The Flavor of Higgs

39th Johns Hopkins Workshop Theory challenges in the LHC era

> Gothenburg, Sweden August 12, 2015

Yossi Nir (Weizmann Institute of Science)

1/38

The flavor of h

Plan of Talk

- 1. Flavor at the LHC
- 2. The SM flavor of h
- 3. The BSM flavor of h
- 4. $h \to \tau \mu$: Experiment
- 5. What if $BR(h \to \tau \mu) \sim 0.01$?
- 6. Conclusions

The flavor of h

Flavor at the LHC

3/38

Flavor at the LHC

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?
- What is the solution of the flavor puzzles?

Flavor at the LHC

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?

• What is the solution of the flavor puzzles?

Flavor at the LHC

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition?
- How was the baryon asymmetry generated?
- What are the dark matter particles?

• What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \to h, h \to \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated?
- What are the dark matter particles?

• What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \to h, h \to \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated?
 If not 1st order PT not electroweak baryogenesis
- What are the dark matter particles?

• What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \to h, h \to \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated?
 If not 1st order PT not electroweak baryogenesis
- What are the dark matter particles?
 No idea. No signs of missing energy events BSM

• What is the solution of the flavor puzzles?

- What is the mechanism of electroweak symmetry breaking? The BEH mechanism; a VEV of a doublet scalar field
- What separates the electroweak scale from the Planck scale? No idea. No signs of supersymmetry, composite Higgs...
- What happened at the electroweak phase transition? $gg \to h, h \to \gamma \gamma$ exclude many possibilities for 1st order PT
- How was the baryon asymmetry generated?
 If not 1st order PT not electroweak baryogenesis
- What are the dark matter particles?
 No idea. No signs of missing energy events BSM
- What is the solution of the flavor puzzles? The topic of this talk

The flavor puzzles

The SM flavor puzzle:
 Why is there structure in the charged fermion flavor parameters?
 Smallness and hierarchy

- The SM flavor puzzle extended:
 Why is the neutrino flavor structure different?
 Neither smallness nor hierarchy
- The NP flavor puzzle:

 If there is TeV-scale NP, why doesn't it affect FCNC?

 Degeneracy and alignment

Can we make progress?

- NP that couples to quarks/leptons \Longrightarrow New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even anarchical
- The NP flavor puzzle:
 With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:

 Progress possible if structure not MFV but related to SM

Can we make progress?

- NP that couples to quarks/leptons \Longrightarrow New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even anarchical
- The NP flavor puzzle:
 With ATLAS/CMS we are likely to understand how it is solved
- The SM flavor puzzle:
 Progress possible if structure not MFV but related to SM
- $h \implies$ The "NP" is already here! $Y_{\bar{f}_i f_i}$ are new flavor parameters that can be measured

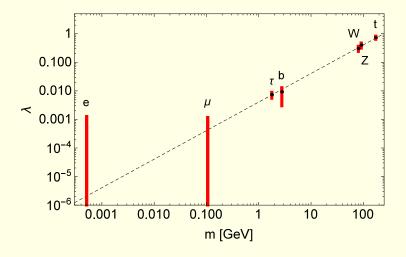
The flavor of h

The SM flavor of h

The SM flavor of h

Y^F vs. M_F : SM

- $\bullet Y^F = \sqrt{2}M_F/v$
 - Proportionality: $y_i \equiv Y_{ii}^F \propto m_i$
 - Factor of proportionality: $y_i/m_i = \sqrt{2}/v$
 - Diagonality: $Y_{ij}^F = 0$ for $i \neq j$


The SM flavor of h

Relevant data

Observable	Experiment
$R_{\gamma\gamma}$	1.14 ± 0.18
R_{ZZ^*}	1.17 ± 0.23
R_{WW^*}	0.99 ± 0.15
$R_{bar{b}}$	0.7 ± 0.3
$R_{ au au}$	1.09 ± 0.23
$R_{\mu\mu}$	< 7
R_{ee}	$<4\times10^5$

•
$$R_f = \frac{\sigma_{\text{prod}}BR(h \to f)}{[\sigma_{\text{prod}}BR(h \to f)]^{SM}}$$

Proportionality?

A. Efrati

- Indication that Y_t, Y_b, Y_τ not far from SM
- $y_3/m_3 \approx \sqrt{2}/v$
- $y_e, y_\mu < y_\tau$
- The beginning of Higgs flavor physics

JHW 10/38

The SM flavor of h

Diagonality?

• BR $(t \to ch) \le 0.006$ $\implies \sqrt{Y_{tc}^2 + Y_{ct}^2} \le 0.14$

ATLAS, 1403.6293; CMS, 1410.2751

• BR $(h \to \tau \mu) \le 0.015$ $\Longrightarrow \sqrt{Y_{\tau\mu}^2 + Y_{\mu\tau}^2} \le 0.004$

CMS, 1502.07400; ATLAS, HIGG-2014-08

JHW 11/38

The flavor of h

The BSM flavor of h

Dery, Efrati, Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

Dery, Efrati, Hiller, Hochberg, YN, JHEP1308,006 [arXiv:1304.6727]

Dery, Efrati, YN, Soreq, Susič, PRD90, 115022 [arXiv:1408.1371]

JHW 12/38

The BSM flavor of h

$$Y^F$$
 vs. M_F : **BSM**

- Proportionality and diagonality may be violated at tree level
 - Two (or more) Higgs Doublets
 Without loss of generality, $\{\phi_M, \phi_A\}$ where $\langle \phi_M^0 \rangle = v/\sqrt{2}, \ \langle \phi_A^0 \rangle = 0$ $h = s_{\alpha-\beta} \operatorname{Re}(\phi_M^0) + c_{\alpha-\beta} \operatorname{Re}(\phi_A^0)$ $\Longrightarrow Y_h^E = s_{\alpha-\beta}(\sqrt{2}M_E/v) + c_{\alpha-\beta}Y_A^E$
 - Single Higgs doublet and non-renormalizable terms $\frac{1}{\Lambda^2}(\phi^{\dagger}\phi)\phi \overline{L_L} Z^e E_R:$ $M_E = \frac{v}{\sqrt{2}} \left(Y^e + \frac{v^2}{2\Lambda^2} Z^e \right), \quad Y^E = Y^e + 3 \frac{v^2}{2\Lambda^2} Z^e$ $\implies Y^E = (\sqrt{2} M_E/v) + \frac{v^2}{2\Lambda^2} Z^e$

Leptonic observables

Observable $(\ell = e, \mu)$	SM	Test
$R_{ au^+ au^-}$	1	Factor
$X_{\ell\ell} = \frac{\text{BR}(h \to \ell^+ \ell^-)}{\text{BR}(h \to \tau^+ \tau^-)}$ $X_{\ell\tau} = \frac{\text{BR}(h \to \ell^{\pm} \tau^{\mp})}{\text{BR}(h \to \tau^+ \tau^-)}$	$(m_\ell/m_ au)^2$	Proportionality
$X_{\ell\tau} = \frac{\mathrm{BR}(h \to \ell^{\pm} \tau^{\mp})}{\mathrm{BR}(h \to \tau^{+} \tau^{-})}$	0	Diagonality

• What can we learn from $R_{\tau\tau}$, $X_{\ell\ell}$, $X_{\ell\tau}$?

JHW 14/38

Leptonic observables

Observable $(\ell = e, \mu)$	SM	Test
$R_{ au^+ au^-}$	1	Factor
$X_{\ell\ell} = \frac{\text{BR}(h \to \ell^+ \ell^-)}{\text{BR}(h \to \tau^+ \tau^-)}$ $X_{\ell\tau} = \frac{\text{BR}(h \to \ell^\pm \tau^\mp)}{\text{BR}(h \to \tau^+ \tau^-)}$	$(m_\ell/m_ au)^2$	Proportionality
$X_{\ell\tau} = \frac{\mathrm{BR}(h \to \ell^{\pm} \tau^{\mp})}{\mathrm{BR}(h \to \tau^{+} \tau^{-})}$	0	Diagonality

- What can we learn from $R_{\tau\tau}$, $X_{\ell\ell}$, $X_{\ell\tau}$?
- ATLAS/CMS:

$$-R_{\tau\tau} = 1.09 \pm 0.23$$

$$-X_{\mu\mu} < 12(m_{\mu}/m_{\tau})^2 \sim 0.05, X_{ee} < 7 \times 10^5 (m_e/m_{\tau})^2 \sim 0.06$$

$$-X_{\mu\tau} = 0.14 \pm 0.06 < 0.3$$

JHW 14/38

Natural Flavor Conservation (NFC)

- A solution to the 2HDM flavor puzzle
- NFC \equiv Each fermion sector (U, D, E) couples to a single Higgs doublet
- Type II: $\overline{Q}Y^UU\phi_2 + \overline{Q}Y^DD\phi_1 + \overline{L}Y^EE\phi_1$
- $Y_h^E = (\sin \alpha / \cos \beta)(\sqrt{2}M_E/v)$

• Proportionality and diagonality maintained, but with a different factor of proportionality

JHW 15/38

Minimal Flavor Violation (MFV)

- A solution to the NP flavor puzzle
- SM: When $Y^F = 0 \Longrightarrow A$ large global symmetry $SU(3)_Q \times SU(3)_U \times SU(3)_D \times SU(3)_L \times SU(3)_E$
- MFV \equiv The only NP breaking of the $SU(3)^5$ symmetry: $Y^U(3, \bar{3}, 0, 0, 0), Y^D(3, 0, \bar{3}, 0, 0), Y^E(0, 0, 0, 3, \bar{3})$
- Example: $\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \overline{L_{Li}} Z_{ij}^e \phi E_{Rj}$

• Proportionality violated, diagonality maintained

The Froggatt-Nielsen mechanism (FN)

- A solution to both the SM and the NP flavor puzzles
- A $U(1)_H$ symmetry broken by a small spurion $\epsilon_H(-1) \ll 1$
- Example: $\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \overline{L_{Li}} Z_{ij}^e \phi E_{Rj}$
- $\bullet \quad Z_{ij}^e = \mathcal{O}(y_j|U_{ij}|)$

• Proportionality and diagonality violated

m JHW

Flavor models

- 2HDM with Type II NFC
 - Universal correction to the diagonal couplings
- SM-EFT with MFV
 - Non-universal correction to the diagonal couplings
- SM-EFT with FN
 - Non-universal correction to the diagonal couplings +
 Off-diagonal couplings

18/38

Higgs Physics = new flavor arena

Model	$Y_{ au}^2/(2m_{ au}^2/v^2)$	$(Y_{\mu}^2/Y_{\tau}^2)/(m_{\mu}^2/m_{\tau}^2)$	$Y_{\mu au}^2/Y_{ au}^2$
SM	1	1	0
NFC-II	$(\sin \alpha / \cos \beta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2v^4/\Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

Dery, Efrati, Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

JHW 19/38

Higgs Physics = new flavor arena

Model	$Y_{ au}^2/(2m_{ au}^2/v^2)$	$(Y_{\mu}^2/Y_{\tau}^2)/(m_{\mu}^2/m_{\tau}^2)$	$Y_{\mu au}^2/Y_{ au}^2$
SM	1	1	0
NFC-II	$(\sin \alpha / \cos \beta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{\tau}^2/\Lambda^2$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2v^4/\Lambda^4)$
GL	9	25/9	$\mathcal{O}(10^{-2})$

Dery, Efrati, Hochberg, YN, JHEP1305,039 [arXiv:1302.3229]

Measuring Y_{ij} can probe flavor models

JHW 19/38

The flavor of h

$h \to \tau \mu$: Experiment

Shikma Bressler, Avital Dery, Aielet Efrati, PRD 90 (2014) 015025 [1405.3229]

JHW 20/38

Experimental results

• CMS $h \to \mu \tau_e, h \to \mu \tau_h$ [1502.07400]:

$$- BR(h \to \tau \mu) < 1.51 \times 10^{-2}$$

$$- BR(h \to \tau \mu) = (0.84^{+0.39}_{-0.37}) \times 10^{-2}$$

• ATLAS $h o \mu au_h$ [HIGG-2014-08]:

$$- BR(h \to \tau \mu) < 1.85 \times 10^{-2}$$

$$- BR(h \to \tau \mu) = (0.77 \pm 0.62) \times 10^{-2}$$

• ATLAS $e \leftrightarrow \mu$ asymmetry:

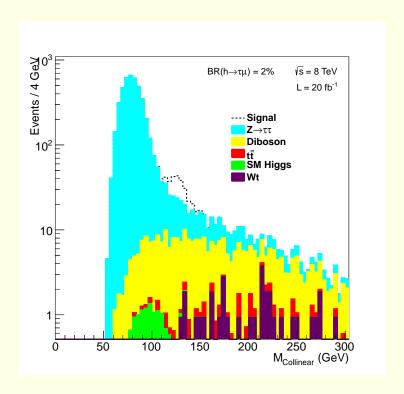
$$-\operatorname{BR}(h \to \tau \mu) < \dots -\operatorname{Soon}$$
 to appear

The problem

• Consider the following signal processes:

$$-h \to \tau^{\pm}\mu^{\mp}$$
 followed by $\tau^{\pm} \to e^{\pm}\nu\bar{\nu}$

- $-h \to \tau^{\pm} e^{\mp}$ followed by $\tau^{\pm} \to \mu^{\pm} \nu \bar{\nu}$
- The signal: $\mu^{\pm}e^{\mp}E_{T}$
- SM background:


(i)
$$Z \to \tau^+ \tau^- \to \mu^{\pm} e^{\mp} E_T$$

(ii)
$$W^+W^- \to \mu^{\pm} e^{\mp} E_T$$

- Problem: signal lies in transitional region between (i) and (ii)
- Extrapolations from outside Higgs window inadequate; Monte-Carlo uncertain

JHW 22/38

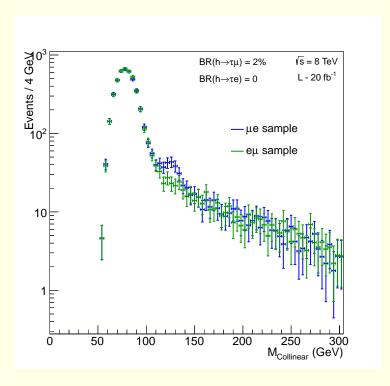
Background and signal

Simulated background+signal

3/38

The theoretical input

- The SM gauge interactions are lepton flavor universal
- m_e, m_μ are negligible in the relevant processes
- \Longrightarrow SM processes symmetric under $e \leftrightarrow \mu$

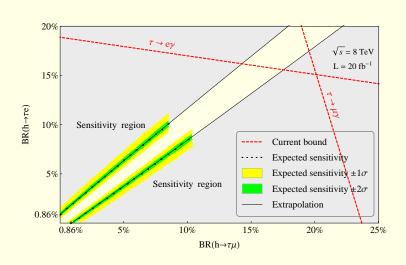

The theoretical input

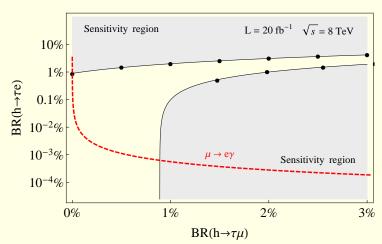
- The SM gauge interactions are lepton flavor universal
- m_e, m_μ are negligible in the relevant processes
- \Longrightarrow SM processes symmetric under $e \leftrightarrow \mu$
- Yukawa interactions are not universal
- $BR(h \to \tau \mu) \neq BR(h \to \tau e)$ possible
- In fact, the bounds from $\mu \to e\gamma$ imply that $BR_{\tau\mu}$ and $BR_{\tau e}$ cannot be simultaneously close to the respective upper bounds
- $\Longrightarrow BR(h \to \tau \mu) \neq BR(h \to \tau e)$ breaks the $e \leftrightarrow \mu$ symmetry

The method

- Divide the data to two mutually exclusive samples:
 - (μe) data sample: $p_T^{\mu} > p_T^e$
 - $-(e\mu)$ data sample: $p_T^e > p_T^\mu$
- SM background: divided equally between the two samples
- $h \to \tau^{\pm} \mu^{\mp}$ events are mostly in the (μe) sample; $h \to \tau^{\pm} e^{\mp}$ events are mostly in the $(e\mu)$ sample
- Subtracting $(\mu e) (e\mu)$ provides a measurement of $BR_{\tau\mu} BR_{\tau e}$
- For $BR_{\tau e} = 0$, the $(e\mu)$ sample provides the SM background

Data driven background estimate




 (μe) and $(e\mu)$ distributions

JHW 26/38

Experiment

The sensitivity

1405.4545

• With one rate negligibly small, and with 20 fb⁻¹ of collected data: 3σ sensitivity for discovering $BR_{\tau\mu}$ (or $BR_{\tau e}$) $\simeq 0.9\%$.

JHW

The flavor of h

What if
$$BR(h \to \tau \mu) \sim 0.01$$
?

JHW

What if $BR_{\tau\mu} \sim 0.01$?

Exciting \times 3

- $U(1)_{\mu} \times U(1)_{\tau}$ broken $\Lambda_{\rm LFV} \ll \Lambda_{\rm LNV}$?
- BR $(h \to \tau \mu) \not\ll BR(h \to \tau \tau)$ FCNC at tree level?
- $Y_E \not\propto M_E$ Not the SM Higgs?

JHW 29/38

The scale of LFV

• $\frac{1}{\Lambda_{\rm LNV}} LL\phi\phi$

$$m_{\nu} \sim 0.1 \text{ eV} \implies \Lambda_{\rm LNV} \sim 10^{15} \text{ GeV}$$

Intriguingly close to $\Lambda_{\rm GUT}$

• $\frac{1}{\Lambda_{\rm LFV}^2} \phi^{\dagger} \phi L \phi E^c$

$$BR(h \to \tau \mu) \sim 0.01 \implies \Lambda_{LFV} \sim 5 \text{ TeV}$$

New physics should be directly accessible at the LHC!

Reminder: SM-FCNC are loop suppressed

- The gluon and the photon do not mediate FCNC at tree level because massless gauge bosons have flavor-universal and, in particular, flavor diagonal couplings
- Within the SM, the Z-boson does not mediate FCNC at tree level because all fermions with the same chirality, color and charge originate in the same $SU(2)_L \times U(1)_Y$ representation
- Within the SM, the h-boson does not mediate FCNC at tree level because
 - All SM fermions are chiral \Longrightarrow no bare mass terms
 - The scalar sector has a single Higgs doublet

Loop suppression?

- All models with no bare mass terms and with NFC: $h \to \tau \mu$ is loop suppressed
- With loop suppression: $(v^2/\Lambda^2)(\alpha_W/4\pi)X_{\mu\tau} \not\ll y_{\tau} \sim 10^{-2}$ Very challenging model building
- MSSM strongly disfavored Aloni, YN, Stamou, work in progress

 Brignole, Rossi, NPB701(2004)3; Arana-Catania, Arganda, Herrero, JHEP 09(2013)160
- Models with tree-level-FCNC favored

Not the SM Higgs?

 $Y_{\mu\tau}^h \neq 0$ at tree level:

• Single Higgs doublet and vector-like leptons Strongly disfavored by the $\tau \to \mu\mu\mu$ bound

Efrati, YN, Stamou, work in progress

Dorsner et al., 1502.07784

Multi-Higgs doublet models
 Not easy to combine with flavor models

Vector-like leptons

- In all models of vector-like leptons, there are unavoidable tree level contributions to $Z \to \tau \mu$ and $\tau \to \mu \mu \mu$
- For each type of vector-like leptons, there is a parameter-independent relation:

$$\frac{\mathrm{BR}(h \to \tau \mu)/\mathrm{BR}(h \to \tau \tau)}{\mathrm{BR}(Z \to \tau \mu)/\frac{1}{3}\mathrm{BR}(Z \to \nu \bar{\nu})} = \frac{1}{2}$$

Efrati, YN, Stamou, work in progress

- Experiment: $\frac{\text{BR}(Z \to \tau \mu)}{\frac{1}{3} \text{BR}(Z \to \nu \bar{\nu})} < 1.8 \times 10^{-4}$ $\implies \text{BR}(h \to \tau \mu) < 2 \times 10^{-5}$
- Still, possible to account for $BR(h \to \tau \mu) \sim 0.01$ with fine-tuned cancelations

2HDM

- Are there viable and natural flavor models that have
 - $-Y_{\mu\tau} \sim 0.01 \text{ but } Y_{e\mu} \leq 10^{-6}$?
- Natural Flavor Conservation (NFC)
 - Impossible $(Y_{\mu\tau} = 0)$
- Minimal Lepton Flavor Violation (MLFV)
 - Y^E -spurion: Impossible $(Y_{\mu\tau}=0)$
 - $-Y^{E}, Y^{N}, M^{N}$ -spurions: Possible with fine-tuning
- Froggatt-Nielsen (FN):
 - $-Y_{e\mu}/Y_{\mu\tau} \sim |U_{e2}/U_{\mu3}|(m_{\mu}/m_{\tau}) \sim 0.05 \Longrightarrow \text{too large}$
 - Possible with supersymmetry and holomorphic zeros

Dery, Efrati, YN, Soreq, Susič, PRD90, 115022 [arXiv:1408.1371]

The flavor of h

Conclusions

Conclusions

$$h \to \mu \tau$$

If BR $(h \to \tau \mu) \sim 0.01$:

- SM, NFC, MLFV* excluded
- New physics at the TeV scale
- Most likely, FCNC at tree level
- Most likely, extra scalar doublets
- Challenge to present explanations of the flavor puzzles

Conclusions

h Physics = New Flavor Arena

Measure:

- Third generation couplings: Y_t , Y_b , Y_τ
- Second generation couplings: Y_c , Y_s , Y_{μ}
- Flavor violating couplings: $Y_{\mu\tau}$, $Y_{e\tau}$, Y_{ct} , Y_{ut}

Test:

- MFV
- FN
- NFC

• ...

Theory

Recent related work

- Blankenburg, Ellis, Isidori, Phys. Lett. B712, 386 (2012)
- Bhattacharyya, Leser, Pas, Phys. Rev D86, 036009 (2012)
- Harnik, Kopp, Zupan, JHEP 1303, 026 (2013)
- Davidson, Verdier, Phys. Rev. D80, 111701 (2012)
- Celis, Cirigliano, Passemar, Phys. Rev. D89, 013008 (2014)
- Falkowski, Straub, Vicente, JHEP 1405, 092 (2014)
- Delaunay et al., Phys. Rev. D89, 033014 (2014)
- Gorbahn, Haisch, JHEP 1406, 033 (2014)
- Kagan *et al.*, arXiv:1406.1722
- Crivellin, D'Ambrosio, Heeck, arXiv: 1501.00993

The flavor of h

$h \to \mu \tau$ in EFT

- SM: Forbidden by the accidental $U(1)_{\mu} \times U(1)_{\tau}$
- $d = 5 \text{ terms } \frac{(Y^N)_{ij}}{\Lambda} L_i L_j \phi \phi$: Allowed, but \Longrightarrow
 - Loop suppression $\sim \alpha_2^2$
 - Mixing suppression $\sim |U_{\mu 3}U_{\tau 3}|^2$
 - GIM suppression $\sim (\Delta m_{23}^2/m_W^2)^2$
- d = 6 terms $\frac{1}{\Lambda^2} (\phi^{\dagger} \phi) \phi \overline{\mu_L} Z_{\mu\tau}^e \tau_R$: The leading contribution – $M_E = \frac{v}{\sqrt{2}} \left(Y^e + \frac{v^2}{2\Lambda^2} Z^e \right), \quad Y_h^E = Y^e + 3 \frac{v^2}{2\Lambda^2} Z^e$ $\implies Y_h^E = (\sqrt{2} M_E / v) + \frac{v^2}{2\Lambda^2} Z^e$
- Note: $\frac{1}{\Lambda^2} \phi \overline{\mu_L} X^e_{\mu \tau} \sigma_{\mu \nu} \tau_R F^{\mu \nu} \implies \tau \to \mu \gamma$

JHW 40/38