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INTRODUCTION: Place cells are neurons in the
hippocampus that represent the animal’s posi-
tion in space and are important for support-
ing navigation behaviors. These cells increase
their spiking activity when the animal passes
through a specific region of space, called the
neuron’s “place field.” Since the discovery of
place cells half a century ago, nearly all the
research on spatial representations in themam-
malian brain has focused on rats andmice as
animal models and used small laboratory en-
vironments as experimental setups—usually
small boxes or short linear tracks ~1 to 2 m in

size. In such small environments, individual
place cells typically have one place field, with
a small field size. However, outdoor naviga-
tion of all mammals occurs in natural environ-
ments that span much larger spatial scales,
of hundreds of meters or kilometers, and
nothing is known about the neural codes for
such large spatial scales.

RATIONALE: We reasoned that in very large
environments, the hippocampusmust exhibit
a different coding scheme than seen in small
environments because large environments

cannot be tiled fully by the limited number
of hippocampal neurons. We set out to dis-
cover this alternative coding scheme and
thus to close the longstanding gap between
the neurobiology of navigation as studied
in the laboratory and natural large-scale
navigation. To this end, we studied bats
flying in a 200-m-long tunnel while we
recorded the activity of hippocampal dor-
sal CA1 neurons using a custom wireless-
electrophysiology system.

RESULTS:We found that place cells recorded in
the large environment exhibited a multifield,
multiscale representation of space: Individ-
ual neurons exhibited multiple place fields of
diverse sizes, ranging from<1m tomore than
30m, and the fields of the same neuron could
differ up to 20-fold in size. This multifield,
multiscale code was observed already from
the first day in the environment and was sim-
ilar between wild-born and laboratory-born
bats that were never exposed to large environ-
ments. By contrast, recordings from a small-
scale 6-m environment did not reveal such a
multiscale code but rather classical single
fields. Theoretical decoding analysis showed
major advantages of the multiscale code over
classical single-field codes, both in the num-
ber of required neurons and in the decoding
errors. Thus, the multiscale code provides an
efficient population code with a high capacity
for representing very large environments. We
conducted neural-network modeling, which
suggested that the multiscale code may arise
from interacting attractor networks with mul-
tiple scales or from feedforward networks,
which yielded experimentally testable predic-
tions for the inputs into CA1.

CONCLUSION:Using this experimental setup,
our study uncovered a new coding scheme
for large spaces, which was never observed
before in small spaces: a multiscale code for
space. This coding scheme existed fromday 1 in
the environment and was observed in both
wild-born and laboratory-born bats, suggest-
ing that it does not require previous experi-
ence. These findings provide a new notion
for how the hippocampus represents space.
The large naturalistic scale of our experimen-
tal environment was crucial for revealing this
type of code. More generally, this study dem-
onstrates the power of studying brain circuits
under naturalistic conditions.▪
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Methods
Individual place-cells in dorsal hippocampus CA1 
showed multiple fields with highly variable sizes, 
from day 1 in the tunnel
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Bat flying in 200-m-long tunnel with wireless 
electrophysiology system

Multifield multiscale coding can be explained with 1D 
interacting attractor networks and feedforward models
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Decoding analysis showed that the multifield 
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Multiscale hippocampal spatial code for very large environments. (Methods) We wirelessly recorded
neural activity from hippocampal neurons of bats flying in a 200-m tunnel. (Findings) Single neurons
exhibited multiple place fields with highly heterogeneous field sizes for the same neuron. (Function) This
multiscale neural code for space strongly outperforms classical single-field place codes. (Modeling) Modeling
by using interacting attractor networks and feedforward models recapitulated the multiscale coding.
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Hippocampal place cells encode the animal’s location. Place cells were traditionally studied in small
environments, and nothing is known about large ethologically relevant spatial scales. We wirelessly
recorded from hippocampal dorsal CA1 neurons of wild-born bats flying in a long tunnel (200 meters).
The size of place fields ranged from 0.6 to 32 meters. Individual place cells exhibited multiple fields
and a multiscale representation: Place fields of the same neuron differed up to 20-fold in size.
This multiscale coding was observed from the first day of exposure to the environment, and also in
laboratory-born bats that never experienced large environments. Theoretical decoding analysis showed
that the multiscale code allows representation of very large environments with much higher precision
than that of other codes. Together, by increasing the spatial scale, we discovered a neural code that is
radically different from classical place codes.

N
avigation and spatial memory are cru-
cial for the survival of animals in the
wild. The hippocampal formation con-
tains several types of spatial neurons
whose activity represents the animal’s

position and direction in space (1–10). One of
these spatial cell types is the “place cell,” hip-
pocampal neurons that increase their spiking
activity when the animal passes through a
specific region of space, in turn called the
neuron’s “place field” (1, 2, 11–15). Individual
place cells typically have only one (or two)
place fields in a small environment (2, 11, 16),
whereas multiple place fields are found in
dentate-gyrus neurons upstream (16). Nearly
all of the research on spatial representations
in the mammalian brain has focused on rats
andmice as animal models and used small lab-
oratory environments as experimental setups—
usually small boxes or short linear tracks ~1 to
2 m in size. Consequently, almost all current
knowledge on spatial neurons in thehippocam-
pal formation is based on data from animals
moving in small laboratory environments.
Two studies of place cells examined larger
spatial scales (17, 18). However, these studies
used either a zig-zagging track composed of
~1-m segments or a track that passed through
several small rooms; thus, the largest single-
compartment environment inwhich place cells
were recorded to date was <10 m in size.
By contrast, outdoor navigation of all mam-

mals occurs in natural environments that span

spatial scalesmuch larger than 10m. For exam-
ple, wild rats were shown to navigate outdoors
>1 km per night (19, 20). Navigation over such
distances requires spatial representation of
very large environments, on the scale of hun-
dreds of meters or kilometers (21). Egyptian
fruit bats fly every night distances of up to
~30 km to their favorite fruit trees, with fly-
ways spanning ~2 km in width and 0.5 km in
height (21, 22). A simple calculation shows that
tiling this space with typical place fields as
measured in the laboratory (~10 to 20 cm di-
ameter, single field per neuron) would require
~1013 neurons. This is ~108 times more neu-
rons than the number of cells in the entire
dorsal hippocampal area CA1 (3), suggesting
that it is simply not feasible to represent such
large spatial scales with laboratory-sized place
fields. Thus, there is a fundamental gap be-
tween theneurobiology of navigation as studied
in the laboratory and kilometer-scale natural
navigation outdoors.

Neural recordings in bats flying in a
200-m environment

We studied wild-born Egyptian fruit bats, a
mammal that has rodent-like hippocampal
spatial representations in small laboratory
environments (23–26). We developed a min-
iaturized wireless neural-logging system that
stores all the data on board (Fig. 1A). This sys-
tem enabled neural recordings to be conducted
over great distances in freely behaving animals,
with uninterrupted experiments lasting up to
~3 hours (27). Using this system,we conducted
tetrode recordings from dorsal CA1, in flight
(Fig. 1, B to D, and fig. S1). We built a 200-m-
long flight tunnel (Fig. 1E), composed of a
long arm and a shorter arm, with landmarks
dispersed along it (fig. S2). We used a medium

light level (5 lux), allowing these bats—which
have excellent vision (21)—to see several distal
landmarks from each location in the tunnel
(fig. S2B). We used a radio frequency–based
localization system, with a small mobile tag
placed on the bat that measured the bat’s dis-
tances to a ground-based antenna array (Fig.
1F). This system yielded a high spatial local-
ization accuracy of ~9 cm (Fig. 1G) along with
a high temporal resolution (27). We harnessed
the natural behavioral tendency of bats to fly
long distances in straight trajectories (22)
and trained them to fly in the tunnel be-
tween two landing balls that were placed at
the two ends of the tunnel, on which food was
given. The bats flew continuously back and
forth between the landing balls (fig. S3A).
Flight trajectories were rather stereotyped,
with bats flying at the center-top portion of
the tunnel, with only very small deviations
perpendicular to the flight direction (Fig. 1H
and fig. S3, B and C). Thus, the bats exhibited
nearly perfect one-dimensional (1D) back-and-
forth trajectories. Hence, in all subsequent
analyses, we projected the behavioral data
onto the main axis of the tunnel and included
only long unidirectional flights that were
>100m in length (27). This 1D tunnel bears sim-
ilarities to bats’ natural behaviors because
these bats navigate underground in 1D cave
tunnels, and also their flight trajectories out-
doors are largely 1D (22). Flight speedwas high
and showed very little variation across differ-
ent locations (Fig. 1, I and J). Bats flew dozens
of flights per direction in each recording ses-
sion (Fig. 1K), covering on average 14.1 km per
session and up to 22.5 km in a single session
(Fig. 1L).

Hippocampal place cells exhibit a multifield,
multiscale spatial code

We recorded 235well-isolated putative pyram-
idal cells from the dorsal CA1 of five bats; all
235 neurons were active in flight, and 83.4%
of them (n = 196) were place cells, showing
significant spatial tuning with distinct and
stable place fields (Fig. 2A and figs. S4 and S5;
the numbers of place cells in individual bats
are provided in table S1) (27). By contrast, in
both rodents and bats, the reported percent-
age of place cells in small environments is
typically 30 to 40% of all the recorded cells,
whereas the remaining cells are virtually
silent during behavior (11, 23, 24, 28). Place
cells in the 200-m tunnel exhibited strong
spatial tuning (Fig. 2, B to D), and the spatial
tuning was stable across flights (Fig. 2E). The
place cells fired differently in different flight
directions (Fig. 2, A, red and blue raster plots,
and F, map correlations between directions),
similar to the directionality shown previously
for place cells in rats and bats in small 1D en-
vironments (29, 30). However, we found seve-
ral surprising characteristics of place cell firing
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in our 200-m environment. First, unlike the
typical single place field reported for CA1
neurons in small environments (11), we found
that many cells exhibited multiple place fields
(Fig. 2A and fig. S5, examples; Fig. 2G, popu-
lation). The mean number of fields per direc-
tion was 4.9, and some neurons hadmore than
10 fields in each flight direction (Fig. 2G). This
result extends similar findings in enlarged en-
vironments in rodents, which showed several

fields per neuron (18, 31, 32). The fields were
strongly tuned and contained the large ma-
jority of the neuron’s spikes; the background
firing was relatively low (fig. S6, A and B).
Second, many cells had very large place fields,
often >10 m in size, and up to 32 m (Fig. 2, A,
cells 1 and 5, examples, andH, population; and
figs. S5 and S7A). On the other hand, some
cells had very small place fields of <1 m in size
and down to 0.6 m (Fig. 2, A, cells 3 and 7,

zoom-in, and H, leftmost bar). The distribu-
tion of field sizes was skewed (Fig. 2H) and
was well-fitted by a log-normal distribution
(fig. S8) (33). Third, and most surprisingly,
many place cells showed highly variable field
sizes, with up to 20-fold ratio between the size
of the largest and smallest field for the same
neuron (Fig. 2A, cells 1 to 7, examples; and
Fig. 2, I and J, population; mean ratio, 4.4).
This multifield, multiscale code was found
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Fig. 1. Neuronal and behavioral recordings from bats flying over large
spatial scales. (A) Sixteen-channel wireless neural logger. (B) Neural traces
from one tetrode, recorded in bat dorsal hippocampal area CA1, showing spikes
in-flight. (C) Spike-sorting of one tetrode (data from full session, 108 min).
Shown are spike clusters from different neurons, with spike amplitudes plotted
for three of the tetrode’s channels; well-isolated units are shown in different
colors. Same session and tetrode as in (B). (D) Histology of one recording site in
dorsal CA1. Red arrowhead, electrolytic lesion; Black lines, proximal and distal
borders of CA1. (E) Aerial photograph showing top-view of the large-scale
environment. The flight-tunnel was composed of long and short arms (27), which
the bat traversed without slowing down (I). Vertical lines indicate location
where neural data in (B) were recorded. (F) Localization system, showing
positions of ground-based antennas (red dots), the tunnel (dark gray thick line),
snapshot of measured distances from each antenna to the localization tag
on the bat’s head (large black circles; cropped for visualization purposes), and
the bat’s estimated location (blue dot; computed as the intersection of the

black circles). (G) Precision of the localization system (27), showing localization
error of s = 8.9 cm along the tunnel’s major axis. (H) Example session,
showing the y-z positions of the bat’s passages (blue dots) through a cross-
section in the tunnel’s midpoint (black outline). There are relatively small
deviations of the blue dots in the y and z axes, indicating the bat flew essentially
in 1D trajectories (fig. S3, B and C). (I) Example session showing speed
profiles along the tunnel, pooled over both flight directions. Gray areas indicate
locations of low flight speeds, owing to takeoff and landing, which were
removed from further analysis of place fields (27). (J) Distribution of the
coefficient of variation (CV) of the flight speed per session (n = 60 sessions;
five bats). The CV was computed over the tunnel’s high-speed portion [excluding
the gray areas from (I)]; mean CV = 0.042. (K) Distribution of number of
flights (laps) per direction per session. Shown are only valid unidirectional long
flights, longer than 100 m (27). Red and blue colors in (K) and (J) indicate
the two flight directions (arrows). (L) Distribution of total distance flown per
session, based on valid long flights only (n = 60 sessions; five bats).
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Fig. 2. Dorsal CA1 hippocampal neurons represented very large space
using many fields with multiscale coding. (A) Examples of firing-rate maps
and raster plots for nine cells. For each neuron, (Top) firing-rate maps calculated
separately for each flight direction (red and blue; arrows above cell 1); (Bottom),
raster plots of spike positions (x axis) for different flights, or laps (y axis); the
detected place-fields are indicated with red and blue thick horizontal lines above
the raster plots [fields inside the low-flight-speed zones (gray) were excluded

(27)]. In each example, the smallest and largest field sizes are indicated (min,
max), together with the ratio between them; the numbers of fields in each direction
are indicated in blue and red on the right. For cells 3 and 7, shown also are
zoom-ins on their smallest field (cell 3, field size 1.0 m; cell 7, field size 0.9 m).
(B to D) Distribution of (B) spatial information, (C) sparsity, and (D) the total
coverage of the environment by place fields, calculated for the firing-rate map
in each flight direction separately (“No. of cells” here refers to significant
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in all the five individual animals (fig. S9).
Although most cells showed heterogeneous
field sizes, some neurons also exhibited amore
uniform scale across their place fields (Fig. 2A,
cell 8), and a small minority of neurons had a
single place field (Fig. 2A, cell 9) (only 12.2%
of the neurons had one field overall, with an
average field size of 5.9 ± 3.5 m; mean ± SD).
Individual neurons exhibited similar multi-
scale firing properties in both flight directions:
a similar number of fields per direction, sim-
ilar median field-size, and similar field size
ratios (fig. S10). This suggests a characteristic
firing propensity per neuron (34) while still
exhibiting widely varying field sizes. Taken
together, most neurons exhibited these two
key properties: many fields per neuron (Fig.
2G) and a multiscale mixture of small fields
and large fields for the same neuron (Fig. 2J).
We next examined several possible alterna-

tive explanations for the multiscale code that
we observed. First, the multiscale property
could not be explained as arising from varia-
tions in flight-speed—for example, larger fields
at high flight speeds—because the flight speed
was in fact highly consistent along the entire
tunnel (Fig. 1, I and J). Further, the field-size
ratio (largest/smallest fields per neuron) was
not correlated with the speed ratio at the
locations of the largest and smallest fields
(Spearman r = 0.03, df = 170, P = 0.67) (Fig.
2K). Moreover, the speed ratio was narrowly
distributed around 1, indicating that the speed
was similar at large and small fields (Student’s
t test of speed ratio versus 1: t = 0.83, df = 171,
P = 0.41; SD of the speed ratio was 0.10) (Fig.
2K). Second, the multiscale property also could
not be explained by systematic differences in
field sizes in the long versus short arms of the
tunnel because we found no significant dif-
ference in field sizes between the two arms
[Kolmogorov-Smirnov test comparing field
sizes in the long versus short arm: P = 0.60 and
0.12 for the two flight-directions (DKS 586,180 =
0.06 and DKS 628,235 = 0.09)], and there was no
significant difference in field sizes between
the long arm and the full tunnel [Kolmogorov-
Smirnov test: P = 0.96 (DKS 1214,1629 = 0.02)]
(fig. S7A). We also found multiscale coding
when restricting the analysis only to the long
arm (fig. S7B). Third, the multiscale property
did not stem from an unusual recording lo-
cation within CA1. All the recordings were

done in the dorsal part of the hippocampus and
spanned rather central proximo-distal locations
in CA1 (fig. S1, A and B); these are the classical
recording-locations used in rodents and bats in
small laboratory setups. Fourth, the multiscale
property of CA1 neurons could not be explained
by spike-sorting quality (fig. S11). Fifth, the re-
sults were robust to the detailed criteria of field
detection (fig. S12).
We then looked for possible contributions

of landmarks to the multiscale code. First,
we considered several landmark-based com-
partmentalizationmodels of the environment,
in which the tunnel is assumed to be seg-
mented into smaller portions at the landmark
locations, allowing fields to merge at the seg-
ment borders (27). These models could not
explain the wide distribution of place field
sizes observed in the data (fig. S13). Second,
we examined the possibility that the multi-
scale code could be explained by an over-
representation (concentration) of place fields
near the landmarks, and in particular small
place fields. However, the cumulative distri-
bution of field locations was linear as a func-
tion of position along the tunnel (Fig. 3A),
with no apparent overrepresentation near
landmarks [but with an overrepresentation
of fields at the two ends of the tunnel, in the
reward areas (fig. S14)]. We computed the dis-
tance of each field’s peak to its nearest land-
mark and compared the distribution of these
distances to the distribution of distances for
shuffled place field locations (27); we found
no significant difference between the two
(Kolmogorov-Smirnov test, P ≥ 0.18 for both
directions) (Fig. 3B), indicating that place fields
did not concentrate near landmarks but were
distributed rather uniformly along the tun-
nel. This uniform distribution was supported
also by an analysis of the gaps between fields,
which showed an exponential distribution
(Fig. 3C), indicating lack of structure in the
spatial arrangement of place fields. Addition-
ally, the entire range of field sizes was repre-
sented rather uniformly along the tunnel, with
no prominent concentration of small (or large)
fields near landmarks (Fig. 3, D and E, and fig.
S15)—likely because of the low saliency of
these landmarks for the bats—except for a few
landmarks that possibly showed slight con-
centration of fields (Fig. 3D). Further, there
was no strong relation between the interland-

mark distance and the field size (fig. S15B)
(however, this does not rule out that very large
fields would be found in extremely impover-
ished large regions of space, where absolute
spatial information is not available over long
distances). Together, these analyses suggest
that the multiscale statistics were not driven
by landmarks.

Comparison between large and
small environments

To examine whether multiscale coding may
be found also in small environments, we re-
corded from the dorsal CA1 of an additional
three bats flying in a short 6-m segment of
the tunnel, which we blocked off (table S1,
dataset 2) (Fig. 4A). This allowed testing di-
rectly the effect of environment size on the
spatial coding of neurons in the dorsal CA1
of bats, using the same experimental design.
The percentage of neurons that were active
during flight in the short 6-m tunnel (36 of
67 cells, 53.7%) wasmuch smaller than in the
full 200-m tunnel (235 of 235 cells, 100%)
(table S1) (27). The majority of the active cells
were significant place cells (30 of 36, 83.3%);
thus, almost half of the neurons recorded in
the 6-m tunnel were significant place cells
(30 of 67 cells, 44.8%). Next, we systematically
compared the spatial tuning properties of cells
in the large versus small environments (Fig. 4,
B to G). In the 6-m small environment, dorsal
CA1 place cells showed only one or two place
fields (Fig. 4, A and B, bottom), in contrast to
the high number of place fields observed in
the large 200-m environment (Fig. 4, B, top,
and E). Across cells, the place field sizes in the
small environment weremuch smaller than in
the large environment (Fig. 4, C and F). At the
single-cell level, neurons in the small environ-
ment had a significantly lower ratio between
their largest and smallest fields as compared
with that in the large environment (Fig. 4, D
and G). Thus, neurons in the small environ-
ment showed virtually no multiscale coding.

Multiscale coding of space is independent of
both early and recent experience

Does multiscale coding of large environments
emerge over time, as a function of experience?
First, we asked whether prior experience in
the long tunnel is needed for the multiscale
code. We conducted recordings of place cells
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cells × directions; n = 331). (D) Bottom x axis, total coverage in meters; top x axis,
total coverage in percent of tunnel length. (E) Distribution of firing-map correlations
between odd and even flights (n = 331 cells × directions), showing high correlation
values [median correlation coefficient (r) = 0.87]. (F) Distribution of firing-map
correlations between the two flight directions (gray; n = 135 cells, including only cells
where both directions were significantly tuned) was similar to cell-shuffled distribution
(black) [Kolmogorov-Smirnov test: P = 0.12 (DKS 135,13566 = 0.10)]. (G) Distribution
of number of place fields per neuron per flight direction (n = 331 cells × directions).
Rightmost bar, cases with ≥20 fields per direction. Mean number of fields per direction

was 4.9. (H) Distribution of place field size (n = 1629 fields). The field size ranged from
<1m (leftmost bar of histogram) up to 32m. (I and J) Single cells exhibited multiscale
field sizes (plotted are n = 172 cells with ≥2 fields). (I) Distributions of smallest
and largest field sizes per neuron (shown cells with ≥2 fields). (J) Distribution of the
ratio between largest and smallest field sizes for each neuron. Both axes here are in
log scale. (K) Lack of correlation between largest-to-smallest field size ratio and
the speed ratio at the locations of those fields (plotted are n = 172 cells with ≥2 fields).
For all histograms except (F), the red vertical line indicates mean of distribution, and the
red dot and red horizontal line indicate median and interquartile range, respectively.
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Fig. 3. Place fields were distributed uniformly along the tunnel.
(A) Cumulative fraction of peak firing-rate locations for all the place fields
along the tunnel, pooled across all the five bats and 196 place cells;
plotted for each flight-direction separately (East direction, blue, n = 863 fields;
West direction, red, n = 766 fields). Gray vertical lines, locations of landmarks
(we did not treat the landing balls as “landmarks”). (B) Distributions of the
distances of each field’s peak to its nearest landmark (blue and red, flight
directions) were similar to shuffle distributions (black) [Kolmogorov Smirnov
test, P = 0.82 (DKS 782,7820000 = 0.02) and P = 0.18 (DKS 661,6610000 = 0.04)
for the two flight directions]. (C) Distribution of gaps between fields
(gray bars), overlaid with exponential fit (black line), plotted on a logarithmic
y scale. The good fit to the exponential distribution indicates lack of
spatial structure in the field locations. (D) Field size versus the location

of field peak, pooled across all bats and neurons. Gray vertical lines, locations
of landmarks; open circles, fields larger than 20 m. The entire range of
field sizes was represented along the entire tunnel. (E) Distribution of field
size for the two directions (blue and red), plotted separately for fields
located close to landmarks (thin line, fields <5 m from nearest landmark)
or far from landmarks (thick line, fields ≥ 5 m from nearest landmark).
No significant differences in field-size were found between fields located close
or far from a landmark [Kolmogorov Smirnov test, P = 0.80 (DKS 577,205 =
0.05) and P = 0.25 (DKS 469,192 = 0.09) for the two flight directions]. In
(B) and (E) we excluded fields whose peak occurred before the first landmark
or after the last landmark in the tunnel, where the assignment of “nearest
landmark” is one-sided and hence biased [the same was done for the
shuffles in (B)].
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from the first exposure to the novel large
environment.We recorded 125 place cells from
two bats flying in a 130-m portion that was
blocked out of the 200-m tunnel, with neural
recordings commencing from the very first
day in the tunnel (day 1) and continuing over
several weeks (with new cells being recorded
every day) (table S1, dataset 3). Cells were
spatially tuned already in the first sessions
and exhibited many place fields with differ-
ent sizes (Fig. 5A). The multifield, multiscale
properties were seen from day 1 and were
stable across several weeks of recordings,
showing no significant trend in the number
of fields (Fig. 5B), field sizes (Fig. 5C), or field-
size ratio (Fig. 5D) [overall, place fields in the

130-m tunnel exhibited somewhat smaller
numbers of fields, field sizes, and field-size
ratios as compared with those of the 200-m
tunnel (Fig. 5, B to D, bars on the right)].
This suggests that the multiscale coding does
not require substantial recent experience with
the long tunnel. Although the general multi-
scale properties were stable over days (Fig. 5,
B to D), the cells occasionally exhibitedwithin-
day dynamics in the form of fields appearing
and disappearing (Fig. 5E). The rate of within-
day changes was larger during the first 2 days
of the bat in the tunnel (two-proportion z test,
P < 0.001) (Fig. 5F) but also occurred many
days after the first exposure (Fig. 5, E, cells 7
and 8, and F), which is consistent with pre-

vious findings in mice of ongoing changes in
the tuning of place cells (35, 36).
Second, we asked whether laboratory-born

bats that were never exposed to large environ-
ments would lack a multiscale code. We re-
corded from an additional three adult bats
that were born in the laboratory and grew up
in an enriched environment but had never ex-
perienced during development any large-scale
environments bigger than a few meters (table
S1, dataset 4, and fig. S16) (27)—in contrast to
the wild-caught bats that navigated long dis-
tances outdoors during development (37). The
laboratory-born bats were trained to fly in
the 200-m tunnel for several weeks and were
thus familiar with the environment before the
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(G) Student’s t test with unequal variances, P = 1.8 × 10−14, t = 8.91; Wilcoxon rank-sum test, P = 4.6 × 10−5, z = 3.91; ***** P < 10−5 for the t tests in (E) to (G).
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Fig. 5. Multiscale coding exists already from the first days of exposure to
the tunnel. Experiments from day 1 were conducted in a 130-m portion of
the 200-m tunnel (table S1, dataset 3). (A) Examples of firing-rate maps and
raster plots for four cells recorded in a large-scale environment during the
first days of exposure. Same graphical conventions as in Fig. 2A. The days since
first exposure are indicated for each cell (day 1 is the very first day of exposure;
day count represents experimental days). (B to D) Population scatter plots of
(B) the number of fields per direction, (C) field sizes, and (D) field size ratio as a
function of days since first exposure. There is a lack of trend across days
(Spearman r, P > 0.13 for all three scatters), suggesting that the multiscale coding
exists already from day 1. For display purposes only, dots were jittered along the x
axis (uniform jitter of ±0.5 days); in (B), dots were jittered also along the y axis
(uniform jitter of ±0.3 fields); all correlations were computed without the jitter.

Error bars in main plots, mean ± SD (using 5-day bins with no overlap). (Insets) Gray bars are
mean ± SEM for the three tunnel lengths used in this study: 6, 130, and 200 m. (E) Four
examples of within-day dynamics in spatial tuning. Raster plots show spike positions in each flight
(blue and red dots indicate two flight directions), with the behavioral coverage shown with light gray lines. Arrowheads
indicate field appearance (filled arrowheads) or disappearance (empty arrowheads). These dynamics occurred in both small and large fields and happened both on the first
days of exposure (cells 5 and 6) and after ≥1 month (cells 7 and 8). (F) Probability of appearance and disappearance of fields (per-flight probability of change in any of the fields), grouped
by the day from first exposure: days 1 and 2, days 3 and 4, days 5 and 6, and ≥7 days. Error bars, mean ± standard error of the proportion (27). In the first 2 days after
exposure, the cells exhibited a higher probability of appearance or disappearance of fields than on later days (two-proportion z test, P < 0.001 for all six tests comparing days 1 and
2 versus the other days). The probabilities for appearance and disappearance were similar over the entire course of exposure (compare black versus white bars; two-proportion z test:
P = 0.64, pooled over all days), which is consistent with the overall stability over weeks in the number of fields per neuron (B). *****P < 10−5, ****P < 10−4, ***P < 10−3.
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neural recordings, similar to the wild-born
bats (Fig. 6A). The laboratory-born bats were
in good flight shape and flew similar distances
in the tunnel as those of the wild-born bats
(fig. S16B). Thus, the main difference between
the laboratory-born and wild-born bats was
their experience during development, with all
other experimental conditions being kept iden-
tical (Fig. 6A) (27). We recorded 113 cells in the
dorsal CA1 of the laboratory-born bats, out of
which 95 were place cells (84.1%), which is
very similar to the percentage of place cells
in wild-born bats (83.4%). The place cells of
laboratory-born bats showed amultifield,mul-
tiscale code, with individual neurons exhibit-
ing many fields with varying sizes per-neuron
(Fig. 6B, examples; Fig. 6, C to E, population),
which is similar to place cells recorded from
the wild-born bats. We then compared the
multiscale properties between the two groups
(Fig. 6, C to H): (i) The number of fields per
direction was not significantly different (Fig.
6, C and F). (ii) Both groups exhibited wide
distributions of place field sizes, with wild-born
bats having slightly larger fields (Fig. 6, D and
G) [this difference was not due to differences
in dorso-ventral recording positions along the
longitudinal axis of CA1, which were very sim-
ilar in both groups (Fig. 6I), but could be due
to the slightly different recording positions
along the proximo-distal axis of CA1 (Fig. 6I)].
(iii) The field-size ratio was not significantly
different between the groups (Fig. 6, E andH),
despite the difference in field sizes—indicating
a similarmultiscale code between laboratory-
born and wild-born bats.

The multiscale code yields substantial
advantages for large environments

We next turned to a theoretical analysis to
understand the possible functional advan-
tage of the multiscale representation of large
environments. We compared the perform-
ance of six spatial encoding schemes (Fig. 7A)
(27): (scheme 1) a single small place field per
neuron; (scheme 2) a single large place field
per neuron; (scheme 3) a single place field
with a gradual increase in field size across the
population, mimicking the dorso-ventral ana-
tomical gradient of field sizes in the hippo-
campus (17); (scheme 4) multiple small fields
per neuron, identical in size for all the neurons
(18); (scheme 5) multiple fields per neuron, all
with the same size for each neuron but with
different scales across different neurons; and
(scheme 6) multiple fields with multiscale
coding per neuron, as in our data. The distri-
bution of field sizes for schemes 5 and 6 was
matched to our data [field sizes were drawn
from a g-distribution fitted to the data (fig.
S8) (27); the field-size ratio for scheme 6 also
closely matched the data (fig. S17G); variants
of schemes 5 and 6 inwhich wematched also
the total coverage of fields to the data are

shown in fig. S17]. We used two types of
decoders, a Bayesian maximum-likelihood
decoder (Fig. 7) and a population-vector de-
coder (fig. S18), and two integration time win-
dows,Dt = 500ms (Fig. 7) andDt = 200ms (fig.
S19) (27). We compared the decoding error
of simulated data for each of these six encod-
ing schemes for progressively larger environ-
ments. For small environments, all six encoding
schemes performed qualitatively equally well,
but for very large environments (hundreds of
meters), the experimentally observed encoding
scheme with multiscale place fields substan-
tially outperformed the other schemes (Fig. 7,
B to E, and fig. S18, B to E). Specifically, for
encoding schemes with either a single field
(schemes 1, 2, or 3) or multiple fields of small
size (scheme 4), the number of neurons re-
quired to accurately decode the animal’s posi-
tionwas extremely large for large environments
(Fig. 7B, left; the red, green, pink, and yel-
low lines go out of bounds). By contrast, the
two schemes with multiple fields of vary-
ing sizes (schemes 5 and 6) required only
~50 neurons for accurately decoding the bat’s
position, even in a very large environment of
1000 m in size (Fig. 7B, left; a 2-m decoding
accuracy). Furthermore, the mean decoding
error for schemes 1 and 4 increased dramatically
for large environments (Fig. 7C, red and green),
but for schemes 5 and 6, the mean decoding
error barely increased as a function of the envi-
ronment size (Fig. 7C, inset, blue and purple),
maintaining a small decoding error of 5 to 10m
for a 1000-m environment, even for a very small
ensemble of 50 neurons (Fig. 7C, inset).We thus
conclude that encoding schemes 1 to 4 are less
suitable for very large environments.
Next, we asked whether scheme 6, which

closely matches our experimental results, offers
any functional advantage over scheme 5. We
reasoned that scheme 5, in which all the fields
of the same neuron have the same field size, is
problematic because when a neuron emits a
spike, it could mean that the animal is located
in any of the neuron’s fields; this creates large
positional ambiguity. By contrast, scheme 6, in
which each neuron has multiscale fields, alle-
viates this problem because the neuron’s spike
count during an integration time Dt differs
between different fields—the neuron produces
many spikes in large fields but only a few
spikes in small fields—and this variability
serves to disambiguate which field the ani-
mal passed through; this in turn improves the
decoding accuracy. For large, 1000-m environ-
ments, the mean decoding error was substan-
tially smaller for scheme 6 than for scheme 5
(Fig. 7C, inset, compare purple and blue lines).
Moreover, scheme 6 led to much smaller and
fewer catastrophic decoding errors (Fig. 7, D
and E, compare purple and blue lines) [There is
a ~10-fold difference in the size of catastrophic
decoding errors, defined as the 99th percentile

of the decoding errors (Fig. 7D, inset) and an
approximately two- or threefold difference in
the probability of catastrophic errors, which is
defined as the probability of decoding error
larger than 5% of the environment size (Fig.
7E)]. All of these theoretical results were robust
to the choice of decoder type (fig. S18), the choice
of integration timewindow of the decoder (fig.
S19), and choice of the parameter that controls
the scaling of encoding schemes with environ-
ment size (fig. S17H) (27). Together, this theoretical
analysis suggested that for small environments,
all the encoding schemes perform equally well
(Fig. 7, B to E; all six lines meet at the environ-
ment size of 20 m); by contrast, for very large
environments, of hundreds of meters ormore,
scheme 6—whichmatches themultiscale coding
that we found in bat CA1—outperforms all the
other coding schemes.
Last, we suggest that the absence of a mul-

tiscale code in small environmentsmight stem
fromenergy considerations.Weused published
experimental estimates of the energy [adeno-
sine triphosphate (ATP) molecules] required
to generate one action potential (27, 38) to
approximate the energy required to represent
environments of different sizes for the various
coding schemes (Fig. 7F). In small environ-
ments, classical single-field codes (schemes 1
to 3) were more energetically efficient than
our multiscale code (scheme 6). Because all of
the codes exhibit a similar localization per-
formance in small environments, the energetic
consideration becomes more important, and
therefore the single-field codes are preferable
for small environments. By contrast, in large
environments our multiscale code becomes
energetically closer to the single-field codes
and even surpasses some of them in terms of
energy consumption (Fig. 7F, compare scheme 6
with the other schemes). Further, the localization
accuracy of classical single-field codes deterio-
rates so greatly in large environments (Fig. 7, C
to E) that the energetic consideration becomes
largely irrelevant, and the superior localiza-
tion accuracy of the multiscale code becomes
the central consideration. Thus, we propose
that this energetic consideration—and in par-
ticular, the tradeoff between energy expendi-
ture and coding performance—may explain
why in small environments there is no multi-
scale code. Taken together, the theoretical de-
coding analyses suggest that the multiscale
code is better suited than classical place codes
for representing very large spaces, such as real-
world natural environments.

Neural network modeling of multiscale codes:
Attractor networks and feedforward models

Classical models of hippocampal place cells
are characterized by a single spatial scale per
neuron in a given environment (39–47). We
investigated two types of models that might
support multiscale representations (figs. S20
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Fig. 6. Multiscale coding does not require early exposure to large-scale
environments during development. Comparison of multiscale properties
between laboratory-born bats that were raised in a 5-m-sized room (27)
and have never experienced large-scale environments during development
(green) (table S1, dataset 4) versus wild-born bats that were caught as adults
outdoors (gray). Both groups of bats were tested under identical conditions
in the 200-m tunnel. (A) Schematic of experimental design. The only difference
between laboratory-born and wild-born bats occurred during early life;
subsequent stages were identical: Both groups spent several months in the
same colony-room before surgery, and then the training and recording
procedures were identical for both groups. (B) Examples of firing-rate maps
and raster plots for six cells recorded from laboratory-born bats flying in

the large-scale environment (200-m tunnel). Same graphical conventions as in
Fig. 2A. (C to E) Distributions of (C) number of fields per direction, (D) field
sizes and (E) field-size ratio for laboratory-born bats (green) and wild-born
bats (gray), recorded in the same large-scale environment. (C) nlab = 161 cells ×
directions, nwild = 331. (D) nlab = 649 fields, nwild = 1629. (E) nlab = 82 cells,
nwild = 172 [only cells with ≥2 fields shown in (E)]. y axes are in log scale.
(Insets) Same histograms with y axis in linear scale. (F to H) Population
comparisons between laboratory-born and wild-born bats: (F) number of fields
per direction, (G) field sizes, and (H) field-size ratio. Boxplots denote the
median (horizontal line), 25 to 75% (box), and 10 to 90% (whiskers); P values
of Wilcoxon rank-sum tests are indicated. (F) df = 490, z = –1.33. (G) df =
2276, z = –8.92. (H) df = 252, z = –0.47. Despite significant difference in the
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to S23 and supplementary text). First, we used
a continuous attractor neural-network frame-
work (fig. S20, A to C) (40, 42–44, 47, 48). We
generated a network with multiple interact-
ing attractors at various scales, in which each
neuron could participate in any of the attrac-
tors at a random location (fig. S20A) (27). Net-
work simulations showed coherent bumps of
activity at each attractor, with different bump
widths (fig. S21, A and B), and single neurons
exhibited multifield, multiscale coding (fig.
S20B) that was consistent with our experimen-
tal data. Second, we explored a set of feedfor-
ward models, in which CA1 neurons received
inputs from CA3 and medial entorhinal cortex
(MEC) with diverse synaptic strengths (fig.
S20, D to J) (27). The modeling suggested that
the experimental data were inconsistent with
a strong periodic grid input and were most
consistent with a model in which the major
input into CA1 comes from CA3, in which in-
dividual CA3 neurons exhibit a single place-field
(supplementary text and fig. S20J).We thus pre-
dict that in very large environments, (i) MEC
neurons should not exhibit strong periodic-
ity, and (ii) place cells in CA3 (unlike those in
CA1) should exhibit single place fields.

Discussion

We found a multiscale neural code for large
environments: Single hippocampal neurons
in the dorsal CA1 area of bats exhibitedmany
fields, and the different fields of the same
neuron varied dramatically in size, with an
up to 20-fold ratio in the size of different place
fields for the same neuron. This unknown
coding scheme was revealed through the use
of an extremely large environment. This find-
ing constitutes a fundamentally different phe-
nomenon from the well-known gradient of
place field sizes along the longitudinal ana-
tomical axis of the hippocampus (14, 17, 49)—
where each neuron has one characteristic
spatial scale, and this scale changes between
neurons according to anatomical position.
In this study, by contrast, all the recordingswere
conducted in the same anatomical position,
the dorsal CA1 (fig. S1), and we found that in-
dividual neurons did not have a single scale
but rather that the spatial scale of the same
neuron varied dramatically across the envi-
ronment. Further, this neural codewas observed
from the first day of exposure to the environ-
ment and was similar between laboratory-
born and wild-born bats, suggesting that the
multiscale code is a very robust phenomenon
that does not require substantial recent ex-

perience with the test environment nor
early experience with large environments
in general.
Previous studies in rodents have reported

multiple place fields for individual CA1 neurons
in (relatively) large environments (18, 31, 32)—
although the number of fields per neuron was
much smaller than we found here—but no
study to date has found the multiscale prop-
erty that we discovered here for individual
neurons. Our theoretical decoding analysis
provides a simple functional explanation for
this multiscale code: For very large environ-
ments, multiscale coding outperforms all the
other codes that we considered, in terms of
reducing the number of required neurons and
minimizing the decoding errors. We hypoth-
esize that the reason why previous studies
(18, 31, 32) did not find amultiscale code was
that they usedmuch smaller environments, or
concatenated small compartments, where such
a code does not provide a functional advantage.
Recordings from bats flying in a small environ-
ment did not show a multiscale code (Fig. 4).
The absence of amultiscale code in the small

environment can be interpreted in two ways:
(i) Neurons in small environments exhibit the
classical place code and switch to a multi-
scale code in large environments. (ii) Multi-
scale coding is the underlying representation
in all environmental scales, but the multiscale
nature of the code cannot be revealed in small
environments, where the firing reflects a small
“pinhole view” of the larger multiscale map,
and therefore the largest fields are too big to
be seen because they cover the entire space.
However, option (ii) seems unlikely because we
would then expect to see in the 6-m setupmany
neurons that fire over the entire environment,
thus reducing substantially the percentage of
place cells out of the neurons active in flight—
but in fact, these percentages were remarkably
similar between the 6-m and 200-m environ-
ments (83.3 and 83.4%, respectively).
Our multiscale findings open the way for

numerous future questions on the neuro-
biology of large-scale navigation. For exam-
ple: What are the mechanisms that underlie
thismultiscale coding that we discovered? Our
network modeling suggested that one possi-
bility is a feedforward convergence of inputs
fromCA3, where each CA3 neuron has a single
field (fig. S20, D, left, and J), and also predicted
that MEC neurons should not exhibit spatial
periodicity in large environments (fig. S20, G
to I). Further, what is the biological decoder
thatmay read this code downstream?How are

such large spaces learned by the hippocampal
system? Are there ultralong compressed firing
sequences during rest and sleep, similar to
sequences observed in laboratory environments
(50–52), but extending over hundreds of meters
or more? If so, what are the mechanisms that
could create these sequences under this multi-
scale code, in which each neuron would par-
ticipate multiple times in each sequence, each
time with a different resolution? More broadly,
these findings call for performing neuro-
physiological research in very-large-scale envi-
ronments on all types of hippocampal and
entorhinal spatial neurons. We posit that such
research is crucial for understanding the brain’s
“navigation circuit” for two reasons: First, most
animals and humans evolved to navigate in
multicompartment environmentswith differ-
ent spatial scales, including very large scales,
so it is important to conduct neurobiological
research on large scales. Second, studies in
humans have emphasized that spatial scale
is important for navigation; people navigate
differently in large versus small environments,
which calls for conducting navigation experi-
ments in very large environments (53). Our
study provides direct single-neuron evidence
that the use of a real-world spatial scale can re-
veal a fundamentally newkind of spatial coding
in the hippocampus. This work thus makes a
step toward bridging the major gap between
the neurobiological tradition of studying the
brain’s navigation circuit in small-scale labora-
tory setups and the ecological tradition of study-
ing large-scale animal navigation outdoors.

Materials and methods summary

We conducted tetrode-based recordings of
single neurons in the dorsal hippocampus
area CA1 of Egyptian fruit bats (Rousettus
aegyptiacus), in bothwild-born and laboratory-
born bats, using a wireless electrophysiology
system, while the bats were flying in a very
large environment (200-m-long tunnel), in
either familiar or novel conditions. For com-
parison, we also recorded from bats flying in a
6-m segment of the tunnel. The experimental
datasets are summarized in table S1. We local-
ized the bat’s position in the tunnel using a
radio frequency–based system yielding ~9-cm
precision.We computed firing-ratemaps sepa-
rately for each flight direction and used spatial
information and a shuffling procedure to iden-
tify significant place cells. Individual place fields
were detected as prominent, stable, and sig-
nificantly tuned peaks in the firing-rate maps.
To theoretically compare the observed spatial
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field-sizes distribution [(G) P = 5 × 10−19], the field-size ratio distribution
did not differ significantly [(H) P = 0.64], indicating that the multiscale code
exists also in neurons recorded from laboratory-born bats. (I) Anatomical
positions of tetrodes along the CA1 longitudinal (dorso-ventral) axis and

proximo-distal axis [0% longitudinal: dorsal (septal) pole of CA1; 0% proximo-
distal, proximal border with CA2]. Tetrodes from both groups had similar
longitudinal coordinates in dorsal CA1, but laboratory-born bats’ tetrodes
concentrated more proximally along the proximo-distal axis of CA1.

RESEARCH | RESEARCH ARTICLE
on M

ay 28, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Eliav et al., Science 372, eabg4020 (2021) 28 May 2021 11 of 12

1: Single small field
2: Single large field
3: Single field, dorso-ventral gradient
4: Multiple small fields (Rich et al. 2014)
5: Multiscale (population)
6: Multiscale (single-cell), matching bat data in 200 meters
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F Energy considerationsFig. 7. Theoretical analysis showed that multiscale coding decreases the decoding error for large
environments. Decoding accuracy analysis for simulations of six different models (encoding schemes), using
maximum likelihood decoder and integration time window of 500 ms (27). (A) We examined six different
encoding schemes for spatial representations; shown here are 10 simulated example neurons for each scheme:
(scheme 1) single field with small size; (scheme 2) single field with large size; (scheme 3) single field with
gradually increasing field-size across neurons – mimicking the dorso-ventral anatomical gradient of field
sizes; (scheme 4) multiple small fields [the distribution of field-propensity was taken from (18)]; (scheme 5)
multiple fields with fixed size per neuron, but with variable sizes across the population; and (scheme 6) multiple
fields with multiscale per neuron (as in the bat data). In schemes 5 and 6, we matched the distribution of
field sizes to our data (fig. S8). The mean coverage in schemes 2, 5, and 6 was identical (27). (B) (Left) Minimal
number of neurons required for reaching mean decoding error <2 m, plotted as a function of different
environment sizes (from 20 to 1000 m). (Right) Slopes of the curves on the left, representing how many
additional neurons are required on average when increasing the environment size by 1 m. Colors represent
the six encoding schemes. (C to E) Decoding errors when using n = 50 neurons. (C) Mean decoding error
versus environment size, showing that schemes 1, 3, and 4 exhibit huge decoding errors for large environments.

(Inset) Zoom-in on errors smaller than 20 m (y axis), showing that per-neuron multiscale encoding (scheme 6, purple) outperforms fixed scale per-neuron
(scheme 5, blue) in terms of mean decoding error. [(D) and (E)] Catastrophic errors. (D) Rare large errors (99th percentile of decoding error), plotted versus
environment size. (Inset) Same plot in log-scale for the y axis. (E) Probability of decoding error larger than 5% of the environment size, plotted as a function of
environment size. (F) Theoretical estimate of energy expenditure under the various coding schemes: Shown is the number of ATP molecules per second required to
represent the environment with mean decoding error < 2 m, plotted against the environment size (27).
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coding scheme with a set of five other coding
schemes, we generated synthetic data for each
coding scheme and then used maximum-
likelihood and population-vector decoders
to test their decoding performance. To theo-
retically explore the possible neural-network
mechanisms underlying the observed coding,
we considered both an attractor network
model, based on multiple interacting attrac-
tors that randomly share neurons between
them, as well as four feedforward models,
based on inputs fromMEC and CA3. Further
details can be found in the supplementary
materials, materials and methods.
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Materials and Methods 

  
Subjects and behavioral setups 

Eleven adult male Egyptian fruit bats, Rousettus aegyptiacus, were included in this study 

(weights 160–200 gr). Information on the 11 individual bats is summarized in Table S1.  Prior to 

the start of experiments, all bats were housed for several months in a large vivarium: a 5.3 × 5.0 

× 2.9 meter colony room with many enrichment items and dozens of other bats living 

communally (see photos of this room in fig. S16A).  All the bats were then pre-trained for a few 

days in a large flight-room (5.8 × 4.6 × 2.7 meters) to fly between two landing-balls that were 

similar to the balls used subsequently in the tunnel experiments; the goal of this pre-training was 

to get them used to flying between the balls and landing on them for food reward.  All 

experimental procedures were approved by the Institutional Animal Care and Use Committee of 

the Weizmann Institute of Science. 

Bats no. 1–5 (“dataset 1” in Table S1) were caught as adults in the wild (in Israel). 

Following pre-training in the flight-room, the bats were trained to fly continuous directed flights 

in a long tunnel (Fig. 1E), and to shuttle between two landing balls that were located at the two 

ends of the tunnel (see fig. S3A for example trajectories).  Food (fruit) was available to the bats 

at the landing balls, and the bats could also land and rest there.  The tunnel was uniformly 

illuminated (illuminance level: 5 lux).   Tunnel dimensions were as follows: Length = 194 m (the 

linearized distance between the two balls was 185.3 m); Width = 2.30 m; Height at maximal 

point = 2.35 m (see Fig. 1E for top-view and Fig. 1H for the cross-section of the tunnel).  The 

tunnel was composed of a long 140 m arm and a shorter 54 m arm, with a 43  smooth turn 

connecting them (Fig. 1E).  The inverted V-shape of the tunnel’s ceiling was designed to channel 

the bats to fly at the center of the tunnel (Fig. 1H and fig. S3B-C).  Along the tunnel we placed 
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13 landmarks (fig. S2), whose positions were fixed across all days and all bats.  All these bats 

were well trained and familiar with the tunnel prior to the microdrive-implantation surgery (see 

Table S1 for training history).  Following training, bats were implanted with a microdrive for 

electrophysiological recordings in dorsal hippocampal area CA1 (see below).  Each experimental 

day started with a sleep session and ended with a sleep session (each sleep session lasting 10–15 

min). For the sleep sessions, the bat was placed alone inside a small covered cage which was 

positioned in a quiet location inside the tunnel, on the floor. Data from bats no. 1–5 are shown in 

Figs 1, 2 and 3. 

Bats no. 6–8 (“dataset 2”) were also caught as adults in the wild, and CA1 neurons were 

recorded while bats were flying back-and-forth between two balls located at the ends of a 6 

meter portion of the tunnel; this short 6 m portion was blocked using curtains. Data from bats no. 

6–8 in the 6-m short tunnel are shown in Fig. 4. 

Bats no. 6–7 (“dataset 3”) were recorded in a 130 m blocked portion of the tunnel (part of 

the long arm), in the exact same manner as bats 1–5 (dataset 1). The only two differences were: 

First, these bats were pre-trained and recorded in a 6-meter blocked segment of the tunnel (bats no. 

6–7 were two of the three bats described above for dataset 2).  Second, we then recorded their CA1 

neural activity from the very first exposure-day (‘day 1’) in the long tunnel – on day 1 we opened 

the blocking-curtain and allowed them to fly back-and-forth along the entire 130-meter length. On 

subsequent days we continued testing them in the 130 m tunnel in every session, with recordings 

lasting overall for >1 month. These data starting from day 1 are shown in Fig. 5. 

Bats no. 9–11 (“dataset 4”) were born in the lab and raised in the enriched large colony 

room (5.3 × 5.0 × 2.9 m) with many other bats and multiple enrichment items (fig. S16A). Upon 

reaching adulthood (age >18 months; note the longevity of this bat species is >20 years; weight 
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>170 gr for all these 3 bats), these lab-born bats were pre-trained in the flight room, and 

subsequently were trained in the 200-m tunnel, in the exact same way as bats no. 1–5 – and were 

then recorded also in the exact same way as bats no. 1–5 (same landmark positions, same 

experimental procedures, same localization system, etc.).  The precise matching of training and 

recording conditions between the lab-born bats no. 9–11 and the wild-born bats no. 1–5 was 

done in order to allow comparing large-scale spatial representations in CA1 of lab-born bats 

versus wild-born bats. These comparisons are shown in Fig. 6. 

 

Animal localization system 

The 3D position of the bat in the tunnel was tracked at a rate of 18.3 Hz or 14.2 Hz, using an 

ultra-wideband (UWB) radio-frequency-based localization system (BeSpoon Inc). This system 

used 14 antennas whose 3D positions were calibrated at a 1 cm accuracy by surveyors. The 14 

antennas were located around the tunnel (Fig. 1F, red dots), and during recording sessions they 

were used to measure the distance to a mobile active radio tag that was mounted on the bat’s 

head: The bat’s position was estimated as the intersection of the spheres around each antenna, 

which represent the measured distances from the antennas to the mobile tag (Fig. 1F). A real-

time server collected all the distance measurements from the antennas, and further processed the 

raw distance measurements to yield 3D localization in the reference-frame of the antenna-array. 

Next we converted the data to the coordinate-frame of the tunnel.  We first used the antenna 

array to calibrate the position of the entire midline of the tunnel (the tunnel’s ‘backbone’): This was 

done by slowly moving a mobile tag along the center of the tunnel (the midline) – which yielded the 

tunnel position in the coordinate-frame of the antenna-array, i.e. the same coordinate system used 

later for tracking the bats.   Landmark positions were measured and calibrated similarly.  We 

subsequently projected the measured bat positions onto this calibrated tunnel midline (‘backbone’). 
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To estimate the precision of the localization system in a moving-tag scenario, we did the 

following calibration (Fig. 1G).  We rapidly slid a mobile tag multiple times along a taut thin wire 

(~10 m long) that was placed perpendicular to the tunnel, and measured the tag’s position. Then, we 

calculated the transverse deviations of the tag position from the interpolated line that connected the 

two ends of the wire – whose positions were measured separately with high precision.  These 

transverse deviations (transverse to the wire, which means parallel to the long axis of the tunnel) 

represent the measurement-errors of the localization system along the long axis of the tunnel – 

which is the direction of the bat’s 1D flight. These errors were found to have a standard deviation of 

8.9 cm (Fig. 1G) – two orders of magnitude better than the typical ~5–10 meter accuracy of GPS. 

 

Surgery and neural recording techniques 

After training or pre-training, each bat was implanted with a four-tetrode microdrive (weight 2.1 

gr), loaded with four tetrodes, where each tetrode was constructed from four strands of insulated 

wire (17.8 µm diameter platinum-iridium wire or 12.7 µm diameter nichrome wire) – as described 

previously (24-26, 30).  Some of the bats were implanted with a 16-tetrode microdrive (weight 

3.4 gr). Tetrodes were gold-plated to reduce wire impedance to the range between 0.25–

(at 1 kHz). The microdrive was implanted above the right dorsal hippocampus (3.0–3.6 mm 

lateral to the midline and 5.7–5.8 mm anterior to the transverse sinus that runs between the 

posterior part of the cortex and the cerebellum).  Surgical procedures were similar to those 

described previously (24-26, 30): We used an injectable anesthesia cocktail composed of 

Medetomidine 0.25 mg/kg, Midazolam 2.5 mg/kg and Fentanyl 0.025 mg/kg (55) – and 

subsequently added supplemental injections as needed, based on monitoring the bat’s breathing 

and heart-rate. The microdrive was attached to the skull with bone screws, using a layer of 
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adhesive (Super-Bond C&B) and then dental acrylic; the craniotomy was then covered with an 

inert silicone elastomer (Kwik-Sil or Kwik-Cast). A ground wire was attached from the 

microdrive to a bone-screw that touched the dura in the frontal plate.   Following surgery, the 

tetrodes were slowly lowered towards the CA1 pyramidal cell layer over a time period of 2–3 

weeks; positioning of tetrodes in the layer was provisionally assessed by the presence of high-

frequency field oscillations (‘ripples’) and associated neuronal firing, and was later verified 

histologically (fig. S1B).   During recordings, a 16-channel or 64-channel wireless neural-

recording device (‘neural-logger’) was attached to an Omnetics connector on the microdrive. 

Signals from all channels of all the tetrodes were amplified (×200) and bandpass filtered (1 – 

7,000 Hz), and were then sampled continuously at 29.3 kHz or 31.25 kHz per channel, and stored 

on-board the neural-logger.  During subsequent offline processing, the neural recording was 

further high-pass filtered with 600 Hz cutoff for spikes – creating a spike bandwidth of 600 – 

7,000 Hz – and then 1 ms spike waveforms were extracted using a voltage threshold. 

 

Spike sorting 

Spike-sorting procedures were similar to those described previously (24-26, 30, 56). Briefly, 

spike waveforms were sorted manually using Plexon Offline Sorter, on the basis of their relative 

amplitudes on different channels of each tetrode. Data from all sessions – the behavioral session 

and the two sleep sessions – were spike-sorted together. Well-isolated clusters of spikes were 

manually selected, and a refractory period (< 2 ms) in the inter-spike-interval histogram was 

verified. Spike-sorting was done in consecutive time-windows, to allow for drift-correction of 

the spike clusters. We included only neurons that were stably isolated throughout the recording.  

In total we recorded 757 well-isolated CA1 neurons from the 11 bats, of which we further 



7 
 

analyzed only putative pyramidal cells with firing rate  5 Hz, which met behavioral-coverage 

criteria as described below (n = 624 cells): see Table S1 for details on the four individual 

datasets.  The main analyses in the paper (Figures 1, 2, 3) focused on dataset 1 – wild-born bats 

flying in the 200-meter tunnel: In this dataset, a total of 304 well-isolated cells were recorded 

from dorsal hippocampal area CA1 of five bats.  We further considered here only putative 

pyramidal neurons (n = 248, based on mean firing-rate of  5 Hz along the entire recording 

[including both behavioral and sleep sessions]), and discarded putative interneurons (n = 56, 

mean firing-rate > 5 Hz).  Of those 248 neurons, n = 235 cells met behavioral-coverage criteria 

(see below), and were considered for further analysis. 

 

Extracting flights and computing firing-rate maps 

The bats’ flight behavior was mostly restricted to a 1D narrow horizontal corridor at the middle 

of the tunnel (Fig. 1H, and fig. S3B-C). Therefore, all the analyses and statistical tests in this 

study were performed strictly on the basis of 1D firing-rate maps (projections on the long axis of 

the tunnel), as follows. 

Location data from the localization-system were first processed to remove outliers (we 

removed data-points that were far away [>2 m] from the tunnel’s midline, or data with velocity 

higher than 20 m/s). We then linearized the data by projecting the valid positional data onto the 

long 1D axis of the tunnel (the tunnel’s “backbone”, which was measured using the radio-frequency 

localization tag, as explained above). We then filled short gaps where localization data were 

missing – which constituted a total of 3.1% of the data; this was done as follows:  (i) Gaps of up to 

1/3 second were linearly interpolated.   (ii) Gaps between 1/3 second and 1.5 seconds were 

interpolated only if the effective velocities before, during and after the gap were similar (where 



8 
 

velocity during the gap was calculated as the distance between the data-points surrounding the gap, 

divided by the gap-duration).   (iii) Larger gaps were not interpolated but rather extrapolated for 1/3 

second from each side of the gap.   These criteria and parameters for interpolating and extrapolating 

the missing data (which constituted only 3.1% of the total data) were chosen as follows: we 

conducted extensive simulations of gaps that were artificially added to real data that did not contain 

any actual gaps – and the criteria of interpolation and extrapolation were taken such that they 

yielded a maximal error of no more than 25 cm on average with respect to the original data points 

that were taken out in these simulations.   Finally, 1D positional data were up-sampled to 100 Hz. 

Firing-rate maps were constructed for flight periods only – separately for the two flight 

directions. Individual flights were identified by local peaks in the flight speed that had maximal-

speed > 4 m/s without changes in flight direction. To improve the accuracy in estimating flight 

speed, the bat’s position was smoothed using a smoothing spline (csaps.m in Matlab), based on 

which the instantaneous speed was extracted. The beginning and end of each flight was taken as 

the time-point where the bat’s speed crossed a threshold of 1 m/s.  We included in further 

analysis only unidirectional flight-trajectories longer than 100 meters, and the spikes that 

occurred during these flight-trajectories. 

To compute 1D firing-rate maps, we used fixed-sized spatial bins (20 cm) and collapsed 

the time-spent (occupancy) data and the spike counts onto the horizontal 1D dimension along the 

tunnel (linearized x-axis). We smoothed both the spike-count and time-spent 1D maps with a 

 2.5 bins = 0.5 m), and then divided, bin by bin, the smoothed 1D spike-

count by the smoothed 1D time spent. Only sessions with more than 10 long flights per direction 

were included for further analysis (see Fig. 1K for the distribution of the number of such long 

flights [> 100 m] per direction).  The exact same criteria, binning and smoothing were used also 
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for constructing maps in dataset 4 – lab-born bats flying in the 200 m tunnel, and in dataset 3 – 

wild-born bats flying from day 1 in a 130 m tunnel.  For dataset 2 – the 6 m short tunnel – we 

included also slower flights (maximum speed > 2 m/s without changes in flight direction), and 

used a 10- 2 bins for constructing firing-rate maps over 6 m. 

 

Quantifying spatial coding, definition of place-cells, and defining place-fields 

To quantify spatial coding of the firing-rate map in each direction, we used the spatial information index 

(57), measured in bits/spike: spatial information per spike (57, 58) is equal to  ( / ) ( / ), 

where  is the firing-rate of the cell in the ith spatial bin,  is the probability of the bat being in the ith 

bin, and =  is the overall mean firing-rate.   We calculated the spatial information index also for 

spike-train shuffles.  To shuffle the spike-train, we rigidly and circularly shifted in time the spikes of 

each flight, using a uniform random shift; the value of the shift differed randomly between individual 

flights, so each shuffle consisted of a unique set of temporal shifts that differed randomly across flights. 

We performed 1,000 such random shuffles.  A cell was regarded as a significant place-cell in a 

particular flight-direction if the following criteria were met for that direction:  (i) The cell emitted at 

least 50 spikes in-flight; (ii) Spatial information was > 0.25 bits/spike; (iii) Spatial information was also 

> 99% of the shuffles; (iv) The cell had at least one significant place-field (see next paragraph for place-

field detection and significance). 

To detect place-fields, we took the following steps.  (1) First, we extracted local peaks in 

the firing-rate map, with a peak-rate of > 1 Hz.   (2) To remove small local peaks ‘riding’ on a 

large field, we searched for shallow ‘dips’, i.e. cases where the dip between two adjacent peaks 

was >50% of the firing-rate of the larger peak – and then disregarded the lower peak.   (3) We 

then defined the boundaries of the field as follows. We identified the zone covering 20% of the 

peak firing rate of that place-field. Then, in order to overcome the smearing caused by the 
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smoothing of the firing-rate map, we defined the field size as the 5–95% percentile of the 

positions of the spikes that occurred inside the 20% zone (see fig. S4). The use of raw spikes for 

defining field sizes was done to enable the detection of very small fields, if they exist.   (4) Field 

stability criterion: We required at least 5 different laps with spikes to have occurred inside the 

place-field, or 20% of the laps with spikes – whichever is larger.   (5) Field significance criterion: 

In order to capture clear distinct fields, we treated a place-field as significant only if it had 

significant spatial information in its local area, near the place-field. To quantify this, we looked at 

the area surrounding the field (specifically, the field itself plus 50% of the field’s size in each 

direction). Focusing on this local area around the place-field, we calculated the spatial 

information in this local area for the real spikes and also for 1,000 shuffles (same rigid shuffling 

as above), and considered the field to be significant only if it had spatial information > 95% of the 

shuffles in the same local area.    (6) Finally, we considered place-fields only at locations where 

the flight-speed was high, away from takeoff and landing. For this we defined fixed takeoff- and 

landing-zones (fixed across all bats and sessions), where the flight speed was lower than 80% of 

the grand median flight speed over the entire tunnel – and removed any fields that were fully 

contained within these takeoff and landing zones (see Fig. 1I, gray areas). The flight speed in the 

valid area (excluding the takeoff and landing zones) was very constant (Fig. 1I,J). 

For each neuron we computed five indices: (i) Spatial information, in bits/spike – as defined 

above (Fig. 2B).  (ii) Sparsity (58) (Fig. 2C), defined as / = ( ) /  , which is 

bounded between 0 and 1, with low values indicating high spatial selectivity.  (iii) Total coverage of 

all the fields, defined as the sum of all field sizes per direction, normalized by the length of the 

flight-track excluding the takeoff and landing zones (Fig. 2D).  (iv) Map correlation – an index of 

map stability – computed as the Pearson correlation between maps computed for odd versus even 
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flights (Fig. 2E).  These four indices were computed separately for each flight-direction.    

(v) Pearson correlation between the maps for the two flight-directions (directionality: Fig. 2F). 

 

Within-day dynamics of place fields 

Place-field detection in time-windows: For the analysis shown in Fig. 5F, fig. S20J and fig. S23, 

we considered place-cells defined as above. For these neurons, we detected place-fields on a 

flight-by-flight basis, in order to measure within-session dynamics in place-fields.  This was 

done as follows: First, we computed firing-rate maps for each flight using a 5-flight sliding 

windows, with 1-flight steps. Maps for each flight were computed similarly to the computation 

done for the entire session, except that here, since the maps were based on a smaller number of 

flights (n = 5), we used a ).   

Second, we detected fields for each per-flight firing rate map, similar to the detection performed 

on the entire session, but with the following changes due to the sparser data: minimum number 

of spikes = 3; minimum flights with spikes = 2; overlapping fields were defined using a 20% 

criterion (instead of 50%) to avoid over-splitting of fields due to the sparseness of the data; and 

we did not use the local spike shuffling here.   Third, we merged fields across different flights if 

their center-of-mass positions were spatially closer than their mean field size; in addition, to 

account for global drift across the entire session, we merged fields if the mean location of one 

field across all windows fell within the 25–75% percentiles of the edges of the other field, across 

flights.   Fourth, we removed fields detected only in isolated windows, if that field was not 

detected in the 5 windows before and in the 5 windows after the current window. Further, fields 

that were active in less than 20% of the session’s flights or in less than 5 windows were entirely 

removed, similar to our field-stability condition in the main analysis. 
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Detection of changes in place-fields: Three types of changes were detected: 

1) Appearance/disappearance of fields: if a field did not emit any spikes in the first two flights 

or in the last two flight, we considered this field as appeared or disappeared, respectively. If a 

field fired zero spikes for 5 consecutive flights, and then resumed firing, we considered it as 

disappeared and then appeared again. 

2) Change in field size: we looked for step-like changes in the field size during the session, as 

follows: (i) the change in field size (mean size before versus mean size after the change) was 

>5 meters or >50% of the field size – and in case of the 50% criterion, we also required a 

minimal change of >1 meter in field-size; and (ii) there were at least 5 flights before and 5 

flights after the change-point that were stable, i.e. no change was detected there. Then, if the 

field size increased, the new segment of the field was considered as appeared; and vice versa, 

if the field size was reduced, the missing segment was considered as disappeared. 

3) Change in field location: we looked for step-like changes in field location during the session, as 

follows: (i) the change in field location (mean location before versus mean location after the 

change) was >5 meters or >50% of the field size – and for the 50% criterion, we also required a 

minimal change in field location of >1 meter; (ii) there were at least 5 flights before and 5 flights 

after the change-point that were stable, i.e. no change was detected there; and (iii) the overlap 

between fields (before and after the change) was less than 50%.   The field was then considered 

as disappeared from its old location (before the change) and appeared in the new location. 

Examples of field detection dynamics are shown in fig. S23A. 

 
Statistics 

Correlations were based on Spearman’s correlation coefficient, , unless stated otherwise (this 

nonparametric rank correlation was used because in many cases the data were not normally 
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distributed).   We used the Kolmogorov-Smirnov test to compare distribution shapes.   To assess 

the significance of the spatial tuning of place-cells, we compared the real data to spike-shuffled 

data (99th percentile), as described above.   To compute the shuffled distribution for map 

correlations between the two flight-directions (Fig. 2F, black line), we computed all the map 

correlations between direction 1 in cell i and direction 2 in cell j, where i  j (cell shuffling).   To 

compute the shuffled distribution of the distances between place-fields and landmarks (Fig. 3B, 

black lines), we randomly shifted the location of each field independently 10,000 times circularly 

along the tunnel.  To compare proportions in Fig. 5F, we plotted error bars as the standard error of 

the proportion and used the two-proportion z-test. 

 

Histology 

Histology was done as described previously (23, 24). In brief, at the end of recordings, the bats 

were anesthetized, and electrolytic lesions (DC positive current of 3 -s duration) were made 

to assist in the precise reconstruction of tetrode positions. The bat was then given an overdose of 

sodium pentobarbital and, with tetrodes left in situ, was perfused transcardially using 4% 

paraformaldehyde or 4.5% histofix. The brain was removed and thin coronal sections were cut at 

30- -stained with cresyl violet and were photographed to 

determine the locations of tetrode tracks in dorsal CA1 (e.g. fig. S1B, right).  Positions of tetrode-

tracks were then projected onto coronal plates of our stereotaxic brain atlas of the Egyptian fruit bat 

(59), and were also projected onto a 3D rendering of CA1, which we prepared based on our 

stereotaxic brain atlas (see 3D rendering in fig. S1A). Finally, we used these projections to estimate 

the tetrode-track position along the longitudinal axis and proximo-distal axis of CA1 (fig. S1B-left 

and S1C, and Fig. 6I; the borders of CA1 in the atlas were determined based on a combination of 

histological, immunohistochemical, and tract-tracing data from several dozens of bats). 
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Compartmentalization model 

Here we tested whether the statistics of field-sizes in the large-scale spatial maps in the bat can be 

explained by a scenario where the hippocampus is segmenting the tunnel into small independent 

segments (according to the landmark locations), wherein fields could be concatenated at the edges 

of the compartments (i.e., around the landmarks), thus creating larger fields.  We considered each 

segment between landmarks in the tunnel as a separate, small-scale compartment. To model this, 

we generated compartmentalized maps using field statistics that we observed in the data, as 

follows: First, for each segment of the environment between two landmarks, we randomly drew 

the number of simulated small fields from a Poisson distribution. The rate of the Poisson 

distribution was chosen such that the average coverage of the compartmentalized maps was 0.15, 

to match the empirical average of the bat data in the 200 m tunnel (fig. S13, top row), or we set 

the rate of fields to match the empirical average number of fields in the data (fig. S13, bottom 

row).    Second, each simulated field had its size drawn from a gamma distribution that was fitted 

to one of the following: (i) Fitted to the distribution of field-sizes measured in the small 

environment of 6 m (Fig. 4): this resulted in the following gamma-distribution parameters: shape 

parameter, 3.56; scale parameter, 0.37 m. This option was plotted in fig. S13, left column.    

(ii) Fitted to the data in the small 6-meter environment, as in (i), but scaled up to match the 

median inter-landmark interval. We used here the same scaling factor = 0.3 as in Figure 7 (see 

the next section in the Methods for more details). This option was plotted in fig. S13, middle 

column.   (iii) Fitted to the distribution of the smallest place-fields per neuron in the large 200-

meter environment. This option was plotted in fig. S13, right column.    Third, within each 

segment, we drew randomly the locations of each field (uniform distribution), and their sizes 

(from the gamma distribution described above). Importantly, we allowed fields from one segment 
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to extend to the neighboring segment and merge together, to produce larger fields. Fields within 

the same segment were not allowed to overlap.  We then compared these null model distributions 

of field sizes (fig. S13, cyan) with the experimental data distributions (fig. S13, gray bars). 

 

Simulations of various spatial encoding schemes, and analysis of decoding errors 

We created populations of neurons with simulated place-fields, using 6 encoding schemes: These 

different schemes were aimed to compare coding by single-fields versus multiple-fields versus 

multiple-fields with a multiscale code (see below).  The comparison between the 6 encoding 

schemes was done by utilizing two decoders – a Bayesian maximum-likelihood decoder and a 

population-vector decoder (see below) – which we used here in order to study how the field 

numbers and distribution of field-sizes affect the accuracy with which an environment of size L is 

represented.  Decoding was done with an integration time window of 500 ms (Fig. 7 and figs S17 

and S18); qualitatively similar results were obtained when using different time-windows (fig. S19). 

Encoding.  In our simulations, the environments had a 0.2 m resolution (0.2 m bin size: as in our 

empirical firing-rate maps).  We varied the environment-size L between 20–1000 m.   To 

simplify the analysis, we neglected neuron-to-neuron variability in firing rates: In all cases we 

assumed that neurons fire with Poisson statistics independently from each other, with in-field 

firing rate of 10 spikes/second (when using integration time-window of 500 ms, see below).  We 

considered 6 schemes for encoding position in the environment (see Fig. 7A): 

Scheme 1: A single small field.  Each neuron had one field of size 1 meter, located randomly in 

the environment (uniform distribution). 

Scheme 2: A single large field.  Each neuron had one field located randomly in the environment 

(uniform distribution); field size was 0.15 × × (200/ )  meters, where L is measured in meters, 
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and the prefix 0.15 represents the average coverage of place-fields in our data for the 200 meter 

tunnel (see below).  The coverage in scheme 2 (as well as in schemes 3, 4, 5, 6) was thus scaled 

with environment size as  1/   – with   being a ‘scaling factor’ – as further explained below. 

Scheme 3: A single field per neuron, with gradually increasing field size across the neuronal 

population – mimicking the dorso-ventral anatomical gradient of field sizes in the hippocampus 

(17).   Each neuron had one field located randomly in the environment (uniform distribution). 

The field sizes linearly ranged from 1 meter up to  0.15 × × (200/ )  meters, i.e. a linear 

progression from scheme 1 to scheme 2. 

Scheme 4: Gamma-Poisson distribution of small fields, as described in ref. (18) – which is the 

only previous study that described quantitatively the distribution of the number of CA1 place-

fields in a 1D environment.  We randomly drew multiple fields for each neuron using the 

following steps (identical to the model in ref. (18)):  (i) We randomly chose a field-propensity 

value from a gamma distribution with shape parameter 0.57 and rate parameter 7.75 × ( /50)  m 

– the exact numbers reported in ref. (18).  This ensured that at L = 50 m (the approximate 

environment size in that study) the encoding was identical to the model of ref. (18)  – but for 

other values of L, the coverage scaled as 1/ , allowing a comparison to schemes 5, 6 below, 

which have the same scaling.   (ii) We then randomly drew multiple field positions from a 

Poisson distribution with a rate equal to the field-propensity value of each neuron.  All fields had 

a 1 m size.  A neuron was accepted into the population only if it had at least one field. 

Scheme 5: Multiscale field size distribution at the population level – with multiple fields per 

neuron that all have a fixed field-size.  We assigned a field size li for each neuron i, such that the 

field sizes of all neurons followed a gamma distribution with shape parameter  = 3.16  and scale 

parameter  = 1.8 × ( /200)   meters.  These parameters were taken from the gamma-
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distribution fit to the data (fig. S8); we opted to use the gamma distribution for the field-sizes, 

rather than the log-normal distribution, because a gamma distribution can be scaled naturally by 

changing the scale parameter , unlike the log-normal distribution.  The number of fields for each 

neuron was then taken as the rounded value of  0.15 × × (200/ )  /   (the division by li 

ensured that for a given environment size L, the average coverage was the same for all neurons, 

regardless of each neuron’s field-size).    Field locations were randomly distributed along the 

environment, with no overlaps. 

Scheme 6: Multiple fields per neuron, with a multiscale distribution of field sizes at the single-

neuron level – with all possible field-sizes per neuron.  For each neuron, we picked field sizes 

randomly from a gamma distribution with shape parameter  = 3.16  and scale parameter  

= 1.8 × ( /200) meters, as in scheme 5 – and the number of fields was chosen such that the 

coverage, i.e. the cumulative size of all the fields together, reached  0.15 × × (200/ )  .   

Field locations were randomly distributed along the environment, with no overlaps. 

Schemes 5v and 6v: These are variations of schemes 5 and 6, which have variable coverage 

across neurons that captures the full coverage-distribution of the data. We first fitted the 

coverage distribution of the neurons recorded in the 200 m tunnel (dataset 1) with an exponential 

distribution (fig. S17F). Then we created maps as in the original schemes 5 and 6, except that we 

iteratively added fields until a random target coverage (drawn from the fitted exponential 

distribution) was reached.  Similar to the original schemes 5 and 6, also here the coverage was 

scaled with the environment size as 1/ . 

For all schemes, fields were positioned uniformly and randomly in the environment.  To 

avoid distorting the uniform distribution of fields near the boundaries of the environment, we 

allowed fields to be located anywhere and be truncated at the boundaries.  In order to account for 



18 
 

the sub-linear increase in field-sizes as a function of the environment size (which has been reported 

in previous rodent experiments (21)), and the decrease in coverage as a function of environment 

size, we did the following: In schemes no. 2–6 the relative total coverage (the average fraction of 

the environment covered by the fields of each neuron) was decreased as ~1/  –  with = 0.3, 

where the value 0.3 was fitted from the experimental data (see below for further details). Likewise, 

in schemes 2,3,5,6 the mean field-size was increased as ~  (as a function of the environment size 

L) – also with = 0.3.  Note that, in schemes 2, 3, 5, 6, the pre-factor 0.15 represents the average 

coverage at the environment size of our experiments (200 m).  In schemes 4, 5 and 6, which had 

multiple fields per neuron, the fields of the same neuron were not allowed to overlap. 

To fit the scaling factor   based on the experimental data, we used the average coverage 

 and average field size  from the data recorded at two different environment-sizes L: the large-

scale environment (dataset 1: the 200 m tunnel) and the small-scale environment (dataset 2: the 6 

m tunnel).  That is, we used:  = (  + ) ,  where = ( )   and   = ( ) .  This 

calculation gave scaling factors of  = 0.36 and   = 0.24 , yielding a mean scaling factor of  

= 0.3 , which was subsequently used in all our analyses.  In fig. S17H we further explored a 

wide range of values for the scaling factor . 

We denote each neuron’s spatial selectivity map by fa,i(x), where i is the neuron index (i = 1,...,N), 

and a is the scheme index (a = 1,...,6).   fa,i(x) is equal to 1 if the neuron has a field in position x and 0 if it 

does not – that is, the field shapes in our model were taken to be rectangular (see examples in Fig. 7A). 

Generating spike counts.  We assumed that the animal starts each iteration of the simulation (each 

‘simulation-trial’) at a random position x = x0, and flies at velocity v = 8 m/s (the typical flight-speed 

we measured empirically) t.   The expected spike count of the neuron during that 
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trial is given by:  = , ( ) , where m0  is the expected spike count if the animal 

spent the entire interval within a field.   We used  m0 = 5  in all our simulations (taken together with 

the integration time window of 500 ms, this gives a 10 Hz in-field firing rate).  The actual spike count 

in each trial was drawn from a Poisson distribution with rate mi , and is denoted below as ni. 

Decoding.  We considered two decoders: 

Population Vector (PV) decoder:  The classical PV decoder (60, 61) was adapted to the case where 

the stimulus space (i.e., the environment) is not circular, and where neurons can represent more than 

one location. In each trial, for each scheme a  we computed the following sum over the N neurons: 

( ) = , ( ) 

The decoded location was then taken as the one that maximizes APV(x). 

Maximum Likelihood (ML) decoder:  Here we computed the log-likelihood of each neuron’s 

spike count, and summed over the N neurons (61): 

( |{ }) = [ , ( )] , ( ) 

Where the term on the left hand side denotes the log-likelihood of the bat being in position x given 

the observation of a vector of { } spikes in each of the neurons i.  The first term on the right hand 

side corresponds to a sum of spatial tuning of all neurons, weighted by their activity (similar to 

). The second term on the right hand side corresponds to a correction for unequal coverage of 

the neuronal representation in different locations.  This expression is an approximation of the 

likelihood function, where the decoder knows each neuron's firing-rate map (i.e., , ( )), but it 

does not rely on continuously computing a convolution of the firing-rate map with the animal's 

motion.  Again, the decoded location was then taken as the one that maximizes ( |{ }).  Note 
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that, unlike the PV decoder, the ML decoder accounts for the fact that if the spike-count is low, the 

animal is more likely to be in a place that is less well covered by the spatial representation – so in 

this sense, the ML decoder is better than the PV decoder – which is why we used the ML decoder 

for the main analyses (Fig. 7), and the PV decoder in the supplementary (fig. S18). 

Fig. 7 and figs S17–S19 show results from 106  simulation-trials generated by drawing 

random field locations 4,000 times, then drawing random spike counts from the Poisson 

distribution 10 times, and then performing decoding at 25 equally spaced locations spanning the 

entire environment (4,000 × 10 × 25 = 106). 

To estimate the energy expenditure (number of ATP molecules per second) that is 

required to represent the environment with a mean error of less than 2 meters (Fig. 7F), we used 

the following formula: 

    = ×  ×  × [ ]  

Where coverage is the proportion of area covered by fields in each scheme; in-field firing rate is 5 

spikes/s (the average in-field firing rate in our data: see fig. S6B); the number of required neurons 

is taken from the linear fit to the data in Fig. 7B; and [ ] = 600 × 10  is the number of ATP 

molecules required to generate one spike: this number was taken from ref. (38). 

 

Attractor-network model 

We developed a network model of multiple interacting continuous attractor networks, at different 

scales, which randomly shared neurons between them.  This model comprised N = 4,000 

neurons, with P = 8 continuous attractor neural networks (CANNs) embedded, each covering 

overlapping portions of the environment of L = 400 spatial bins. Each bin represents 0.5 m of the 
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tunnel, resulting in a total tunnel-length of 200 meters, as in the experimental data.  One attractor 

covered the entire environment, two intermediate attractors covered half of the environment 

each, and finally five smaller attractors covered consecutive fifths of the environment (see fig. 

S20A).  Each CANN was modeled as a one-dimensional chain of neurons with Mexican-hat 

connectivity and open boundary conditions (40, 43). 

We assigned each neuron to several CANNs, at random positions, as follows: for each 

CANN, a random sample of f = 0.3 of all the neurons were recruited (i.e., a random choice of 

1,200 out of 4,000 neurons for each attractor). Each neuron could participate in multiple 

CANN’s; the locations of the same neuron were independent between the different CANNs. The 

connection strength between each pair of neurons is the sum of contributions from each CANN 

to which both of the neurons belong. In particular, if neurons i and j both belong to a set of 

CANNs { }, the connection strength between these neurons is given by:   J = J  

Where  J = J  , and x  stands for the positional label of neuron i  

(i = 1,…,N; 0 < < ) in the corresponding p’th CANN, chosen randomly as explained above; 

 is the interaction radius of the corresponding CANN.  The dynamics of the network were 

controlled by the following equations for the synaptic current of each neuron, :     

= + + + ( ),  where ( ) is a neuronal gain function that has a 

threshold-linear form ( ( ) =  for > 0 , and 0 for < 0 );  is a uniform background input; 

and ( ) is position-dependent input to a neuron i at time t, which is determined by the 

position of the simulated animal at that moment, and was calculated as a sum of contributions 

from each CANN to which a given neuron belongs:   ( ) =
( )

 , where ( ) 

is the current simulated position, moving from left to right at a constant speed of 10 m/s. 
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A phase diagram of a single CANN was computed in ref. (62). In particular, for the CANN to 

be in the regime of a spontaneous generation of a bump of activity, the strength of recurrent excitation 

has to be big enough ( > 0.5).  When multiple CANNs with overlapping neuronal assignments are 

embedded in the network, there is a range of parameters for which all of them are in the regime of 

spontaneous bump generation.  In the simulations presented here (see fig. S20A-C and fig. S21), we 

used the following parameter values:  = 0.7; = 0.15; = 0.01 ; = 0.1; = 0.05;  the 

interaction length  for each CANN p was chosen to be 0.05 (5%) of the size of the area covered by 

this CANN (i.e. 10 m for the largest 200-meter CANN, 5 m for the two intermediate 100-meter 

CANNs, and 2 m for the five smallest 40-meter CANNs). 

We note that this model is fundamentally different from previous models that used 

multiple attractors for different environments, where only one attractor was active at any moment 

(42, 43), and also fundamentally different from models using non-randomly shared neurons (63). 

 

Feedforward models 

Input. We generated four types of hypothetical input neurons that project to a CA1 neuron: 

Model 1 – single-field CA3: Here each input neuron had one field, with field-size drawn from a 

gamma distribution fit to the data: shape parameter = 3.16, scale parameter = 1.8 meters (as in 

fig. S8).  The field was positioned uniformly at a random location in the environment. 

Model 2 – multi-field CA3: Here each input neuron had multiple fields such that the total coverage 

of the environment was 0.15. These spatial maps were generated as the maps in scheme 6 in Fig. 7. 

Models 3 and 4 – periodic MEC: Our model consisted of 5 modules with grid spacings that 

spanned a small range relative to the size of the environment – following theoretical models of 

optimal grid-cell encoding of large environments (64).  The periods we used were:   
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5 × [1,    s.  First, we generated two-dimensional periodic hexagonal profiles 

for each module. Then, the one-dimensional (1D) spatial maps of MEC inputs were taken as a slice 

through the two-dimensional (2D) maps described above (similar to ref. (65)). The angle of the 

slice was identical for all modules, in agreement with ref. (66).  The slice angle was varied from 0  

to 29  in 1  jumps. The slice phase (i.e., the position of the start of the slice) varied uniformly at 

random for each input neuron.  For the analyses in fig. S20 (Model 3) we used a 0  slice angle – 

corresponding to precisely-periodic 1D grid cells.  For the analyses in fig. S22 (Model 4) we used 

all slice angles – corresponding to angled 1D slices through a perfect 2D grid (65). 

All spatial maps were binary, i.e., had a firing-rate of 1 for bins inside a field and 0 

outside a field. We used spatial bins of 0.2 m, and the length of the environment was 200 m – as 

in the data. For each input-model (single-field CA3; multi-field CA3; periodic MEC at 30 

different slice angles) we created a bank of 2,000 input neurons, as explained above. For the 

MEC model, each of the 5 modules had 400 neurons. 

Output. To generate the spatial map of an output neuron in CA1 we did the following.  First, we 

chose 100 input neurons randomly, and assigned a random synaptic weight to each, drawn from a 

log-normal 1 . For the MEC model we ensured there were 

20 inputs from each module.   Second, we computed the weighted sum of inputs in each position, 

and smoothed it by computing a 4-m window moving average (equivalent to 500 ms given a flight-

speed of 8 m/s). This smoothing was done to eliminate high-frequency fluctuations in the input to 

CA1, stemming from the binary nature of the inputs in the model. Smoothing the input is further 

justified in this model because without it, the CA1 output neurons of the model would have many 

more very-small fields (<1 m) than observed in the data.   Third, we picked a target coverage for the 

output neuron from an exponential distribution with mean 0.15, to match the coverage distribution 
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of the experimental data (see fig. S17F). Then, we computed a threshold such that the fraction of 

the smoothed weighted sum of inputs which is above the threshold is equal to the randomly drawn 

value of the coverage. The output spatial map of the CA1 neuron was then set to 1 or 0 where the 

smoothed weighted sum was above or below the threshold, respectively. 

Combining CA3 and MEC inputs. We studied (in fig. S20G-H and fig. S22E-G) a model where a 

fraction of the 100 inputs are from Model 1 ‘single-field CA3’ neurons, and the remaining are 

from Model 3 ‘periodic MEC’ neurons – keeping a total of 100 input neurons per output neuron 

in CA1. We varied the fraction from 0 (only single-field CA3 inputs) to 1 (only periodic MEC 

inputs). The output maps were then computed from the inputs as described above. 

Perturbation. To model the dynamic changes of spatial maps on a flight-by-flight basis, we 

introduced a perturbation to CA1 spatial maps for the three main types of inputs described above 

(input models 1, 2, 3), by randomly modifying a small fraction of the input synapses, as follows. 

In addition to the original CA1 map as described above, we computed a perturbed map by 

randomly re-drawing a small fraction of the 100 synaptic weights (4% of the synaptic weights 

were re-drawn in the simulations shown in fig. S23B; synaptic strengths were re-drawn from the 

same log-normal distribution of synaptic strengths as before).  The output was computed using 

the same threshold as before the perturbation.  By comparing the original and perturbed maps, 

we defined two types of map-segments:   (i) appeared: map segments in which the output neuron 

was not active in the original map and was active in the perturbed map; and (ii) disappeared: map 

segments in which the output neuron was active in the original map and was not active in the 

perturbed map.  Two (or more) segments of the same type that overlapped with the same field in 

the original map were defined as a single appeared/disappeared segment. 
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Data and code availability 

All the behavioral and neural data in this study were analyzed using custom code written in 

Matlab; the modeling work was also carried out in Matlab.  The data and code that support the 

conclusions of this study are available from the authors upon a reasonable request, and are also 

accessible online at Zenodo (54). 
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Supplementary Text 

  
Neural network modeling of multiscale codes: Attractor networks and feedforward models 

Classical models of hippocampal place-cells are characterized by a single spatial scale per 

neuron in a given environment (39-47). We looked for mechanistic neural-network models that 

could generate the multifield multiscale code that we observed.  We considered two types of 

models.  First, we examined this in the framework of a continuous attractor neural network. 

Modeling of spatially-tuned cells (and also other types of tuning, e.g. in sensory systems) is often 

done using a 1D continuous attractor network, in which cells with similar response properties 

have strong excitatory connections, together with a global feedback inhibition (i.e. Mexican-hat 

connectivity) (40, 42-44, 47, 48, 62). This model design enables generating strong and reliable 

network activity from a weak and noisy spatially-modulated input, in the form of a single 

activity-bump with a fixed width. The tuning of single-cells in such networks exhibits a single-

field per neuron, with a fixed field-size (determined by the width of the lateral excitation that sets 

the width of the network bump of activity) – which is very different from the multiscale tuning 

properties in our bat data. We therefore asked whether we could generate a multifield multiscale 

code in single neurons, by using multiple interacting attractors – specifically, multiple attractors 

at different scales that randomly share a fraction of the neurons between them – and in particular 

we asked whether this network could maintain a stable bump of activity in each of the attractors.  

We generated 8 attractors spanning 3 different scales, with the largest attractor spanning the 

entire 200-meter tunnel and the smallest attractors each covering one fifth of the tunnel (fig. 

S20A). Each neuron could randomly participate in any of the attractors, and interact with the 

other neurons in those attractors according to the scale of each attractor (see Materials and 

Methods) (fig. S20A, red neuron participates in attractors no. A4,5,6,8, and is interacting with 
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neighboring neurons at distances proportional to the attractor scale). Simulations of this model 

displayed coherent bumps of activity that followed the simulated animal position and exhibited 

different bump-width for the different attractor scales (fig. S21A-B). Single neurons had multiple 

fields, with positions and sizes corresponding to the set of attractors they belong to  thus 

exhibiting multifield multiscale coding (fig. S20B – examples; fig. S20C – population). The 

fields showed a continuum of sizes (fig. S20C, top-right distribution), despite the fact that the 

underlying individual attractor networks had discrete scales (fig. S20A).  By contrast, 

simulations of a model of 8 independent attractors (with no shared neurons) showed single fields 

for each neuron (fig. S21C-left), with a highly-discretized distribution of field sizes (fig. S1C-

right: only 3 field sizes across the population).    

Our multiple-attractor modeling results have several implications:  (i) We identified a 

novel regime whereby all the interacting attractors generate coherent coexisting activity bumps, 

all being active simultaneously, resulting in a multifield multiscale code – as in the bat data. This 

suggests that our experimental data are compatible with the framework of continuous attractor 

networks.    (ii) This model can also explain mechanistically the difference between single-field 

coding in the small environment, versus the multifield multiscale code found in the large 

environment: The hippocampus might allocate only one attractor for small environments – thus 

creating a single-field code, while in larger environments the hippocampus may allocate many 

more attractors – thus creating multiple fields for each neuron, with each field having a different 

scale (as in fig. S20A-C).   (iii) Our network model yields a continuum of place-field sizes (fig. 

S20C, top-right), which is due to the interactions between the overlapping attractors, that 

effectively introduce noise (fig. S21A-B). This continuum is very different from the case of 

independent attractors, which invariably generate a highly-discretized set of field-sizes (fig. 
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S21C, right) – not a continuum.   (iv) We believe that the key features of our model – random 

sharing of neurons between multiple attractors, and superposition of multiple activity bumps – 

could be generic also to other brain regions for which continuous attractors were proposed to 

underlie their function (67-69). 

Second, we explored the possibility that multiscale coding in CA1 results from 

feedforward connections coming into CA1 from CA3 and medial entorhinal cortex (MEC) (see 

Materials and Methods).  We considered four types of feedforward inputs (fig. S20D and fig. 

S22A-B): (i) CA3 neurons with single-field per neuron and different field sizes across neurons 

(fig. S20D, left); (ii) CA3 neurons with multiple fields of different sizes per neuron (i.e. 

multifield multiscale coding being present already in CA3; fig. S20D, middle); (iii) MEC 

neurons with periodic grid-fields (fig. S20D, right); and (iv) MEC neurons whose firing in 1D is 

captured by a straight line passing through a perfect 2D grid at a certain angle and phase (fig. 

S22A) – a 1D slice through 2D – as proposed by a previous study (65).  We then generated 1,000 

output CA1 neurons, each connected randomly to 100 input CA3 or MEC neurons, with different 

synaptic strengths; we have set a firing-threshold such that the overall coverage of fields across 

the population matched the experimental data (see Materials and Methods). All four models 

qualitatively captured the basic multiscale properties of CA1 (fig. S20E and fig. S22C – 

examples, fig. S20F and fig. S22D – population; the models yielded somewhat higher field-size 

ratios than in the data).   Next, to test the viability of the two MEC-input models, we reasoned 

that if the MEC input neurons are periodic, then the output neurons in CA1 should show a 

signature of periodicity that is inherited from the input (70). We created a family of models with 

weighted inputs from CA3 and MEC, which showed that the stronger is the input from MEC, the 

larger are the spectral peaks of the output maps in CA1; this was true both for MEC inputs which 
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consisted of perfectly periodic 1D grid cells (fig. S20G-H) and for MEC inputs taken as 1D 

slices through a 2D grid (fig. S22E-G).  By contrast, no spectral peaks were found when we 

examined the spectra of the spatial firing-rate maps for the experimentally-recorded place-cells 

(200 m tunnel) – neither when pooling across all place-cells (fig. S20I), nor in individual animals 

(fig. S22H) – indicating a lack of spatial periodicity in the multifield firing of bat CA1 cells. This 

is consistent with our finding of an exponential distribution of gaps between fields (Fig. 3C), 

which also argues against any spatial structure.   We therefore predict that non-periodic activity 

will be found in MEC neurons in large-scale environments; or alternatively, the inputs from CA3 

are much more dominant than MEC inputs in setting CA1 activity – consistent with recent 

findings showing that CA3 is the predominant driver of CA1 place-cell activity (71).     

Next, because our spectral analyses argued against the MEC-based feedforward models, 

we proceeded to examine the CA3-based feedforward models. Specifically, we considered the 

appearance/disappearance of place-fields, which we observed in the data (Fig. 5E-F), and 

modeled this field-dynamics via plasticity of CA3-CA1 synapses (see Materials and Methods; 

we also modeled via plasticity in MEC-CA1 synapses). We reasoned that different CA3 

feedforward models may yield different patterns of change in CA1 upon a simulated perturbation 

of CA3-CA1 synapses: Intuitively, in models with multiple fields in each input-neuron (e.g., 

multifield multiscale CA3 model, but also MEC-based models), synaptic perturbations should 

show concurrent changes in multiple fields of the output CA1 neuron – while models with 

single-field inputs (single-field CA3 model) should exhibit independent dynamics in different 

fields, and therefore show lower probability of concurrent changes in several fields (fig. S23B). 

The experimental data were most consistent with the single-field CA3 model (fig. S20J and fig. 

S23B-C).   Taken together, we conclude that the feedforward model that is most consistent with 
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the data is single-fields in CA3.   Notably, this prediction sets up a puzzle, because our own 

decoding analysis (Fig. 7) showed that single-field codes are not efficient for representing large 

environments – which should apply also to CA3; this may possibly point to different coding 

objectives in CA3 versus CA1 (15, 72, 73).  It is therefore important to conduct future recordings 

in CA3 and MEC in very large environments, in order to resolve this puzzle regarding CA3 – 

and also to test our prediction that the coding of MEC neurons in very large environments is 

unlikely to be periodic. 
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fig. S1.  Anatomical reconstruction of tetrode positions.   (A) 3D reconstruction of the CA1 sub-region of the bat 
hippocampus, showing the entire dorso-ventral (septo-temporal) longitudinal extent of CA1.  Black lines labeled 
‘recording locations’ mark the locations of all our identified tetrode-tracks in CA1, for the bats in dataset 1 (wild-
born bats flying in the 200-m tunnel); all of them were located in dorsal CA1. The 3D axes represent the cardinal 
directions in the brain (A, Anterior; P, Posterior; M, Medial; L, Lateral; D, Dorsal; V, Ventral); each line in the 3D axes 
represents a 2 mm scale bar (e.g. from M to L is 2 mm).     (B) Left: Anatomical position of tetrode penetrations 
along the CA1 longitudinal axis and proximo-distal axis; colored separately for each bat (bat numbers are indicated; 
one of the bats [bat 1] is missing here [as well as in the other panels] because we did not have precise anatomical 
localization for the tetrode tracks of this bat, due to damaged histology). Note that all the tetrode tracks were in 
dorsal CA1 (all were around the 20% most septal part of the longitudinal axis of CA1); the tetrode tracks were 
mostly distributed around the middle portion of the proximo-distal axis of CA1.   Right: Two histology sections from 
two different bats, showing examples of recording sites. Red arrowheads indicate lesion (top) or track (bottom). 
Black lines indicate the proximal and distal borders of CA1.   (C) Scatter of field size ratio for recorded place-cells 
versus the proximo-distal location of the tetrode from which the cell was recorded. No significant correlation was 
found between the anatomical location and the functional multiscale property (Spearman correlation:  = –0.14,  
df = 142, P = 0.10). Dots were slightly jittered along the proximo-distal x-axis, for display purpose only (Gaussian 
jitter with s.d. = 1%; the correlation was computed without the jitter).  Note that most tetrodes were located in the 
intermediate part of CA1 and did not span the entire proximo-distal axis – i.e. we did not have any CA1 recordings 
that were very close to CA2 (very proximal) or very close to the Subiculum (very distal). 
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fig. S5.  Additional examples of firing-rate maps and raster plots for neurons recorded in the long 200 meter 
tunnel.
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fig. S6.  Cells exhibited strong spatial tuning with high firing rates in-field and low firing rates out-of-field. 
(A) Distribution of the percentage of ‘in-field spikes’, i.e. spikes that occurred inside the place-fields of each cell;
high percentage indicates low background firing (n = 331 cells × directions; 5 bats).    (B) Comparison of the firing
rates in-field versus out-of-field: For each cell × direction we calculated the median firing rates within the fields
(“in-field”) and outside of fields (“out-of-field”). Error bars, mean ± s.e.m – where the average was taken across
those median values over the cells × directions (in-field firing rate: 5.01 ± 0.27 Hz; out-of-field firing rate:
0.24 ± 0.03 Hz; n = 331 cells × directions).    (C) Inter-spike-interval distribution, computed only for spikes that
occurred inside fields (in-field spikes); pooled over all the in-field spikes from all the place cells (n = 196 cells;
5 bats).  Inset, x-axis in log-scale, showing a wider range of inter-spike intervals.    (D) Distribution of the percentage
of in-field bursty spikes, i.e. for each field we calculated the percentage of spikes that were part of a burst, where a
burst was defined as spikes with inter-spike interval < 6 ms (74). Pooled over all the fields from all the place cells
(n = 1,629 fields; 5 bats).    (E) Distribution of mean firing rates during flight (n = 196 place cells; the one neuron
with in-flight firing-rate of > 5 Hz was not classified as an interneuron, because the classification of putative
interneurons versus pyramidal cells was based on mean firing-rate over the entire recording session, including the
rest-epochs on the landing-balls and the sleep sessions, while here we plotted specifically the in-flight firing rate).
(F) Scatter plot of the peak firing-rate of a field versus the field size, pooled over all the fields of all the place cells
(n = 1,629 fields; 5 bats [dataset 1]).  The positive correlation (Spearman  = 0.29, df = 1,627, P = 2.2 × 10–308)
suggests that the firing rates go in the same direction as the field sizes – which may potentially further strengthen
the decoding advantage of the multifield multiscale code that we discovered.
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fig. S7.  Bat dorsal CA1 neurons exhibited multiscale coding also when analyzing fields only in the long arm of the 
tunnel.   We compared here the distribution of field sizes and field size ratios between the data for the entire 
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(Kolmogorov-Smirnov test: P = 0.96 [DKS 1214,1629 = 0.02]).   (B) Distribution of the ratio between largest and smallest 
field sizes for each neuron, using only the fields located in the long arm of the tunnel (thick gray line), or fields from 
the entire tunnel (thin black line) for comparison. The two distributions are very similar and did not differ 
significantly (Kolmogorov-Smirnov test: P = 0.16 [DKS 167,172 = 0.12]). 
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fig. S9.  Place-cells from all five bats exhibited a multifield multiscale code.   (A–C) Distributions of number of 
fields per direction (A), field sizes (B) and field size ratio (C), shown per animal – for all the 5 bats in dataset 1. Same 
graphical conventions as in main Fig. 2G,H,J.   (A) Distribution of the number of place-fields per neuron per flight-
direction (n, the number of cells × directions, is indicated      
(B) Distribution of place-field size (n, the number of fields, is indicated). Note that for all the individual bats, the
field size ranged from sub-meter or meter level and up to at least 15 m size.     (C) Distribution of the ratio between
largest and smallest field sizes for each neuron (n, the number of cells with at least two fields, is indicated). Both
axes here are in log-scale. Note that for all the individual bats, the field size ratio went up to at least a ratio of 10.
For all the histograms in this figure: red vertical line indicates the distribution mean, red horizontal line and red dot
indicate the interquartile range and the median.
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fig. S11.  Multiscale coding cannot be explained by quality of single-unit spike sorting.      (A) Number of fields per 
direction plotted against the isolation-distance index (a standard metric for spike-sorting quality (75); a larger 
number means a better-isolated cluster; the isolation-distance was averaged over 10 min windows).  There was no 
significant correlation between the spike-sorting quality and the number of fields per direction (Spearman  

 = 0.061, df = 329, P = 0.271; n = 331 cells × directions; included were only cells × directions that were significantly 
place-tuned) – suggesting that the multiple-fields cannot be explained by poor spike sorting.     (B) Field size ratio 
between the largest and smallest field for each neuron, plotted against the isolation-distance index (75).  There was 
no significant correlation between the spike-sorting quality and the multiscale property (Spearman  = 0.070,  
df = 170, P = 0.365; n = 172 cells; included were only place-cells with  2 fields overall) – suggesting that the 
multiscale property cannot be explained by poor spike sorting.   In panels A and B, we showed data only up to 
isolation-distance = 100, for visualization purposes only (all data points, including with isolation-distance > 100, 
were used in the computation of the correlations).      
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fig. S12.  The multifield and multiscale results were robust to the criteria of field-detection.   
To ensure the multiscale results are robust to the detailed criteria of field-detection, we repeated all analyses with 
several different sets of parameters for field-detection (listed below).  For each set of parameters (rows), we 
plotted the following three distributions (columns): (i) number of fields per direction (left column); (ii) field size 
(middle column); and (iii) field size ratio of largest field / smallest field (right column).  Same binning was used here 
as in Fig. 2G, H, J.    The number of cells or fields that passed the criteria is indicated on each panel.       
(A) The original set of parameters used for all the analyses in the paper (identical to main Fig. 2G, H, J: see details in
Materials and Methods).    (B–I) Variations on place-field detection criteria.    (B) Boundaries of the field were
computed based on 10% of the peak firing rate of the place-field (instead of the standard 20%).   (C) Boundaries of
the field were computed based on 30% of the peak firing rate of the place-field (instead of the standard 20%).
(D) Field size was defined as the 0–100% percentile of the spike positions – i.e. we used all spikes (instead of the
standard 5–95%).    (E) Field size was defined as the 10–90% percentile of the spike positions (instead of the
standard 5–95%).    (F) Field size was defined as the 20–80% percentile of the spike positions (instead of the
standard 5–95%).    (G) We required at least 25% laps with spikes inside the place-field (instead of the standard
20%).    (H) We required at least 30% laps with spikes inside the place-field (instead of the standard 20%).
(I) We required at least 5 laps (or 20% of the laps – whichever is larger) with  k spikes inside the place-field, where
k is the expected number of spikes – i.e. the total number of spikes inside the field divided by the total number of
laps through the field.
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fig. S14.  Over-representation near the landing balls (reward locations).  (A) Shown are field size versus field 
location (defined as the location of the field’s peak firing-rate). Open circles, fields larger than 20 meters. This plot 
is identical to main Fig. 3D, except that here we included also the fields near the landing-balls with the food 
(vertical dashed lines), where the flight speed was lower (i.e. the fields in the gray zones in Fig. 1I – which were not 
included in the main analyses in the paper). Note the over-representation of fields near these two reward areas, 
manifested as higher density of fields and smaller field-sizes (see concentration of dots near the vertical dashed 
lines).   (B) Focus on the vicinity of the landing-balls (4 meters from the balls); as in A, we included here also fields 
that were excluded in the main analyses because they were very close to the landing-balls. Left: In the vicinity of 
the landing-balls the place-fields tended to be smaller, indicated by a significant positive correlation between field-
size and distance-to-ball (Spearman  = 0.64, P = 4 × 10–19; correlations computed over the 4 meters nearest to the 
balls, pooling the 2 balls and 2 directions together). Note, however, that despite this strong correlation, there were 
nevertheless also a few very large place-fields adjoining the landing-balls (note the four fields [four uppermost 
dots] with size of >10 meters, whose peaks occurred within the first 4 meters of the tunnel).  The decrease in field-
size near landing-balls could be due to the importance (saliency) of this reward location, or due to the low velocity 
during landing/takeoff, or it could reflect predictions from the boundary vector-cell model (41, 45).   Right: field 
density was much higher adjacent to the landing-balls (field density was binned here using 0.5-meter bins, and then 
the value in the first bin was z-scored with respect to the values in all the other bins; z-score [z = 11.46] was 
computed compared to the 50 meters nearest to the balls, pooling the 2 balls and 2 directions together). 
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fig. S18.  Decoding accuracy of model simulations using a Population Vector (PV) decoder was qualitatively 
similar to Maximum Likelihood (ML) decoder.   (A–E) Same as Fig. 7A-E, but based on PV decoder instead of the 
Bayesian ML decoder used in Fig. 7.   The within-neuron multiscale representation (scheme 6) outperformed other 
encoding schemes in terms of the minimum number of neurons required to maintain a small decoding error of  
2-m (B); and in terms of the size (D) and probability (E) of catastrophic errors.  We note that the absolute error
using a PV decoder (this figure) is generally larger than using the ML decoder (Fig. 7) – but the overall pattern of
results is similar between the two decoders.
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fig. 20.  Two families of neural network models for multiscale coding: continuous attractor model with multiple 
attractors, and feedforward models with inputs from CA3 and MEC.    
For a detailed description of the models, see Supplementary Text.    
(A–C) A model of multiple continuous attractor networks.   (A) Schematic of the model: we simulated 8 attractors 
with different scales (black lines), in which we allowed neurons to randomly participate in several attractors (see 
Materials and Methods). Positions of five example neurons are denoted by colored symbols. The excitatory 
connectivity radius of each neuron is small for attractors A1–A5, medium for attractors A6–A7, and large for 
attractor network A8.  For simplicity we only show the connectivity for the red neuron: see red arcs.     
(B) Simulations of the model: examples. Plotted are the firing-rate maps of the five neurons from A, showing
multiple fields and multiscale coding for each neuron.  Note that a neuron from the same attractor can have fields
with very different sizes: For example, cell 3 (dark blue) and cell 2 (green) have their largest fields assigned to the
same attractor (A8), but these fields exhibited very different sizes.     (C) Distribution of multiscale field properties
of the attractor-model neurons. Top-left, number of fields per direction; right, field sizes; bottom, field size ratio.
We simulated here only one flight direction, for which results are shown. Note the continuum of field sizes (top-
right panel; achieved through the sharing of neurons across attractors), and the multiscale coding at the level of
single neurons (large values of field size ratio: bottom panel).
(D–J) Feedforward model with synaptic inputs from CA3 or MEC into CA1.     (D) Three models of inputs from CA3 or
MEC into CA1: Left, cells in CA3 have single fields with gradually increasing field sizes across the population
(mimicking a dorso-ventral gradient); Middle, each cell in CA3 has multifield multiscale coding; Right, periodic 1D
grid-cell inputs from 5 different grid-modules.    (E) Examples of output neurons in CA1 for each scheme in D: these
output neurons were generated by summing the inputs from 100 input-neurons with randomized synaptic weights,
and then setting a threshold such that the total coverage matched the experimental data.     (F) Distribution of
multifield multiscale properties of CA1 output neurons (Blue, single-field CA3 model; Green, multifield multiscale
CA3 model; Red, periodic MEC model; Black, experimental data). Note that all three models captured quite well the
experimental results for the distributions of number of fields and field sizes, while the field size ratios were over-
estimated by all 3 models.    (G–H) A hybrid model, which weighs inputs from CA3 and MEC, exhibited clear spectral
peaks (distinct spatial frequencies) in CA1 output cells.     (G) Mean spatial spectrum of CA1 output neurons. Blue,
only inputs from CA3: in this case CA1 shows a flat power spectrum. Increasing the relative contribution of MEC
inputs (towards red color) changes the spectrum to have distinct spectral peaks, with spatial frequencies
corresponding to the spacings of the input grid modules (red arrowheads at the bottom). Inset, zoom-in around the
spectral peaks (black rectangle).     (H) Quantification of the spectral peaks in CA1 as we gradually changed the
inputs from pure CA3 inputs through CA3/MEC mixture to pure MEC inputs.     (I) Testing the model in G-H against
the data. Shown is the spatial spectrum of the firing-rate maps of the experimental data; mean ± s.e.m across all
recorded CA1 place-cells (n = 331 cells × directions). Note the lack of any distinct spectral peaks, indicating a lack of
periodic inputs from MEC.  Inset, the spatial spectrum for the binarized maps (in which bins inside the place-fields
were set to 1, and bins outside of place-fields were set to 0); no spectral peaks are observed here as well.  See also
fig. S22H for similar plots for individual bats.    (J) Correlation between the experimental data and the 3 feedforward
models, comparing probabilities for field appearance/disappearance in the data (fig. S23A) and field
appearance/disappearance under synaptic-perturbations in the model (see Materials and Methods).
Here we computed the Spearman correlation between the probability profiles for data versus model of observing
changes in a single place-field (p1

2) and concurrent changes in two place-fields (p2); see fig. S23B-C for the
probability profiles, and for further details. Note the correlation between data and model was highest for the
single-field CA3 model, suggesting that this model best describes the dynamics of field appearance/disappearance
in the data. Error bars, mean ± s.d. (estimated by randomly drawing 10,000 profiles from the data in fig. S23C
according to their distribution, and computing their Spearman correlations with the profile of the model in
fig. S23B); *****, P < 10–5 (z-test).
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fig. S22.  Feedforward model with MEC inputs that are based on 1D slices through a 2D grid.   
For a detailed description of the feedforward models, see Supplementary Text.    
We based here the MEC input on a published model of 1D slices through 2D grids (65). This model (Model 4 among 
the feedforward models discussed in the Supplementary Text and in the Materials and Methods) yields similar 
results to the model based on perfectly-periodic 1D MEC neurons (Model 3) that is shown in fig. S20.   (A) Five 
example model 2D grid cells from grid modules with increasing scale. Red lines, two examples of 1D slices through 
the 2D grid. The horizontal line represents a perfect 1D periodic grid and was used in the main analysis (fig. S20D, 
right – Model 3). The other line was rotated by 19° and is one of 30 rotated lines that we considered in this analysis 
(Model 4; angles 0°–29° span the entire range of unique slicing angles through a hexagonal lattice). We used the 
slice at angle 19° shown here also for panels B,C,E,G.      (B) Examples of input cells into CA1: MEC input model 
consisted here of 1D slices at 19° through a perfect hexagonal 2D grid (as shown in A); four example neurons are 
shown from each module.     (C) Example neurons of output cells in CA1 generated from the input model MEC 
neurons in B.     (D) Multiscale field properties of CA1 output cells for the different input models (Blue, single-field 
CA3 model; Green, Multi-field CA3 model; Red lines, different angles of 1D slices through 2D grid [all 30 angles are 
shown]). Note that all models were qualitatively similar; in particular, different 1D slices through a 2D grid exhibited 
very similar results.    (E–G) A hybrid model, which weighs inputs from CA3 and MEC, is exhibiting different 
magnitudes of spectral peaks in CA1 output cells – depending on the CA3/MEC mixture at the input.     
(E) Mean spatial spectrum of the firing-rate maps of CA1 output neurons (slice angle: 19 ).   Blue, only inputs from
CA3 – showing a power spectrum with no distinct spectral peaks; when the relative contribution of MEC inputs is
increased (towards red color), the CA1 spectra are changing and exhibit spectral peaks; the spatial frequencies of
the peaks were different from those expected from 1 / spacing of the input grid modules (red arrowheads at the
bottom), because the cutting-angle of the slice leads to different frequencies.  Inset, zoom-in around the spectral
peaks (rectangle).     (F) A model that equally weights CA3 and MEC inputs shows clear spectral peaks in the CA1
output neurons, for all slice angles. Each row is the average spatial spectrum at a particular 1D-slice angle
(averaged over many phases [shifts] of the 1D slice). Note that the expected frequencies are changing with the slice
angle – but for all slice angles the model yields clear spectral peaks in CA1.     (G) Quantification of the gradual
change in the spectral peak size in CA1 model neurons when the input is changing from only CA3 inputs to only
MEC inputs. Gray lines, different 1D-slice angles (all 30 angles are shown); Black circles, 1D-slice at angle 19° (same
simulations as in panel E); Cyan line, average over all the 1D-slice angles.  Note that clear spectral peaks occur even
if the MEC input is as small as 10% or 20% of the total input into CA1 (high spectral peaks are seen even at
x-axis = 0.1 or 0.2).      (H) Spatial spectrum of the experimental firing-rate maps from the 200 m tunnel, shown
separately for each individual bat; plotted are mean ± s.e.m. over the spectra of all the place cells × directions in
each bat (the numbers of place cells × directions are indicated). We plotted the spatial spectrum for each bat
separately, in order to accommodate the possibility that each bat may represent the environment with slightly
different spacings (which would yield different spectral peaks per animal), or with 1D-slices at different angles
(which would also result in different spectral peaks: see panel F).  Left insets, the spatial spectrum calculated for
the binarized maps, where we set to 1 and 0 the bins inside and outside of the experimentally-measured fields,
respectively – akin to our binarized model.  Right insets, the spatial spectrum calculated for the long arm of the
tunnel only.  Note that the spatial spectrum of bat CA1 place-cells recorded in the 200 m tunnel does not show any
prominent spectral peaks, in any of the bats, and in any of the variations (main plot + 2 insets) – indicating a lack of
periodic contribution from MEC. This implies that either the MEC inputs provide little drive to CA1 neurons as
compared to the CA3 inputs; or alternatively, this implies that MEC neurons do not exhibit periodic structure in 1D
in very large environments, and also the firing of MEC neurons cannot be explained as a 1D slice through a 2D grid
in very large environments. Testing this latter prediction calls for performing MEC recordings in the large-scale
tunnel.
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fig. S23.  Detection of within-day dynamics, and the consistency of this dynamics with the feedforward single-field 
model of CA3.  
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Table S1.  Experimental datasets 

Experimental dataset Figures 
where these 
data are 
plotted 

Bat 
no. 

Bat 
ID 

Wild 
/ Lab 
born 
bat 

Arena 
size 

No. of 
training 
sessions* 

No. of 
recording 

sessions with: 
CA1 cells / 

Behaviorally-
Active cells / 
Place cells 

No. of cells: 
CA1 putative 

pyramidal cells† / 
Behaviorally-
Active cells‡ /  

Place cells 

1) Wild-born bats,
large-scale

Fig. 1-6 
fig. S1 
fig. S3-S17 
fig. S20F,I 
fig. S22H 

1 0034 Wild 200 m 10 7/7/7 31/31/30 
2 0079 Wild 200 m 10** 17/17/10 25/25/12 
3 0148 Wild 200 m 12** 28/28/25 97/97/79 
4 2289 Wild 200 m 15 3/3/3 15/15/14 
5 9861 Wild 200 m 11 17/17/15 67/67/61 

Total 72/72/60 235/235/196 
2) Wild-born bats,
small-scale

Fig. 4 
Fig. 5 

6 2382 Wild 6 m >20*** 5/5/4 28/13/11 
7 2311 Wild 6 m >20*** 3/2/2 15/10/7 
8 2329 Wild 6 m >20*** 5/5/4 24/13/12 

Total 13/12/10 67/36/30 
3) Wild-born bats,
large-scale,
recordings from day 1

Fig. 5 
fig. S20J 
fig. S23 

6 2382 Wild 130 m 0 31/30/29 173/115/104 
7 2311 Wild 130 m 0 12/11/11 36/26/21 

Total 43/41/40 209/141/125 
4) Lab-born bats,
large-scale

Fig. 6 
fig. S16 

9 9845 Lab 200 m 47 17/13/10 20/15/11 
10 0102 Lab 200 m 17 8/8/8 15/15/15 
11 0194 Lab 200 m 20 19/19/19 78/70/69 

Total 44/40/37 113/100/95 

* Number of training sessions or recording sessions in the tunnel before the first place-cell was recorded.

** For bats no. 2 and 3 there may have been a few additional training sessions that were not documented. 

*** There was no systematic documentation for the training sessions in the 6 m arena. 

† CA1 putative pyramidal cells listed here were all the pyramidal cells that were recorded during the recording 

session: either cells that were behaviorally-active in flight, or cells that were active during the two sleep sessions, or 

both (during sleep sessions, when the bat was not behaviorally-active, there were many sharp-wave-ripples [SWRs] 

and many spikes). Thus the numbers describing CA1 putative pyramidal cells include also cells that participated in 

SWRs but were not active during behavior. 

‡ We regarded a cell as behaviorally-active if at least in one of the flight directions the spike count during flight met 

the minimal-spikes threshold criterion (see Materials and Methods).  Note that the lower fraction of behaviorally-

active cells in earlier days of recording (dataset 3: 67% [141/209] versus dataset 1: 100% [235/235]) could arise from: 

(i) smaller environment size (130 m versus 200 m); (ii) fewer flight epochs in the first days of exposure to the

environment (dataset 3); and (iii) genuinely less spikes during the first explorations.

Finally, we note that the numbers of cells reported here are the numbers of cells, not numbers of cells × directions: 

For example, in dataset 1, there were a total of 235 cells, and many of them had significant place tuning in both 

flight directions. 
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