectively.

Observing Figs. 12-13, we note that for both channels, as the
SNR increases, ViterbiNet with online training approaches
the performance of the CSI-based Viterbi algorithm which
requires accurate knowledge of the complete input-output
statistical relationship for each block, while for low SNRs,
its performance is only slightly improved compared to that of
the Viterbi algorithm using only the initial channel. This can
be explained by noting that for high SNR values, the BER at
each block is smaller than the threshold ε̄, and thus our pro-
posed online training scheme is capable of generating reliable
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Fig. 12. Coded BER versus SNR, block-fading ISI channel with AWGN.

Fig. 13. Coded BER versus SNR, block-fading Poisson channel.

meta-training, which ViterbiNet uses to accurately track the
channel, thus approaching the optimal performance. However,
for low SNR values, the BER is typically larger than ε̄,
thus ViterbiNet does not frequently update its coefficients
in real-time, thus achieving only a minor improvement over
using only the initial training data set. It is emphasized that
increasing the BER threshold ε̄ can severely deteriorate the
performance of ViterbiNet at low SNRs, as it may be trained
online using inaccurate meta-training.

We also observe in Figs. 12-13 that the performance
ViterbiNet with initial training coincides with that of Viterbi
algorithm using the initial channel, as both detectors effec-
tively implement the same detection rule, which is learned by
ViterbiNet from the initial channel training set. Furthermore,
the composite training approach allows ViterbiNet to achieve
improved BER performance compared to using only initial
training, as the resulting decoder is capable of operating in a
broader range of different channel conditions. Still, is is noted
that for both the AWGN channel and the Poisson channel,
ViterbiNet with composite training is notably outperformed
by the optimal Viterbi detector with instantaneous CSI, whose
BER performance is approached only when using online
training at high SNRs.

Fig. 14. Coded BER versus error threshold, block-fading ISI channel with
AWGN.

As discussed in Subsection IV-B, the success of the meta-
learning based method for training ViterbiNet online depends
on the error threshold ε̄ and the learning rate used for re-
training the DNN. To numerically evaluate the effect of these
parameters, we compare in Fig. 14 the BER of ViterbiNet
versus ε̄ for the ISI with AWGN channel under SNR values
of 8 and 12 dB, and with re-training learning rates of 0.002
and 0.02. These BER values are compared to the model-based
Viterbi operating with full CSI. Observing Fig. 14 we note
that, for the lower SNR of 8 dB, a similar behavior, in which
the BER value increases with ε̄, is observed for both learning
rates. However, for the higher SNR of 12 dB, the BER increase
with the error threshold ε̄ for learning rate of 0.002, while for
the higher learning rate of 0.02 we observe a minima around
ε̄ = 0.04. This behavior is because higher values of ε̄ may
cause the network to use inaccurate training, while values
which are too small may result in the network being unable
to reliably track channel variations.

The results presented in this section demonstrate that a
data-driven symbol detector designed by integrating DNNs
into the Viterbi algorithm is capable of approaching optimal
performance without CSI. Unlike the CSI-based Viterbi algo-
rithm, its ML-based implementation demonstrates robustness
to imperfect CSI, and achieves excellent performance in chan-
nels where the Viterbi algorithm is difficult to implement.
The fact that ViterbiNet requires a relatively small training
set allows it to accurately track block-fading channels using
meta-training generated from previous decisions on each trans-
mission block. We thus conclude that designing a data-driven
symbol detector by combining ML-based methods with the
optimal model-based algorithm yields a reliable, efficient, and
resilient data-driven symbol recovery mechanism.

VI. CONCLUSION

We proposed an ML-based implementation of the Viterbi
symbol detection algorithm called ViterbiNet. To design Viter-
biNet, we identified the log-likelihood computation as the
part of the Viterbi algorithm that requires full knowledge
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of the underlying channel input-output statistical relationship.
We then integrated an ML-based architecture designed to com-
pute the log-likelihoods into the algorithm. The resulting archi-
tecture combines ML-based processing with the conventional
Viterbi symbol detection scheme. In addition, we proposed a
meta-learning based method that allows ViterbiNet to track
time-varying channels online. Our numerical results demon-
strate that ViterbiNet approaches the optimal performance of
the CSI-based Viterbi algorithm and outperforms previously
proposed ML-based symbol detectors using a small amount of
training data. It is also illustrated that ViterbiNet is capable of
reliably operating in the presence of CSI uncertainty, as well
as in complex channel models where the Viterbi algorithm
is extremely difficult to implement. Finally, it is shown that
ViterbiNet can adapt via meta-learning in block-fading channel
conditions.
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